1
|
Zhang S, Liu L, Li W, Yin M, Hu Q, Chen S, Chen F, Liu Y, Guan Z, Jiang J. Alternaria alternata effector AaAlta1 targets CmWD40 and participates in regulating disease resistance in Chrysanthemum morifolium. PLoS Pathog 2025; 21:e1012942. [PMID: 40163540 PMCID: PMC11957361 DOI: 10.1371/journal.ppat.1012942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/28/2025] [Indexed: 04/02/2025] Open
Abstract
Black spot diseases caused by the necrotrophic fungal pathogen Alternaria alternata adversely affect the growth and yield of many plants worldwide. However, the molecular mechanisms underlying the virulence and pathogenicity of A. alternata remain largely unknown. In this study, we report the identification of a novel effector Alta1, secreted by A. alternata, which not only contributes to its virulence but also triggers the cell death and defense of the host plant. The expression of Alta1 in Chrysanthemum morifolium activated jasmonic acid (JA) signaling, which, in turn, enhanced plant resistance to A. alternata. Moreover, we found that Alta1 targeted the WD40-repeat protein of chrysanthemum (CmWD40) after entering host cells. Notably, the CmWD40 gene showed rhythmic basal expression, and the overexpression of CmWD40 increased the resistance of chrysanthemum leaves against A. alternata, whereas its loss of function led to a decrease in this resistance. The results of the comparative transcriptomics and JA content analyses indicated that CmWD40 is possibly involved in the accumulation and signaling of JA. The transcript levels of the MYC2 gene were significantly upregulated in lines overexpressing the CmWD40 gene compared with that in the wild type. Further, the results of the infection assay revealed that CmWD40 positively modulated Alta1-induced defense response by activating MYC2 transcription. Overall, the results obtained in this study demonstrate that identified effector Alta1, recognized by the circadian rhythm gene CmWD40, triggers JA-induced immune response and enhances disease resistance in chrysanthemum plants.
Collapse
Affiliation(s)
- Shuhuan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Lina Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Wenjie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Mengru Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
2
|
Farias KS, Ferreira MM, De Oliveira IB, Dalio RJD, Pirovani CP. The BASIDIN effector of the fungus Moniliophthora perniciosa promotes positive effects on the seed germination and seedlings development of Lactuca sativa. FRONTIERS IN PLANT SCIENCE 2025; 16:1529096. [PMID: 39949413 PMCID: PMC11821917 DOI: 10.3389/fpls.2025.1529096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Plant resistance inducers that activate plant defense mechanisms may be useful in reducing agrotoxic use. Lettuce is among the most economically important leafy vegetable crops in the world. Since lettuce propagates through seeds, the use of high-quality seeds is extremely important for establishing the crop. Several studies have demonstrated the potential of alternative methods of seed treatment with the aim of increasing productivity. Based on this premise, we tested the effect of the rBASIDIN effector regarding its ability to induce germination and physiological changes in lettuce seedlings through seed treatment. The seeds were treated for 30 min by soaking with 50 µg mL-1, 75 µg mL-1 and 100 µg mL-1 of the recombinant effector protein rBASIDIN. Seeds treated with distilled water and 10 mmol of Tris-HCl served as controls. The physiological parameters evaluated were germination percentage at 4 and 7 days, seedling length (aerial part and root), dry and fresh mass, electrical conductivity, and enzymatic activity. Seeds treated with 50 and 75 µg mL-1 of rBASIDIN germinated earlier than the controls. Treatment with rBASIDIN at a concentration of 50 µg mL-1 resulted in seedlings with an average root length of 1.51 cm, while the average lengths of the controls (H2O and buffer) were 0.86 and 0.70 cm respectively. Seed treatment with rBASIDIN caused an increase in the fresh and dry weight of the plants. The lowest electrolyte leakage was detected in seeds treated with the three concentrations of rBASIDIN compared to the controls. Regarding the activity of defense enzymes, seedlings treated with rBASIDIN at lower concentrations showed higher chitinase and β-glucanase activity compared to the controls. The results indicated that the rBASIDIN effector plays an important signaling role in lettuce seeds, since small doses are already sufficient to induce changes in physiological parameters to obtain more vigorous plants.
Collapse
Affiliation(s)
- Keilane Silva Farias
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Monaliza Macêdo Ferreira
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Ivina Barbosa De Oliveira
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Ronaldo José Durigan Dalio
- Centro de Citrucultura Sylvio Moreira, Laboratório de Biotecnologia, Instituto Agronômico, Cordeirópolis, São Paulo. IdeeLab Biotecnologia, Piracicaba, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| |
Collapse
|
3
|
Zhang Z, Wang D, Dong B, Wang Y, Xu J, Hao J, Zhou H. A protein elicitor PeVn1 from Verticillium nonalfalfae HW recognized as a MAMP triggers plant immunity response. FRONTIERS IN PLANT SCIENCE 2024; 15:1468437. [PMID: 39450088 PMCID: PMC11499194 DOI: 10.3389/fpls.2024.1468437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Protein elicitors can induce plant systemic resistance to pathogens. The recognition of a potential elicitor activates intracellular signaling events, leading to plant resistance against pathogens. In this study, a novel protein elicitor was isolated from the culture filtrate of Verticillium nonalfalfae and named PeVn1, which can induce cell death in several plant species. The PeVn1 gene was then cloned and expressed in Escherichia coli. The recombinant protein PeVn1 triggers cell death in Nicotiana benthamiana in NbBAK1 and NbSOBIR1 dependent manner. Through bioassay analysis showed that the recombinant PeVn1 induced early defense induction events, such as reactive oxygen species burst, callose deposition and the activation of defense hormone signaling pathways and defense enzyme activities. Moreover, PeVn1 significantly enhanced resistance of Nicotiana benthamiana to Sclerotinia sclerotiorum, Botrytis cinerea and N. benthamiana mosaic virus and tomato to Pseudomonas syringae pv. Tomato DC3000. In conclusion, our study reveals that PeVn1 protein as a microbe-associated molecular pattern can induce plant immune responses, which provides a theoretical basis for the development of novel protein-induced disease resistance agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianxiu Hao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Key Laboratory of Biopesticide Creation and Resource Utilization for Autonomous Region Higher Education Institutions, Hohhot, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Key Laboratory of Biopesticide Creation and Resource Utilization for Autonomous Region Higher Education Institutions, Hohhot, China
| |
Collapse
|
4
|
Qiu C, Zhang H, Liu Z. Alternaria solani core effector Aex59 is a new member of the Alt a 1 protein family and is recognized as a PAMP. Int J Biol Macromol 2024; 278:134918. [PMID: 39179073 DOI: 10.1016/j.ijbiomac.2024.134918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Early blight caused by Alternaria solani is a destructive disease in potato production. Here, through systematically screening of an effector protein pool consisting of 115 small cysteine-containing candidate Aex (Alternariaextracellular proteins) in A. solani, we identified a core effector protein named Aex59, a pathogen-associated molecular pattern (PAMP) molecule. Aex59 is uniquely present in the Ascomycota of fungi and can activate defense responses in multiple plants. Targeted gene disruption showed that Aex59 is a virulence factor and participates in spore development. Perception of Aex59 in Nicotiana benthamiana does not depend on the receptor-like kinases Brassinosteroid-associated kinase1 (BAK1) and Suppressor of BIR1-1 (SOBIR1), which are required for multiple pattern recognition receptors (PRR) pathways. Sequence analysis revealed that Aex59 is a new member of the Alt a 1 protein family and is a potential molecular marker capable of aiding in the classification of the fungi Alternaria spp.
