1
|
Functionalization of Tubulin: Approaches to Modify Tubulin with Biotin and DNA. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2430:47-59. [PMID: 35476324 DOI: 10.1007/978-1-0716-1983-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The filamentous cytoskeletal protein microtubule, a polymer of α and β heterodimers of tubulin, plays major roles in intracellular transport as well as in vitro molecular actuation and transportation. Functionalization of tubulin dimers through covalent linkage facilitates utilization of microtubule in the nanobioengineering. Here we present a detailed description of the methodologies used to modify tubulin dimers with DNA strand and biotin through covalent interaction.
Collapse
|
2
|
Hu X, Dinu CZ. Microtubules and Quantum Dots Integration Leads to Conjugates with Applications in Biosensors and Bionanodevices. Methods Mol Biol 2022; 2430:133-148. [PMID: 35476330 DOI: 10.1007/978-1-0716-1983-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter describes compiled methods for the formation and manipulation of microtubule-kinesin-carbon nanodots conjugates in user-defined synthetic environments. Specifically, by using inherited self-assembly and self-recognition properties of tubulin cytoskeletal protein and by interfacing this protein with lab synthesized carbon nanodots, bio-nano hybrid interfaces were formed. Further manipulation of such biohybrids under the mechanical cycle of kinesin 1 ATP-ase molecular motor led to their integration on user-controlled engineered surfaces. Presented methods are foreseen to lead to microtubule-molecular motor-hybrid based assemblies formation with applications ranging from biosensing, to nanoelectronics and single molecule printing, just to name a few.
Collapse
Affiliation(s)
- Xiao Hu
- Department of Chemical and Biomedical Engineering, West Virginia University, Benjamin M. Statler College of Engineering and Mineral Resources, Morgantown, WV, USA
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Benjamin M. Statler College of Engineering and Mineral Resources, Morgantown, WV, USA.
| |
Collapse
|
3
|
Inaba H, Matsuura K. Modulation of Microtubule Properties and Functions by Encapsulation of Nanomaterials Using a Tau-Derived Peptide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552, Japan
| |
Collapse
|
4
|
Inaba H, Yamada M, Rashid MR, Kabir AMR, Kakugo A, Sada K, Matsuura K. Magnetic Force-Induced Alignment of Microtubules by Encapsulation of CoPt Nanoparticles Using a Tau-Derived Peptide. NANO LETTERS 2020; 20:5251-5258. [PMID: 32525681 DOI: 10.1021/acs.nanolett.0c01573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Construction of magnetotactic materials is a significant challenge in nanotechnology applications such as nanodevices and nanotransportation. Artificial magnetotactic materials can be designed from magnetotactic bacteria because these bacteria use magnetic nanoparticles for aligning with and moving within magnetic fields. Microtubules are attractive scaffolds to construct magnetotactic materials because of their intrinsic motility. Nonetheless, it is challenging to magnetically control their orientation while retaining their motility by conjugating magnetic nanoparticles on their outer surface. Here we solve the issue by encapsulating magnetic cobalt-platinum nanoparticles inside microtubules using our developed Tau-derived peptide that binds to their internal pockets. The in situ growth of cobalt-platinum nanoparticles resulted in the formation of a linear-chain assembly of nanoparticles inside the microtubules. The magnetic microtubules significantly aligned with a high order parameter (0.71) along the weak magnetic field (0.37 T) and showed increased motility. This work provides a new concept for designing magnetotactic materials.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Mayuki Yamada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| | - Mst Rubaya Rashid
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Arif Md Rashedul Kabir
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
- Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori 680-8552, Japan
| |
Collapse
|
5
|
Keya JJ, Kabir AMR, Kakugo A. Synchronous operation of biomolecular engines. Biophys Rev 2020; 12:401-409. [PMID: 32125657 PMCID: PMC7242543 DOI: 10.1007/s12551-020-00651-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biomolecular motor systems are the smallest natural machines with an ability to convert chemical energy into mechanical work with remarkably high efficiency. Such attractive features enabled biomolecular motors to become classic tools in soft matter research over the past decade. For designing suitably engineered biomimetic systems, the biomolecular motors can potentially be used as molecular engines that can transform energy and ensure great advantages for the construction of bio-nanodevices and molecular robots. From the optimization of their prolonged lifetime to coordinate them into highly complex and ordered structures, enormous efforts have been devoted to make them useful in the synthetic environment. Synchronous operation of the biomolecular engines is one of the key criteria to coordinate them into certain different patterns, which depends on the local interaction of biomolecular motors. Utilizing chemical and physical stimuli, synchronization of biomolecular motor systems has become possible, which allows them to coordinate into different higher ordered patterns with different modes of functionality. Recently, programmed synchronous operation of the biomolecular engines has also been demonstrated, using a smart biomaterial to build up swarms reminiscent of nature. Here, we review the recent progress in the synchronized operation of biomolecular motors in engineered systems to explicitly program their interaction and further their applications. Such developments in the coordination of biomolecular motors have opened a broad way to explore the construction of future autonomous molecular machines and robots based on synchronization of biomolecular engines.