Collapse
Affiliation(s)
- Chaodong Qiu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Huajian Zhang
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui 230036, China
| | - Zhenyu Liu
- Department of Plant Pathology, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Anhui Province Key Laboratory of Integrated Pest Management on Crops, Hefei, Anhui 230036, China.
| |
Collapse
|
5
|
Wang Y, Qin J, Wei M, Liao X, Shang W, Chen J, Subbarao KV, Hu X. Verticillium dahliae Elicitor VdSP8 Enhances Disease Resistance Through Increasing Lignin Biosynthesis in Cotton. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39327679 DOI: 10.1111/pce.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a destructive plant disease that instigates severe losses in many crops. Improving plant resistance to Verticillium wilt has been a challenge in most crops. In this study, a V. dahliae secreted protein VdSP8 was identified and shown to activate hyper-sensitive response (HR) and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Botrytis cinerea in tobacco plants. We identified a β-glucosidase named GhBGLU46 as a cotton plant target of VdSP8. VdSP8 interacts with GhBGLU46 both in vivo and in vitro and promotes the β-glucosidase activity of GhBGLU46. Silencing of GhBGLU46 reduced the expression of genes involved in lignin biosynthesis, such as GhCCR4, GhCCoAOMT2, GhCAD3 and GhCAD6, thus decreasing lignin deposition and increasing Verticillium wilt susceptibility. We have shown that GhBGLU46 is indispensable for the function of VdSP8 in plant resistance. These results suggest that plants have also evolved a strategy to exploit the invading effector protein VdSP8 to enhance plant resistance.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mengmeng Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiwen Liao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, Salinas, California, USA
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Shen L, Yang S, Zhao E, Xia X, Yang X. StoMYB41 positively regulates the Solanum torvum response to Verticillium dahliae in an ABA dependent manner. Int J Biol Macromol 2024; 263:130072. [PMID: 38346615 DOI: 10.1016/j.ijbiomac.2024.130072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024]
Abstract
MYB transcription factor despite their solid involvement in growth are potent regulator of plant stress response. Herein, we identified a MYB gene named as StoMYB41 in a wild eggplant species Solanum torvum. The expression level of StoMYB41 was higher in root than the tissues including stem, leaf, and seed. It induced significantly by Verticillium dahliae inoculation. StoMYB41 was localized in the nucleus and exhibited transcriptional activation activity. Silencing of StoMYB41 enhanced susceptibility of Solanum torvum against Verticillium dahliae, accompanied by higher disease index. The significant down-regulation of resistance marker gene StoABR1 comparing to the control plants was recorded in the silenced plants. Moreover, transient expression of StoMYB41 could trigger intense hypersensitive reaction mimic cell death, darker DAB and trypan blue staining, higher ion leakage, and induced the expression levels of StoABR1 and NbDEF1 in the leaves of Solanum torvum and Nicotiana benthamiana. Taken together, our data indicate that StoMYB41 acts as a positive regulator in Solanum torvum against Verticillium wilt.
Collapse
Affiliation(s)
- Lei Shen
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| | - Shixin Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Enpeng Zhao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xin Xia
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xu Yang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Zhu F, Cao MY, Zhang QP, Mohan R, Schar J, Mitchell M, Chen H, Liu F, Wang D, Fu ZQ. Join the green team: Inducers of plant immunity in the plant disease sustainable control toolbox. J Adv Res 2024; 57:15-42. [PMID: 37142184 PMCID: PMC10918366 DOI: 10.1016/j.jare.2023.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.
Collapse
Affiliation(s)
- Feng Zhu
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Meng-Yao Cao
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qi-Ping Zhang
- College of Plant Protection, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | | | - Jacob Schar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | - Huan Chen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu 210014, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
8
|
Sabnam N, Hussain A, Saha P. The secret password: Cell death-inducing proteins in filamentous phytopathogens - As versatile tools to develop disease-resistant crops. Microb Pathog 2023; 183:106276. [PMID: 37541554 DOI: 10.1016/j.micpath.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Cell death-inducing proteins (CDIPs) are some of the secreted effector proteins manifested by filamentous oomycetes and fungal pathogens to invade the plant tissue and facilitate infection. Along with their involvement in different developmental processes and virulence, CDIPs play a crucial role in plant-pathogen interactions. As the name implies, CDIPs cause necrosis and trigger localised cell death in the infected host tissues by the accumulation of higher concentrations of hydrogen peroxide (H2O2), oxidative burst, accumulation of nitric oxide (NO), and electrolyte leakage. They also stimulate the biosynthesis of defense-related phytohormones such as salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), as well as the expression of pathogenesis-related (PR) genes that are important in disease resistance. Altogether, the interactions result in the hypersensitive response (HR) in the host plant, which might confer systemic acquired resistance (SAR) in some cases against a vast array of related and unrelated pathogens. The CDIPs, due to their capability of inducing host resistance, are thus unique among the array of proteins secreted by filamentous plant pathogens. More interestingly, a few transgenic plant lines have also been developed expressing the CDIPs with added resistance. Thus, CDIPs have opened an interesting hot area of research. The present study critically reviews the current knowledge of major types of CDIPs identified across filamentous phytopathogens and their modes of action in the last couple of years. This review also highlights the recent breakthrough technologies in studying plant-pathogen interactions as well as crop improvement by enhancing disease resistance through CDIPs.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Afzal Hussain
- Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal, India
| | - Pallabi Saha
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, United States; Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|
9
|
Wang J, Wang D, Ji X, Wang J, Klosterman SJ, Dai X, Chen J, Subbarao KV, Hao X, Zhang D. The Verticillium dahliae Small Cysteine-Rich Protein VdSCP23 Manipulates Host Immunity. Int J Mol Sci 2023; 24:ijms24119403. [PMID: 37298354 DOI: 10.3390/ijms24119403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Verticillium wilt caused by Verticillium dahliae is a notorious soil-borne fungal disease and seriously threatens the yield of economic crops worldwide. During host infection, V. dahliae secretes many effectors that manipulate host immunity, among which small cysteine-rich proteins (SCPs) play an important role. However, the exact roles of many SCPs from V. dahliae are unknown and varied. In this study, we show that the small cysteine-rich protein VdSCP23 inhibits cell necrosis in Nicotiana benthamiana leaves, as well as the reactive oxygen species (ROS) burst, electrolyte leakage and the expression of defense-related genes. VdSCP23 is mainly localized in the plant cell plasma membrane and nucleus, but its inhibition of immune responses was independent of its nuclear localization. Site-directed mutagenesis and peptide truncation showed that the inhibition function of VdSCP23 was independent of cysteine residues but was dependent on the N-glycosylation sites and the integrity of VdSCP23 protein structure. Deletion of VdSCP23 did not affect the growth and development of mycelia or conidial production in V. dahliae. Unexpectedly, VdSCP23 deletion strains still maintained their virulence for N. benthamiana, Gossypium hirsutum and Arabidopsis thaliana seedlings. This study demonstrates an important role for VdSCP23 in the inhibition of plant immune responses; however, it is not required for normal growth or virulence in V. dahliae.
Collapse
Affiliation(s)
- Jie Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Dan Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaobin Ji
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jun Wang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Steven J Klosterman
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA
| | - Xiaofeng Dai
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Jieyin Chen
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Krishna V Subbarao
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905, USA
- Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA 93905, USA
| | - Xiaojuan Hao
- College of Plant Protection, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Dandan Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| |
Collapse
|
10
|
Tian L, Zhuang J, Li JJ, Zhu H, Klosterman SJ, Dai XF, Chen JY, Subbarao KV, Zhang DD. Thioredoxin VdTrx1, an unconventional secreted protein, is a virulence factor in Verticillium dahliae. Front Microbiol 2023; 14:1130468. [PMID: 37065139 PMCID: PMC10102666 DOI: 10.3389/fmicb.2023.1130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Understanding how plant pathogenic fungi adapt to their hosts is of critical importance to securing optimal crop productivity. In response to pathogenic attack, plants produce reactive oxygen species (ROS) as part of a multipronged defense response. Pathogens, in turn, have evolved ROS scavenging mechanisms to undermine host defense. Thioredoxins (Trx) are highly conserved oxidoreductase enzymes with a dithiol-disulfide active site, and function as antioxidants to protect cells against free radicals, such as ROS. However, the roles of thioredoxins in Verticillium dahliae, an important vascular pathogen, are not clear. Through proteomics analyses, we identified a putative thioredoxin (VdTrx1) lacking a signal peptide. VdTrx1 was present in the exoproteome of V. dahliae cultured in the presence of host tissues, a finding that suggested that it plays a role in host-pathogen interactions. We constructed a VdTrx1 deletion mutant ΔVdTrx1 that exhibited significantly higher sensitivity to ROS stress, H2O2, and tert-butyl hydroperoxide (t-BOOH). In vivo assays by live-cell imaging and in vitro assays by western blotting revealed that while VdTrx1 lacking the signal peptide can be localized within V. dahliae cells, VdTrx1 can also be secreted unconventionally depending on VdVps36, a member of the ESCRT-II protein complex. The ΔVdTrx1 strain was unable to scavenge host-generated extracellular ROS fully during host invasion. Deletion of VdTrx1 resulted in higher intracellular ROS levels of V. dahliae mycelium, displayed impaired conidial production, and showed significantly reduced virulence on Gossypium hirsutum, and model plants, Arabidopsis thaliana and Nicotiana benthamiana. Thus, we conclude that VdTrx1 acts as a virulence factor in V. dahliae.
Collapse
Affiliation(s)
- Li Tian
- School of Life Science, Qufu Normal University, Qufu, China
| | - Jing Zhuang
- School of Life Science, Qufu Normal University, Qufu, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - He Zhu
- National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, The Cotton Research Center of Liaoning Academy of Agricultural Sciences, Liaoning Provincial Institute of Economic Crops, Liaoyang, China
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, CA, United States
- Krishna V. Subbarao,
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
- *Correspondence: Dan-Dan Zhang,
| |
Collapse
|
11
|
Jeblick T, Leisen T, Steidele CE, Albert I, Müller J, Kaiser S, Mahler F, Sommer F, Keller S, Hückelhoven R, Hahn M, Scheuring D. Botrytis hypersensitive response inducing protein 1 triggers noncanonical PTI to induce plant cell death. PLANT PHYSIOLOGY 2023; 191:125-141. [PMID: 36222581 PMCID: PMC9806589 DOI: 10.1093/plphys/kiac476] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 05/28/2023]
Abstract
According to their lifestyle, plant pathogens are divided into biotrophic and necrotrophic organisms. Biotrophic pathogens exclusively nourish living host cells, whereas necrotrophic pathogens rapidly kill host cells and nourish cell walls and cell contents. To this end, the necrotrophic fungus Botrytis cinerea secretes large amounts of phytotoxic proteins and cell wall-degrading enzymes. However, the precise role of these proteins during infection is unknown. Here, we report on the identification and characterization of the previously unknown toxic protein hypersensitive response-inducing protein 1 (Hip1), which induces plant cell death. We found the adoption of a structurally conserved folded Alternaria alternata Alt a 1 protein structure to be a prerequisite for Hip1 to exert its necrosis-inducing activity in a host-specific manner. Localization and the induction of typical plant defense responses by Hip1 indicate recognition as a pathogen-associated molecular pattern at the plant plasma membrane. In contrast to other secreted toxic Botrytis proteins, the activity of Hip1 does not depend on the presence of the receptor-associated kinases BRI1-associated kinase 1 and suppressor of BIR1-1. Our results demonstrate that recognition of Hip1, even in the absence of obvious enzymatic or pore-forming activity, induces strong plant defense reactions eventually leading to plant cell death. Botrytis hip1 overexpression strains generated by CRISPR/Cas9 displayed enhanced infection, indicating the virulence-promoting potential of Hip1. Taken together, Hip1 induces a noncanonical defense response which might be a common feature of structurally conserved fungal proteins from the Alt a 1 family.
Collapse
Affiliation(s)
- Tanja Jeblick
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Thomas Leisen
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Christina E Steidele
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Isabell Albert
- Molecular Plant Physiology, FAU Erlangen, Erlangen 91058, Germany
| | - Jonas Müller
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Sabrina Kaiser
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Florian Mahler
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Frederik Sommer
- Molecular Biotechnology & Systems Biology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | - Sandro Keller
- Molecular Biophysics, University of Kaiserslautern, Kaiserslautern 67663, Germany
- Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Graz 8010, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising 85354, Germany
| | - Matthias Hahn
- Plant Pathology, University of Kaiserslautern, Kaiserslautern 67663, Germany
| | | |
Collapse
|
12
|
Lv J, Zhou J, Chang B, Zhang Y, Feng Z, Wei F, Zhao L, Zhang Y, Feng H. Two Metalloproteases VdM35-1 and VdASPF2 from Verticillium dahliae Are Required for Fungal Pathogenicity, Stress Adaptation, and Activating Immune Response of Host. Microbiol Spectr 2022; 10:e0247722. [PMID: 36222688 PMCID: PMC9769895 DOI: 10.1128/spectrum.02477-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 01/06/2023] Open
Abstract
Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - BaiYang Chang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
13
|
Zhang Y, Gao C, Zhang Y, Huang H, Du Y, Wu L, Wu L. FTX271: A potential gene resource for plant antiviral transgenic breeding. Front Microbiol 2022; 13:1003478. [PMID: 36246260 PMCID: PMC9558137 DOI: 10.3389/fmicb.2022.1003478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Flammutoxin (FTX), as well as its precursor TDP, is a protein from Flammulina velutipes with antiviral activity. Transgenic tobacco with the FTX271 (gene of FTX or TDP) can not only delay the onset time of symptoms but also alleviate the symptoms caused by tobacco mosaic virus (TMV), but the mechanism is still unclear. In this study, FTX271 was introduced into Nicotiana benthamiana, and the disease resistance mechanism activated by FTX271 was speculated by transcriptomic and proteomic techniques. The results showed that TDP was detected, and some genes, proteins and pathways were significant upregulated or enriched in transgenic tobacco, including the mitogen-activated protein kinase (MAPK) cascade signal transduction pathway, the expression of hypersensitive response (HR) marker genes H1N1 and HSR203J, pathogenesis-related (PR) genes, and the key genes COI1 and lipoxygenase gene LOX2 of the jasmonic acid (JA) signaling pathway, indicating FTX271 may activate the MAPK pathway and increase the content of reactive oxygen species (ROS) and JA, which promoted the HR and inducible systemic resistance (ISR). ISR caused increased expression of peroxidase (POD) and other proteins involved in pathogen defense. In addition, transgenic tobacco may use sHSP-assisted photoreparation to alleviate the symptoms of TMV. In conclusion, JA-mediated ISR and sHSP-assisted photoreparation are activated by FTX271 to protect tobacco from TMV infection and alleviate the symptoms caused by the virus. The study provided a theoretical basis for the TMV resistance mechanism of FTX271, which may represent a potential gene resource for plant antiviral transgenic breeding.