Collapse
Affiliation(s)
- Jakia Jannat Keya
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | | | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
| |
Collapse
|
6
|
Affiliation(s)
- Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Chafai DE, Sulimenko V, Havelka D, Kubínová L, Dráber P, Cifra M. Reversible and Irreversible Modulation of Tubulin Self-Assembly by Intense Nanosecond Pulsed Electric Fields. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903636. [PMID: 31408579 DOI: 10.1002/adma.201903636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/26/2019] [Indexed: 05/21/2023]
Abstract
Tubulin self-assembly into microtubules is a fascinating natural phenomenon. Its importance is not just crucial for functional and structural biological processes, but it also serves as an inspiration for synthetic nanomaterial innovations. The modulation of the tubulin self-assembly process without introducing additional chemical inhibitors/promoters or stabilizers has remained an elusive process. This work reports a versatile and vigorous strategy for controlling tubulin self-assembly by nanosecond electropulses (nsEPs). The polymerization assessed by turbidimetry is dependent on nsEPs dosage. The kinetics of microtubules formation is tightly linked to the nsEPs effects on structural properties of tubulin, and tubulin-solvent interface, assessed by autofluorescence, and the zeta potential. Moreover, the overall size of tubulin assessed by dynamic light scattering is affected as well. Additionally, atomic force microscopy imaging reveals the formation of different assemblies reflecting applied nsEPs. It is suggested that changes in C-terminal modification states alter tubulin polymerization-competent conformations. Although the assembled tubulin preserve their integral structure, they might exhibit a broad range of new properties important for their functions. Thus, these transient conformation changes of tubulin and their collective properties can result in new applications.
Collapse
Affiliation(s)
- Djamel Eddine Chafai
- Bioelectrodynamics Research Team, Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic
| | - Vadym Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Daniel Havelka
- Bioelectrodynamics Research Team, Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic
| | - Lucie Kubínová
- Department of Biomathematics, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Pavel Dráber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Michal Cifra
- Bioelectrodynamics Research Team, Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 57, 182 51, Prague, Czech Republic
| |
Collapse
|
8
|
Andorfer R, Alper JD. From isolated structures to continuous networks: A categorization of cytoskeleton-based motile engineered biological microstructures. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1553. [PMID: 30740918 PMCID: PMC6881777 DOI: 10.1002/wnan.1553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 11/06/2022]
Abstract
As technology at the small scale is advancing, motile engineered microstructures are becoming useful in drug delivery, biomedicine, and lab-on-a-chip devices. However, traditional engineering methods and materials can be inefficient or functionally inadequate for small-scale applications. Increasingly, researchers are turning to the biology of the cytoskeleton, including microtubules, actin filaments, kinesins, dyneins, myosins, and associated proteins, for both inspiration and solutions. They are engineering structures with components that range from being entirely biological to being entirely synthetic mimics of biology and on scales that range from isotropic continuous networks to single isolated structures. Motile biological microstructures trace their origins from the development of assays used to study the cytoskeleton to the array of structures currently available today. We define 12 types of motile biological microstructures, based on four categories: entirely biological, modular, hybrid, and synthetic, and three scales: networks, clusters, and isolated structures. We highlight some key examples, the unique functionalities, and the potential applications of each microstructure type, and we summarize the quantitative models that enable engineering them. By categorizing the diversity of motile biological microstructures in this way, we aim to establish a framework to classify these structures, define the gaps in current research, and spur ideas to fill those gaps. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Nanotechnology Approaches to Biology > Cells at the Nanoscale Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Rachel Andorfer