Collapse
|
14
|
Liu Q, Wang S, Du Y, Yin K. Improved drought tolerance in soybean by protein elicitor AMEP412 induced ROS accumulation and scavenging. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2089596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Quan Liu
- Department of Biotechnology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Siwen Wang
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Yanli Du
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| | - Kuide Yin
- Department of Environmental Science, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, P.R. China
| |
Collapse
|
15
|
Li Z, Zhang Y, Ren J, Jia F, Zeng H, Li G, Yang X. Ethylene-responsive factor ERF114 mediates fungal pathogen effector PevD1-induced disease resistance in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2022; 23:819-831. [PMID: 35340106 PMCID: PMC9104250 DOI: 10.1111/mpp.13208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
APETALA2/ethylene-responsive factor (AP2/ERF) family transcription factors are well-documented in plant responses to a wide range of biotic and abiotic stresses, but their roles in mediating elicitor-induced disease resistance remains largely unexplored. PevD1 is a Verticillium dahliae secretory effector that can induce disease resistance in cotton and tobacco plants. In our previous work, Nicotiana benthamiana ERF114 (NbERF114) was identified in a screen of genes differentially expressed in response to PevD1 infiltration. Here, we found that the ortholog of NbERF114 in Arabidopsis thaliana (ERF114) also strongly responded to PevD1 treatment and transcripts were induced by Pseudomonas syringae pv. tomato (Pst) DC3000 infection. Loss of ERF114 function caused impaired disease resistance, while overexpressing ERF114 (OE-ERF114) enhanced resistance to Pst DC3000. Moreover, ERF114 mediated PevD1-induced disease resistance. RNA-sequencing analysis revealed that the transcript level of phenylalanine ammonia-lyase1 (PAL1) and its downstream genes were significantly suppressed in erf114 mutants compared with A. thaliana Col-0. Reverse transcription-quantitative PCR (RT-qPCR) analysis further confirmed that the PAL1 mRNA level was significantly elevated in overexpressing OE-ERF114 plants but reduced in erf114 mutants compared with Col-0. Chromatin immunoprecipitation-qPCR (ChIP-qPCR) and electrophoretic mobility shift assay verified that ERF114 directly bound to the promoter of PAL1. The gene expression profiles of ERF114 and PAL1 in oestradiol-inducible transgenic plants confirmed ERF114 could activate PAL1 transcriptional expression. Further investigation revealed that ERF114 positively modulated PevD1-induced lignin and salicylic acid accumulation, probably by activating PAL1 transcription.
Collapse
Affiliation(s)
- Ze Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yi Zhang
- Department of BiologySchool of Life SciencesInstitute of Plant and Food ScienceSouthern University of Science and Technology (SUSTech)ShenzhenChina
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Fenglian Jia
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
16
|
Zhang DD, Dai XF, Klosterman SJ, Subbarao KV, Chen JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms. Biol Rev Camb Philos Soc 2022; 97:1810-1822. [PMID: 35478378 PMCID: PMC9542920 DOI: 10.1111/brv.12863] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a notorious soil‐borne pathogen that enters hosts through the roots and proliferates in the plant water‐conducting elements to cause Verticillium wilt. Historically, Verticillium wilt symptoms have been explained by vascular occlusion, due to the accumulation of mycelia and plant biomacromolecule aggregation, and also by phytotoxicity caused by pathogen‐secreted toxins. Beyond the direct cytotoxicity of some members of the secretome, this review systematically discusses the roles of the V. dahliae secretome in vascular occlusion, including the deposition of polysaccharides as an outcome of plant cell wall destruction, the accumulation of fungal mycelia, and modulation of plant defence responses. By modulating plant defences and hormone levels, the secretome manipulates the vascular environment to induce Verticillium wilt. Thus, the secretome of V. dahliae colludes with plant defence responses to modulate Verticillium wilt symptoms, and thereby bridges the historical concepts of both toxin production by the pathogen and vascular occlusion as the cause of wilting symptoms.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
17
|
Yang B, Yang S, Zheng W, Wang Y. Plant immunity inducers: from discovery to agricultural application. STRESS BIOLOGY 2022; 2:5. [PMID: 37676359 PMCID: PMC10442025 DOI: 10.1007/s44154-021-00028-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
While conventional chemical fungicides directly eliminate pathogens, plant immunity inducers activate or prime plant immunity. In recent years, considerable progress has been made in understanding the mechanisms of immune regulation in plants. The development and application of plant immunity inducers based on the principles of plant immunity represent a new field in plant protection research. In this review, we describe the mechanisms of plant immunity inducers in terms of plant immune system activation, summarize the various classes of reported plant immunity inducers (proteins, oligosaccharides, chemicals, and lipids), and review methods for the identification or synthesis of plant immunity inducers. The current situation, new strategies, and future prospects in the development and application of plant immunity inducers are also discussed.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Yu WQ, Li P, Yan FC, Zheng GP, Liu WZ, Lin WX, Wang Y, Luo ZQ. Protein Elicitor EsxA Induces Resistance to Seedling Blight and PR Genes Differential Transcription in Rice. RICE (NEW YORK, N.Y.) 2021; 14:91. [PMID: 34735664 PMCID: PMC8568749 DOI: 10.1186/s12284-021-00532-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Protein elicitors can induce plant systemic resistance to pathogens. In an earlier study, we cloned an EsxA gene from the plant growth-promoting rhizobacterium Paenibacillus terrae NK3-4 and expressed it in Pichia pastoris. In addition to being important for the pathogenicity of animal pathogens, EsxA can also induce an immune response in animals. While, we found the exogenously expressed EsxA has the activity of elicitor, which can trigger hypersensitive response and reactive oxygen species burst in leaves as well as enhanced rice plant growth. The effects of EsxA on seedling blight (Fusarium oxysporum) resistance and gene transcription, including pathogenesis-related (PR) genes in rice were evaluated. The germination rate was 95.0% for seeds treated with EsxA and then inoculated with F. oxysporum, which was 2.8-times higher than that of F. oxysporum-infected control seeds that were not treated with EsxA (Con). The buds and roots of EsxA-treated seedlings were 2.4- and 15.9-times longer than those of Con seedlings. The plants and roots of seedlings dipped in an EsxA solution and then inoculated with F. oxysporum were longer than those of the Con seedlings. Theplant length, number of total roots, and number of white roots were respectively 23.2%, 1.74-times, and 7.42-times greater for the seedlings sprayed with EsxA and then inoculated with F. oxysporum than for the Con seedlings. The EsxA induction efficiency (spray treatment) on seedling blight resistance was 60.9%. The transcriptome analysis revealed 1137 and 239 rice genes with EsxA-induced up-regulated and down-regulated transcription levels, respectively. At 48 h after the EsxA treatment, the transcription of 611 and 160 genes was up-regulated and down-regulated, respectively, compared with the transcription levels for the untreated control at the same time-point. Many disease resistance-related PR genes had up-regulated transcription levels. The qPCR data were consistent with the transcriptome sequencing results. EsxA triggered rice ISR to seedling blight and gene differential transcription, including the up-regulated transcription of rice PR genes. These findings may be relevant for the use of EsxA as a protein elicitor to control plant diseases.
Collapse
Affiliation(s)
- Wen Qing Yu
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, China
- Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Peng Li
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, China
| | - Feng Chao Yan
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, China
| | - Gui Ping Zheng
- Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Wen Zhi Liu
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China.
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150038, China.
| | - Wen Xi Lin
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China
| | - Yi Wang
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China
| | - Zhi Qing Luo
- College of Life Sciences, Shangrao Normal University, Shanrao, 334001, Jiangxi, China
| |
Collapse
|
19
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 PMCID: PMC8593000 DOI: 10.3389/fpls.2021.749630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/24/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Zhu Y, Hu X, Wang P, Gao L, Pei Y, Ge Z, Ge X, Li F, Hou Y. GhPLP2 Positively Regulates Cotton Resistance to Verticillium Wilt by Modulating Fatty Acid Accumulation and Jasmonic Acid Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:749630. [PMID: 34795685 DOI: 10.21203/rs.3.rs-388437/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 05/25/2023]
Abstract
Patatin-like proteins (PLPs) have non-specific lipid acyl hydrolysis (LAH) activity, which can hydrolyze membrane lipids into fatty acids and lysophospholipids. The vital role of PLPs in plant growth and abiotic stress has been well documented. However, the function of PLPs in plant defense responses against pathogens is still poorly understood. Here, we isolated and identified a novel cotton (Gossypium hirsutum) PLP gene GhPLP2. The expression of GhPLP2 was induced upon treatment with Verticillium dahliae, the signaling molecules jasmonic acid (JA) and ethylene (ETH) in cotton plants. Subcellular localization revealed that GhPLP2 was localized to the plasma membrane. GhPLP2-silenced cotton plants were more susceptible to infection by V. dahliae, while the overexpression of GhPLP2 in Arabidopsis enhanced its resistance to V. dahliae, which was apparent as mild symptoms, and a decrease in the disease index and fungal biomass. The hypersensitive response, deposition of callose, and H2O2 accumulation triggered by V. dahliae elicitor were reduced in GhPLP2-silenced cotton plants. The overexpression of GhPLP2 in Arabidopsis resulted in the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and facilitated the biosynthesis of JA and JA-mediated defensive responses. GhPLP2 silencing in cotton plants consistently reduced the accumulation of linoleic acid (LA, 18:2) and α-linolenic acid (ALA, 18:3) and suppressed the biosynthesis of JA and the defensive responses mediated by JA. These results indicate that GhPLP2 is involved in the resistance of cotton to V. dahliae by maintaining fatty acid metabolism pools for JA biosynthesis and activating the JA signaling pathway.
Collapse
Affiliation(s)
- Yutao Zhu
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoqian Hu
- College of Science, China Agricultural University, Beijing, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing, China
| | - Linying Gao
- College of Science, China Agricultural University, Beijing, China
| | - Yakun Pei
- College of Science, China Agricultural University, Beijing, China
| | - Zhaoyue Ge
- College of Science, China Agricultural University, Beijing, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Zhang Y, Gao Y, Wang HL, Kan C, Li Z, Yang X, Yin W, Xia X, Nam HG, Li Z, Guo H. Verticillium dahliae secretory effector PevD1 induces leaf senescence by promoting ORE1-mediated ethylene biosynthesis. MOLECULAR PLANT 2021; 14:1901-1917. [PMID: 34303024 DOI: 10.1016/j.molp.2021.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 05/16/2023]
Abstract
Leaf senescence, the final stage of leaf development, is influenced by numerous internal and environmental signals. However, how biotic stresses such as pathogen infection regulate leaf senescence remains largely unclear. In this study, we found that the premature leaf senescence in Arabidopsis caused by the soil-borne vascular fungus Verticillium dahliae was impaired by disruption of a protein elicitor from V. dahliae 1 named PevD1. Constitutive or inducible overexpression of PevD1 accelerated Arabidopsis leaf senescence. Interestingly, a senescence-associated NAC transcription factor, ORE1, was targeted by PevD1. PevD1 could interact with and stabilize ORE1 protein by disrupting its interaction with the RING-type ubiquitin E3 ligase NLA. Mutation of ORE1 suppressed the premature senescence caused by overexpressing PevD1, whereas overexpression of ORE1 or PevD1 led to enhanced ethylene production and thereby leaf senescence. We showed that ORE1 directly binds the promoter of ACS6 and promotes its expression for mediating PevD1-induced ethylene biosynthesis. Loss-of-function of ACSs could suppress V. dahliae-induced leaf senescence in ORE1-overexpressing plants. Furthermore, we found thatPevD1 also interacts with Gossypium hirsutum ORE1 (GhORE1) and that virus-induced gene silencing of GhORE1 delays V. dahliae-triggered leaf senescence in cotton, indicating a possibly conserved mechanism in plants. Taken together, these results suggest that V. dahliae induces leaf senescence by secreting the effector PevD1 to manipulate the ORE1-ACS6 cascade, providing new insights into biotic stress-induced senescence in plants.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chengcheng Kan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Ze Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hong Gil Nam
- Center for Plant Aging Research, Institute for Basic Science, Daegu 42988, Republic of Korea; New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
22
|
Tian L, Li J, Huang C, Zhang D, Xu Y, Yang X, Song J, Wang D, Qiu N, Short DPG, Inderbitzin P, Subbarao KV, Chen J, Dai X. Cu/Zn superoxide dismutase (VdSOD1) mediates reactive oxygen species detoxification and modulates virulence in Verticillium dahliae. MOLECULAR PLANT PATHOLOGY 2021; 22:1092-1108. [PMID: 34245085 PMCID: PMC8359004 DOI: 10.1111/mpp.13099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 05/14/2023]
Abstract
The accumulation of reactive oxygen species (ROS) is a widespread defence mechanism in higher plants against pathogen attack and sometimes is the cause of cell death that facilitates attack by necrotrophic pathogens. Plant pathogens use superoxide dismutase (SOD) to scavenge ROS derived from their own metabolism or generated from host defence. The significance and roles of SODs in the vascular plant pathogen Verticillium dahliae are unclear. Our previous study showed a significant upregulation of Cu/Zn-SOD1 (VdSOD1) in cotton tissues following V. dahliae infection, suggesting that it may play a role in pathogen virulence. Here, we constructed VdSOD1 deletion mutants (ΔSOD1) and investigated its function in scavenging ROS and promoting pathogen virulence. ΔSOD1 had normal growth and conidiation but exhibited significantly higher sensitivity to the intracellular ROS generator menadione. Despite lacking a signal peptide, assays in vitro by western blot and in vivo by confocal microscopy revealed that secretion of VdSOD1 is dependent on the Golgi reassembly stacking protein (VdGRASP). Both menadione-treated ΔSOD1 and cotton roots infected with ΔSOD1 accumulated more O2- and less H2 O2 than with the wildtype strain. The absence of a functioning VdSOD1 significantly reduced symptom severity and pathogen colonization in both cotton and Nicotiana benthamiana. VdSOD1 is nonessential for growth or viability of V. dahliae, but is involved in the detoxification of both intracellular ROS and host-generated extracellular ROS, and contributes significantly to virulence in V. dahliae.