- Department of Bioengineering, Clemson University, Clemson, South Carolina
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
| | - Joshua D. Alper
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina
- Department of Biological Sciences, Clemson University, Clemson, South Carolina
- Eukaryotic Pathogen Innovations Center, Clemson University, Clemson, South Carolina
| |
Collapse
|
9
|
Ui M, Miyauchi Y, Inoue M, Murakami M, Araki Y, Wada T, Kinbara K. Development of an Engineered Photoactive Yellow Protein as a Cross‐Linking Junction for Construction of Photoresponsive Protein‐Polymer Conjugates. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mihoko Ui
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Yusuke Miyauchi
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Masataka Inoue
- School of Life Science and TechnologyTokyo Institute of Technology 4259 B58, Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan
| | - Makoto Murakami
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Yasuyuki Araki
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Takehiko Wada
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Kazushi Kinbara
- School of Life Science and TechnologyTokyo Institute of Technology 4259 B58, Nagatsuta-cho, Midori-ku Yokohama 226-8501 Japan
| |
Collapse
|
10
|
Inaba H, Yamamoto T, Kabir AMR, Kakugo A, Sada K, Matsuura K. Molecular Encapsulation Inside Microtubules Based on Tau-Derived Peptides. Chemistry 2018; 24:14958-14967. [PMID: 30088680 PMCID: PMC6220817 DOI: 10.1002/chem.201802617] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Indexed: 11/20/2022]
Abstract
Microtubules are cytoskeletal filaments that serve as attractive scaffolds for developing nanomaterials and nanodevices because of their unique structural properties. The functionalization of the outer surface of microtubules has been established for this purpose. However, no attempts have been made to encapsulate molecules inside microtubules with 15 nm inner diameter. The encapsulation of various molecular cargos inside microtubules constitutes a new concept for nanodevice and nanocarrier applications of microtubules. Here, we developed peptide motifs for binding to the inner surface of microtubules, based on a repeat domain of the microtubule‐associated protein Tau. One of the four Tau‐derived peptides, 2N, binds to a taxol binding pocket of β‐tubulin located inside microtubules by preincubation with tubulin dimer and subsequent polymerization of the peptide‐tubulin complex. By conjugation of 2N to gold nanoparticles, encapsulation of gold nanoparticles inside microtubules was achieved. The methodology for molecular encapsulation inside microtubules by the Tau‐derived peptide is expected to advance the development of microtubule‐based nanomaterials and nanodevices.
Collapse
Affiliation(s)
- Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Takahisa Yamamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Arif Md Rashedul Kabir
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Hokkaido, 060-0810, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan.,Graduate School of Chemical Sciences and Engineering, Hokkaido University, Hokkaido, 060-0810, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.,Centre for Research on Green Sustainable Chemistry, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan
| |
Collapse
|
11
|
Song W, Zhu J, Kong W, Möhwald H, Li J. Different Microtubule Structures Assembled by Kinesin Motors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9768-9773. [PMID: 30021432 DOI: 10.1021/acs.langmuir.8b00662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The microtubule-kinesin system is used to form microtubule-based structures via microtubule gliding motility. On the kinesin-coated surface, the microtubules can be easily assembled into stable micro- and nanostructures like circles and microtubule bundles using the streptavidin-biotin system. Furthermore, these microtubules structures can still retain performance with kinesin motor movement in spite of different velocities. Collisions bear responsibility for the majority of events leading to circle formation. By taking advantage of biological substances, some micro- or nanostructures, which are difficult to fabricate by artificial processes, can be easily obtained.