Collapse
Affiliation(s)
- Li Tian
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Junjiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Caimin Huang
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Yan Xu
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life ScienceChongqing Normal UniversityChongqingChina
| | - Xingyong Yang
- Chongqing Engineering Research Center of Specialty Crop Resources and the College of Life ScienceChongqing Normal UniversityChongqingChina
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Dan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Nianwei Qiu
- College of Life ScienceQufu Normal UniversityQufuChina
| | - Dylan P. G. Short
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Patrik Inderbitzin
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Krishna V. Subbarao
- Department of Plant PathologyUniversity of California, Davis, c/o United States Agricultural Research StationSalinasCaliforniaUSA
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
23
|
Liang Y, Li Z, Zhang Y, Meng F, Qiu D, Zeng H, Li G, Yang X. Nbnrp1 mediates Verticillium dahliae effector PevD1-triggered defense responses by regulating sesquiterpenoid phytoalexins biosynthesis pathway in Nicotiana benthamiana. Gene 2021; 768:145280. [PMID: 33186613 DOI: 10.1016/j.gene.2020.145280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
PevD1, a fungal effector secreted by Verticillium dahliae, could induce hypersensitive responses-like necrosis and systemic acquired resistance (SAR) in cotton and tobacco plants. PevD1 could drastically induce the expression of Nbnrp1, which is an asparagine-rich protein (NRP) of Nicotiana benthamiana. Our previous research indicated that Nbnrp1 positively regulated PevD1-induced cell necrosis and disease resistance. In this study, we further investigated PevD1-induced immune responses in both wild-type (WT) and Nbnrp1-RNAi lines through RNA-seq, in order to reveal the underlying mechanism of Nbnrp1-modulated PevD1-induced disease resistance in N. benthamiana. Results showed that Nbnrp1-RNAi lines exhibited reduced PevD1-induced immune responses, like inhibiting H2O2 accumulation and MAPK phosphorylation. To silence Nbnrp1 inhibited the expression of PevD1-induced differential expression genes (DEGs) involved in pathways associated with sesquiterpenoid and triterpenoid biosynthesis, flavone and flavonol biosynthesis, plant-pathogen interaction and phenylpropanoid biosynthesis, etc. It is worth noting that sesquiterpene phytoalexin capsidiol accumulation were obviously decreased in Nbnrp1-RNAi plants after PevD1 treatment, accompanied with the down-expression of EAS and EAH, which were two key genes related to capsidiol biosynthesis. These results suggested that Nbnrp1 mediates PevD1-induced defense responses by regulating sesquiterpenoid phytoalexins biosynthesis pathway.
Collapse
Affiliation(s)
- Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 Yuanmingyuan West Rode, Beijing 100093, China
| | - Ze Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 Yuanmingyuan West Rode, Beijing 100093, China
| | - Yi Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 Yuanmingyuan West Rode, Beijing 100093, China
| | - Fanlu Meng
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 Yuanmingyuan West Rode, Beijing 100093, China
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 Yuanmingyuan West Rode, Beijing 100093, China
| | - Guangyue Li
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 Yuanmingyuan West Rode, Beijing 100093, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, No. 2 Yuanmingyuan West Rode, Beijing 100093, China.
| |
Collapse
|
24
|
Zhou J, Feng Z, Liu S, Wei F, Shi Y, Zhao L, Huang W, Zhou Y, Feng H, Zhu H. CGTase, a novel antimicrobial protein from Bacillus cereus YUPP-10, suppresses Verticillium dahliae and mediates plant defence responses. MOLECULAR PLANT PATHOLOGY 2021; 22:130-144. [PMID: 33230892 PMCID: PMC7749748 DOI: 10.1111/mpp.13014] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 05/12/2023]
Abstract
Verticillium wilt is a plant vascular disease caused by the soilborne fungus Verticillium dahliae that severely limits cotton production. In a previous study, we screened Bacillus cereus YUPP-10, an efficient antagonistic bacterium, to uncover mechanisms for controlling verticillium wilt. Here, we report a novel antimicrobial cyclodextrin glycosyltransferase (CGTase) from YUPP-10. Compared to other CGTases, six different conserved domains were identified, and six mutants were constructed by gene splicing with overlap extension PCR. Functional analysis showed that domain D was important for hydrolysis activity and domains A1 and C were important for inducing disease resistance. Direct effects of recombinant CGTase on V. dahliae included reduced mycelial growth, spore germination, spore production, and microsclerotia germination. In addition, CGTase also elicited cotton's innate defence reactions. Transgenic Arabidopsis thaliana lines that overexpress CGTase showed higher resistance to verticillium wilt. Transgenic CGTase A. thaliana plants grew faster and resisted disease better. CGTase overexpression enabled a burst of reactive oxygen species production and activated pathogenesis-related gene expression, indicating that the transgenic cotton was better prepared to protect itself from infection. Our work revealed that CGTase could inhibit the growth of V. dahliae, activate innate immunity, and play a major role in the biocontrol of fungal pathogens.
Collapse
Affiliation(s)
- Jinglong Zhou
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- College of AgricultureYangtze UniversityJingzhouChina
| | - Zili Feng
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Shichao Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Feng Wei
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yongqiang Shi
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Lihong Zhao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Wanting Huang
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Yi Zhou
- College of AgricultureYangtze UniversityJingzhouChina
| | - Hongjie Feng
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Heqin Zhu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
25
|
Li Y, Han Y, Qu M, Chen J, Chen X, Geng X, Wang Z, Chen S. Apoplastic Cell Death-Inducing Proteins of Filamentous Plant Pathogens: Roles in Plant-Pathogen Interactions. Front Genet 2020; 11:661. [PMID: 32676100 PMCID: PMC7333776 DOI: 10.3389/fgene.2020.00661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/01/2020] [Indexed: 11/13/2022] Open
Abstract
Filamentous pathogens, such as phytopathogenic oomycetes and fungi, secrete a remarkable diversity of apoplastic effector proteins to facilitate infection, many of which are able to induce cell death in plants. Over the past decades, over 177 apoplastic cell death-inducing proteins (CDIPs) have been identified in filamentous oomycetes and fungi. An emerging number of studies have demonstrated the role of many apoplastic CDIPs as essential virulence factors. At the same time, apoplastic CDIPs have been documented to be recognized by plant cells as pathogen-associated molecular patterns (PAMPs). The recent findings of extracellular recognition of apoplastic CDIPs by plant leucine-rich repeat-receptor-like proteins (LRR-RLPs) have greatly advanced our understanding of how plants detect them and mount a defense response. This review summarizes the latest advances in identifying apoplastic CDIPs of plant pathogenic oomycetes and fungi, and our current understanding of the dual roles of apoplastic CDIPs in plant-filamentous pathogen interactions.
Collapse
Affiliation(s)
- Ya Li
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yijuan Han
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Mengyu Qu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| |
Collapse
|
26
|
Bruno GL, Sermani S, Triozzi M, Tommasi F. Physiological response of two olive cultivars to secondary metabolites of Verticillium dahliae Kleb. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:292-298. [PMID: 32251954 DOI: 10.1016/j.plaphy.2020.03.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The effects of two purified fractions (formerly D-SXM and ND-SXM) produced in vitro by defoliating (Vd312D) and non-defoliating (Vd315ND) strains of Verticillium dahliae were studied on twigs of Olea europaea cvs Frantoio and Leccino. Symptoms, such as leaf curling, yellowing, vein clearing and defoliation, which are observed on the two cultivars naturally affected by Verticillium wilt, were produced by these fractions. Physiological changes were induced during the first seven days after the absorption of solutions containing ND-SXM or D-SXM. Both fractions increased the transpiration flow from abaxial leaf surfaces. Cell membrane and antioxidant activity were the most important action sites of ND-SXM and D-SXM. ND-SXM influenced malondialdehyde concentration in 'Leccino' leaves, while D-SXM increased the percentage of electrolyte leakage in 'Frantoio'. Both fractions reduced the total non-enzymatic antioxidant activity on the leaves of the treated twigs. The total phenol content increased in both cultivars, without differences to the control. Variations on electrolyte leakage and total antioxidant activity were effective in discriminating the two tested olive cultivars for V. dahliae tolerance or susceptibility. If V. dahliae strains Vd315ND and Vd312D produce ND-SXM and D-SXM in the infected plants, these metabolites may move via the xylem sap, accumulate in the leaves and induce changes that will lead symptoms on the leaf by compromising the cell membranes physiology.
Collapse
Affiliation(s)
- Giovanni L Bruno
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (Di.S.S.P.A.) Sezione di Patologia vegetale, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Samer Sermani
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti (Di.S.S.P.A.) Sezione di Patologia vegetale, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Mariangela Triozzi
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Franca Tommasi
- Dipartimento di Biologia, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
27
|
Jeffress S, Arun-Chinnappa K, Stodart B, Vaghefi N, Tan YP, Ash G. Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters. PLoS One 2020; 15:e0227396. [PMID: 32469865 PMCID: PMC7259788 DOI: 10.1371/journal.pone.0227396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/17/2020] [Indexed: 11/22/2022] Open
Abstract
Elsinoë fawcettii, a necrotrophic fungal pathogen, causes citrus scab on numerous citrus varieties around the world. Known pathotypes of E. fawcettii are based on host range; additionally, cryptic pathotypes have been reported and more novel pathotypes are thought to exist. E. fawcettii produces elsinochrome, a non-host selective toxin which contributes to virulence. However, the mechanisms involved in potential pathogen-host interactions occurring prior to the production of elsinochrome are unknown, yet the host-specificity observed among pathotypes suggests a reliance upon such mechanisms. In this study we have generated a whole genome sequencing project for E. fawcettii, producing an annotated draft assembly 26.01 Mb in size, with 10,080 predicted gene models and low (0.37%) coverage of transposable elements. A small proportion of the assembly showed evidence of AT-rich regions, potentially indicating genomic regions with increased plasticity. Using a variety of computational tools, we mined the E. fawcettii genome for potential virulence genes as candidates for future investigation. A total of 1,280 secreted proteins and 276 candidate effectors were predicted and compared to those of other necrotrophic (Botrytis cinerea, Parastagonospora nodorum, Pyrenophora tritici-repentis, Sclerotinia sclerotiorum and Zymoseptoria tritici), hemibiotrophic (Leptosphaeria maculans, Magnaporthe oryzae, Rhynchosporium commune and Verticillium dahliae) and biotrophic (Ustilago maydis) plant pathogens. Genomic and proteomic features of known fungal effectors were analysed and used to guide the prioritisation of 120 candidate effectors of E. fawcettii. Additionally, 378 carbohydrate-active enzymes were predicted and analysed for likely secretion and sequence similarity with known virulence genes. Furthermore, secondary metabolite prediction indicated nine additional genes potentially involved in the elsinochrome biosynthesis gene cluster than previously described. A further 21 secondary metabolite clusters were predicted, some with similarity to known toxin producing gene clusters. The candidate virulence genes predicted in this study provide a comprehensive resource for future experimental investigation into the pathogenesis of E. fawcettii.
Collapse
Affiliation(s)
- Sarah Jeffress
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Kiruba Arun-Chinnappa
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Ben Stodart
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Yu Pei Tan
- Department of Agriculture and Fisheries, Queensland Government, Brisbane, QLD, Australia
| | - Gavin Ash
- Centre for Crop Health, Institute for Life Sciences and the Environment, Research and Innovation Division, University of Southern Queensland, Toowoomba, QLD, Australia
- Graham Centre for Agricultural Innovation, (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
28
|
D'Orazio V, Stallone D, Samer S, Loffredo E, Cirulli M, Bruno GL. Phytotoxic metabolites produced by Verticillium dahliae Kleb. in olive wilting: a chemical and spectroscopic approach for their molecular characterisation. Nat Prod Res 2019; 35:1991-2001. [PMID: 31411049 DOI: 10.1080/14786419.2019.1652284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Most of the symptoms associated with Verticillium wilt disease in olive cultivation are due to complexes excreted by Verticillium dahliae. In this study chemical and physico-chemical techniques were combined to investigate how the molecular structure of phytotoxins isolated from two pathotypes of Verticillium dahliae, defoliating, D, and non-defoliating, ND, grown on two different media, Verticillium-dahliae-Medium (VdM) and Simulated Xylem-fluid-Medium (SXM), can affect their aggressiveness. Data obtained highlight important structural differences, both in term of elemental composition and in functional groups distribution. Such peculiarities strongly affect their solubility, resulted higher for the phytotoxins from D pathotype. This property likely induces serious modifications of the conformational state of the proteinaceous component, making tyrosine residues accessible to the phosphate ion. A phosphorylation mechanism would thus be promoted, that is going to interfere with the function of the involved proteins in intracellular signalling networks, likely by altering its role in modulating the plant's response.