Collapse
Affiliation(s)
- Weixing Song
- Department of Chemistry , Capital Normal University , Beijing 100048 , P.R. China
| | - Jianxiong Zhu
- School of Mechanical Engineering , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro, Yuseong-gu , Daejeon 34141 , Republic of Korea
| | - Weimin Kong
- Department of Chemistry , Capital Normal University , Beijing 100048 , P.R. China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , Golm, Potsdam D-14476 , Germany
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), International Joint Lab, Institute of Chemistry, Chinese Academy of Science , Beijing 100080 , China
| |
Collapse
|
12
|
Chu S, Baker MR, Leong G, Letcher RJ, Li QX. Covalent binding of the organophosphate insecticide profenofos to tyrosine on α- and β-tubulin proteins. CHEMOSPHERE 2018; 199:154-159. [PMID: 29433029 PMCID: PMC5847477 DOI: 10.1016/j.chemosphere.2018.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Organophosphorus (OP) compounds can bind covalently to many types of proteins and form protein adducts. These protein adducts can indicate the exposure to and neurotoxicity of OPs. In the present work, we studied adduction of tubulin with the OP insecticide profenofos in vitro and optimized the method for detection of adducted peptides. Porcine tubulin was incubated with profenofos and was then digested with trypsin, followed by mass spectrometric identification of the profenofos-modified tubulin and binding sites. With solvent-assisted digestion (80% acetonitrile in digestion solution), the protein was digested for peptide identification, especially for some peptides with low mass. The MALDI-TOF-MS and LC-ESI-TOF-MS analysis results showed that profenofos bound covalently to Tyr83 in porcine α-tubulin (TGTY*83R) and to Tyr281 in porcine β-tubulin (GSQQY*281R) with a mass increase of 166.02 Da from the original peptide fragments of porcine tubulin proteins. Tyrosine adduct sites were also confirmed by MALDI-TOF/TOF-MS analysis. This result may partially explain the neurotoxicity of profenofos at low doses and prolonged periods of exposure.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Dr., Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Margaret R Baker
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Gladys Leong
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Dr., Carleton University, Ottawa, ON, K1A 0H3, Canada
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
13
|
Bailey AG, Lowe CP. Possible mechanism for aligning microscopic flexible filaments predicted using "caterpillar" hydrodynamics. Phys Rev E 2017; 96:062417. [PMID: 29347415 DOI: 10.1103/physreve.96.062417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/07/2022]
Abstract
We use the "caterpillar" model for accurately calculating the inhomogeneous hydrodynamic friction along a microscopic slender cylindrical filaments using Oseen level hydrodynamics. The methodology is applied to study the motion of a flexible filament in a circularly polarized field. Our results predict that in dilute solution alignment occurs along the axis of the field. For electric fields, the strengths and frequencies required are deduced. These are experimentally accessible. We therefore propose that this is a practical method for aligning filaments such as microtubules and functionalized carbon nanotubes.
Collapse
Affiliation(s)
- A G Bailey
- Haas School of Business, University of California, Berkeley, Berkeley, California 94720, USA
| | - C P Lowe
- Van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, PO Box 94157, 1090 GD Amsterdam, Netherlands
| |
Collapse
|
14
|
Bachand GD, Spoerke ED, Stevens MJ. Microtubule-based nanomaterials: Exploiting nature's dynamic biopolymers. Biotechnol Bioeng 2015; 112:1065-73. [PMID: 25728349 DOI: 10.1002/bit.25569] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/11/2022]
Abstract
For more than a decade now, biomolecular systems have served as an inspiration for the development of synthetic nanomaterials and systems that are capable of reproducing many of unique and emergent behaviors of living systems. One intriguing element of such systems may be found in a specialized class of proteins known as biomolecular motors that are capable of performing useful work across multiple length scales through the efficient conversion of chemical energy. Microtubule (MT) filaments may be considered within this context as their dynamic assembly and disassembly dissipate energy, and perform work within the cell. MTs are one of three cytoskeletal filaments in eukaryotic cells, and play critical roles in a range of cellular processes including mitosis and vesicular trafficking. Based on their function, physical attributes, and unique dynamics, MTs also serve as a powerful archetype of a supramolecular filament that underlies and drives multiscale emergent behaviors. In this review, we briefly summarize recent efforts to generate hybrid and composite nanomaterials using MTs as biomolecular scaffolds, as well as computational and synthetic approaches to develop synthetic one-dimensional nanostructures that display the enviable attributes of the natural filaments.
Collapse
Affiliation(s)
- George D Bachand
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, 87185-1303, New Mexico.
| | | | | |
Collapse
|
15
|
Enhancement of microbial oil production by alpha-linolenic acid producing Yarrowia lipolytica strains QU22 and QU137. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0263-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
16
|
Leckie J, Hope A, Hughes M, Debnath S, Fleming S, Wark AW, Ulijn RV, Haw MD. Nanopropulsion by biocatalytic self-assembly. ACS NANO 2014; 8:9580-9. [PMID: 25162764 DOI: 10.1021/nn503875y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A number of organisms and organelles are capable of self-propulsion at the micro- and nanoscales. Production of simple man-made mimics of biological transportation systems may prove relevant to achieving movement in artificial cells and nano/micronscale robotics that may be of biological and nanotechnological importance. We demonstrate the propulsion of particles based on catalytically controlled molecular self-assembly and fiber formation at the particle surface. Specifically, phosphatase enzymes (acting as the engine) are conjugated to a quantum dot (the vehicle), and are subsequently exposed to micellar aggregates (fuel) that upon biocatalytic dephosphorylation undergo fibrillar self-assembly, which in turn causes propulsion. The motion of individual enzyme/quantum dot conjugates is followed directly using fluorescence microscopy. While overall movement remains random, the enzyme-conjugates exhibit significantly faster transport in the presence of the fiber forming system, compared to controls without fuel, a non-self-assembling substrate, or a substrate which assembles into spherical, rather than fibrous structures upon enzymatic dephosphorylation. When increasing the concentration of the fiber-forming fuel, the speed of the conjugates increases compared to non-self-assembling substrate, although directionality remains random.
Collapse
Affiliation(s)
- Joy Leckie
- Department of Chemical and Process Engineering, University of Strathclyde , 75 Montrose Street, Glasgow G11XJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Dong C, Dinu CZ. Molecular trucks and complementary tracks for bionanotechnological applications. Curr Opin Biotechnol 2013; 24:612-9. [DOI: 10.1016/j.copbio.2013.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 11/28/2022]
|
18
|
Goodman BS, Derr ND, Reck-Peterson SL. Engineered, harnessed, and hijacked: synthetic uses for cytoskeletal systems. Trends Cell Biol 2012; 22:644-52. [PMID: 23059001 DOI: 10.1016/j.tcb.2012.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 12/19/2022]
Abstract
Synthetic biology re-imagines existing biological systems by designing and constructing new biological parts, devices, and systems. In the arena of cytoskeleton-based transport, synthetic approaches are currently used in two broad ways. First, molecular motors are harnessed for non-physiological functions in cells. Second, transport systems are engineered in vitro to determine the biophysical rules that govern motility. These rules are then applied to synthetic nanotechnological systems. We review recent advances in both of these areas and conclude by discussing future directions in engineering the cytoskeleton and its motors for transport.
Collapse
Affiliation(s)
- Brian S Goodman
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
19
|
Kumar S, ten Siethoff L, Persson M, Lard M, te Kronnie G, Linke H, Månsson A. Antibodies covalently immobilized on actin filaments for fast myosin driven analyte transport. PLoS One 2012; 7:e46298. [PMID: 23056279 PMCID: PMC3463588 DOI: 10.1371/journal.pone.0046298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/29/2012] [Indexed: 01/09/2023] Open
Abstract
Biosensors would benefit from further miniaturization, increased detection rate and independence from external pumps and other bulky equipment. Whereas transportation systems built around molecular motors and cytoskeletal filaments hold significant promise in the latter regard, recent proof-of-principle devices based on the microtubule-kinesin motor system have not matched the speed of existing methods. An attractive solution to overcome this limitation would be the use of myosin driven propulsion of actin filaments which offers motility one order of magnitude faster than the kinesin-microtubule system. Here, we realized a necessary requirement for the use of the actomyosin system in biosensing devices, namely covalent attachment of antibodies to actin filaments using heterobifunctional cross-linkers. We also demonstrated consistent and rapid myosin II driven transport where velocity and the fraction of motile actin filaments was negligibly affected by the presence of antibody-antigen complexes at rather high density (>20 µm(-1)). The results, however, also demonstrated that it was challenging to consistently achieve high density of functional antibodies along the actin filament, and optimization of the covalent coupling procedure to increase labeling density should be a major focus for future work. Despite the remaining challenges, the reported advances are important steps towards considerably faster nanoseparation than shown for previous molecular motor based devices, and enhanced miniaturization because of high bending flexibility of actin filaments.
Collapse
Affiliation(s)
- Saroj Kumar
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Malin Persson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Mercy Lard
- The Nanometer Structure Consortium and Division of Solid State Physics, Lund University, Lund, Sweden
| | - Geertruy te Kronnie
- Department of Women’s and Children’s Health, University of Padua, Padova, Italy
| | - Heiner Linke
- The Nanometer Structure Consortium and Division of Solid State Physics, Lund University, Lund, Sweden
| | - Alf Månsson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
- * E-mail:
| |
Collapse
|
20
|
Translational actomyosin research: fundamental insights and applications hand in hand. J Muscle Res Cell Motil 2012; 33:219-33. [PMID: 22638606 PMCID: PMC3413815 DOI: 10.1007/s10974-012-9298-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/01/2012] [Indexed: 12/24/2022]
Abstract
This review describes the development towards actomyosin based nanodevices taking a starting point in pioneering studies in the 1990s based on conventional in vitro motility assays. References are given to parallel developments using the kinesin–microtubule motor system. The early developments focused on achieving cargo-transportation using actin filaments as cargo-loaded shuttles propelled by surface-adsorbed heavy meromyosin along micro- and nanofabricated channels. These efforts prompted extensive studies of surface–motor interactions contributing with new insights of general relevance in surface and colloid chemistry. As a result of these early efforts, a range of complex devices have now emerged, spanning applications in medical diagnostics, biocomputation and formation of complex nanostructures by self-organization. In addition to giving a comprehensive account of the developments towards real-world applications an important goal of the present review is to demonstrate important connections between the applied studies and fundamental biophysical studies of actomyosin and muscle function. Thus the manipulation of the motor proteins towards applications has resulted in new insights into methodological aspects of the in vitro motiliy assay. Other developments have advanced the understanding of the dynamic materials properties of actin filaments.
Collapse
|
21
|
Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:7. [PMID: 22364438 PMCID: PMC3309958 DOI: 10.1186/1754-6834-5-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/24/2012] [Indexed: 05/24/2023]
Abstract
BACKGROUND Wax ester synthases (WSs) can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel. RESULTS Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in Saccharomyces cerevisiae. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters) production in S. cerevisiae. All investigated WSs, from Acinetobacter baylyi ADP1, Marinobacter hydrocarbonoclasticus DSM 8798, Rhodococcus opacus PD630, Mus musculus C57BL/6 and Psychrobacter arcticus 273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from M. hydrocarbonoclasticus DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production. CONCLUSIONS Five WSs from different species were functionally expressed and their substrate preference characterized in S. cerevisiae, thus constructing cell factories for the production of specific kinds of wax ester. WS from M. hydrocarbonoclasticus showed the highest preference for ethanol compared to the other WSs, and could permit the engineered S. cerevisiae to produce biodiesel.
Collapse
Affiliation(s)
- Shuobo Shi
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| | - Juan Octavio Valle-Rodríguez
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| | - Sakda Khoomrung
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden
| |
Collapse
|
22
|
Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J. Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2012. [PMID: 22364438 DOI: 10.1186/preaccept-1932279820621895] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND Wax ester synthases (WSs) can synthesize wax esters from alcohols and fatty acyl coenzyme A thioesters. The knowledge of the preferred substrates for each WS allows the use of yeast cells for the production of wax esters that are high-value materials and can be used in a variety of industrial applications. The products of WSs include fatty acid ethyl esters, which can be directly used as biodiesel. RESULTS Here, heterologous WSs derived from five different organisms were successfully expressed and evaluated for their substrate preference in Saccharomyces cerevisiae. We investigated the potential of the different WSs for biodiesel (that is, fatty acid ethyl esters) production in S. cerevisiae. All investigated WSs, from Acinetobacter baylyi ADP1, Marinobacter hydrocarbonoclasticus DSM 8798, Rhodococcus opacus PD630, Mus musculus C57BL/6 and Psychrobacter arcticus 273-4, have different substrate specificities, but they can all lead to the formation of biodiesel. The best biodiesel producing strain was found to be the one expressing WS from M. hydrocarbonoclasticus DSM 8798 that resulted in a biodiesel titer of 6.3 mg/L. To further enhance biodiesel production, acetyl coenzyme A carboxylase was up-regulated, which resulted in a 30% increase in biodiesel production. CONCLUSIONS Five WSs from different species were functionally expressed and their substrate preference characterized in S. cerevisiae, thus constructing cell factories for the production of specific kinds of wax ester. WS from M. hydrocarbonoclasticus showed the highest preference for ethanol compared to the other WSs, and could permit the engineered S. cerevisiae to produce biodiesel.
Collapse
Affiliation(s)
- Shuobo Shi
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE 412 96, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
23
|
Wikee S, Udayanga D, Crous PW, Chukeatirote E, McKenzie EHC, Bahkali AH, Dai D, Hyde KD. Phyllosticta—an overview of current status of species recognition. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0146-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|