Collapse
Affiliation(s)
- Valeria D'Orazio
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Domenico Stallone
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Sermani Samer
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Elisabetta Loffredo
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Matteo Cirulli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| | - Giovanni Luigi Bruno
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti - Di.S.S.P.A, University of Bari, Bari, Italy
| |
Collapse
|
29
|
Shen Y, Li J, Xiang J, Wang J, Yin K, Liu Q. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Express 2019; 9:117. [PMID: 31352630 PMCID: PMC6661057 DOI: 10.1186/s13568-019-0822-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Here, we report a novel protein elicitor from Bacillus subtilis BU412 which could cause hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco. The purification was executed by ion-exchange and size exclusion chromatography. The target band on SDS-PAGE was analyzed by mass spectrometry, and the peptide mass fingerprinting matched an uncharacterized protein (WP_017418614.1), which was then named AMEP412. AMEP412 could cause a clearly defined HR necrosis in tobacco leaves, which was less affected by thermal treatment. The sub-cellular localization assay revealed that AMEP412 localized on the cell surface. This protein could also trigger early defense events such as the generation of reactive oxygen species (H2O2 and O2-) and the induction of defense enzymes, including superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL). Moreover, AMEP412 could stimulate plant systemic resistance against Pseudomonas syringae pv. tomato DC3000.
Collapse
|
30
|
Cockerton HM, Li B, Vickerstaff RJ, Eyre CA, Sargent DJ, Armitage AD, Marina-Montes C, Garcia-Cruz A, Passey AJ, Simpson DW, Harrison RJ. Identifying Verticillium dahliae Resistance in Strawberry Through Disease Screening of Multiple Populations and Image Based Phenotyping. FRONTIERS IN PLANT SCIENCE 2019; 10:924. [PMID: 31379904 PMCID: PMC6657532 DOI: 10.3389/fpls.2019.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/01/2019] [Indexed: 05/06/2023]
Abstract
Verticillium dahliae is a highly detrimental pathogen of soil cultivated strawberry (Fragaria x ananassa). Breeding of Verticillium wilt resistance into commercially viable strawberry cultivars can help mitigate the impact of the disease. In this study we describe novel sources of resistance identified in multiple strawberry populations, creating a wealth of data for breeders to exploit. Pathogen-informed experiments have allowed the differentiation of subclade-specific resistance responses, through studying V. dahliae subclade II-1 specific resistance in the cultivar "Redgauntlet" and subclade II-2 specific resistance in "Fenella" and "Chandler." A large-scale low-cost phenotyping platform was developed utilizing automated unmanned vehicles and near infrared imaging cameras to assess field-based disease trials. The images were used to calculate disease susceptibility for infected plants through the normalized difference vegetation index score. The automated disease scores showed a strong correlation with the manual scores. A co-dominant resistant QTL; FaRVd3D, present in both "Redgauntlet" and "Hapil" cultivars exhibited a major effect of 18.3% when the two resistance alleles were combined. Another allele, FaRVd5D, identified in the "Emily" cultivar was associated with an increase in Verticillium wilt susceptibility of 17.2%, though whether this allele truly represents a susceptibility factor requires further research, due to the nature of the F1 mapping population. Markers identified in populations were validated across a set of 92 accessions to determine whether they remained closely linked to resistance genes in the wider germplasm. The resistant markers FaRVd2B from "Redgauntlet" and FaRVd6D from "Chandler" were associated with resistance across the wider germplasm. Furthermore, comparison of imaging versus manual phenotyping revealed the automated platform could identify three out of four disease resistance markers. As such, this automated wilt disease phenotyping platform is considered to be a good, time saving, substitute for manual assessment.
Collapse
Affiliation(s)
| | - Bo Li
- NIAB EMR, East Malling, United Kingdom
| | | | - Catherine A. Eyre
- Driscoll’s Genetics Ltd., East Malling Enterprise Centre, East Malling, United Kingdom
| | - Daniel J. Sargent
- Driscoll’s Genetics Ltd., East Malling Enterprise Centre, East Malling, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
31
|
Li X, Sun Y, Liu N, Wang P, Pei Y, Liu D, Ma X, Ge X, Li F, Hou Y. Enhanced resistance to Verticillium dahliae mediated by an F-box protein GhACIF1 from Gossypium hirsutum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 284:127-134. [PMID: 31084865 DOI: 10.1016/j.plantsci.2019.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/30/2019] [Accepted: 04/15/2019] [Indexed: 05/16/2023]
Abstract
Avr9/Cf-9-INDUCED F-BOX1 (ACIF1) was first identified during screening of Avr9/Cf-9-elicited genes in tobacco. Further analysis revealed that ACIF1 was required for hypersensitive responses triggered by various elicitors in tobacco and tomato, indicating that it may be involved in various disease resistance. Here, we cloned its cotton (Gossypium hirsutum) homolog GhACIF1, which encodes an F-box protein. We show that GhACIF1 interacts with the putative SKP1-like protein, named GhSKP1. Disease resistance assays show that GhACIF1 enhances resistance to Verticillium dahliae in Arabidopsis plants, while silencing of GhACIF1 confers sensitivity to V. dahliae in cotton. Further analysis show that PevD1 elicitor activates hypersensitive and acquired immune response mediated by GhACIF1. Collectively, these results indicate that GhACIF1 contributes to protection against V. dahliae infection.
Collapse
Affiliation(s)
- Xiancai Li
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yun Sun
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Nana Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yakun Pei
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Di Liu
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaowen Ma
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China.
| | - Yuxia Hou
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China.
| |
Collapse
|
32
|
The Novel Cerato-Platanin-Like Protein FocCP1 from Fusarium oxysporum Triggers an Immune Response in Plants. Int J Mol Sci 2019; 20:ijms20112849. [PMID: 31212693 PMCID: PMC6600160 DOI: 10.3390/ijms20112849] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 11/17/2022] Open
Abstract
Panama disease, or Fusarium wilt, the most serious disease in banana cultivation, is caused by Fusarium oxysporum f. sp. cubense (FOC) and has led to great economic losses worldwide. One effective way to combat this disease is by enhancing host plant resistance. The cerato-platanin protein (CPP) family is a group of small secreted cysteine-rich proteins in filamentous fungi. CPPs as elicitors can trigger the immune system resulting in defense responses in plants. In this study, we characterized a novel cerato-platanin-like protein in the secretome of Fusarium oxysporum f. sp. cubense race 4 (FOC4), named FocCP1. In tobacco, the purified recombinant FocCP1 protein caused accumulation of reactive oxygen species (ROS), formation of necrotic reaction, deposition of callose, expression of defense-related genes, and accumulation of salicylic acid (SA) and jasmonic acid (JA) in tobacco. These results indicated that FocCP1 triggered a hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco. Furthermore, FocCP1 enhanced resistance tobacco mosaic virus (TMV) disease and Pseudomonas syringae pv. tabaci 6605 (Pst. 6605) infection in tobacco and improved banana seedling resistance to FOC4. All results provide the possibility of further research on immune mechanisms of plant and pathogen interactions, and lay a foundation for a new biological strategy of banana wilt control in the future.
Collapse
|
33
|
Gao D, Wang D, Chen K, Huang M, Xie X, Li X. Activation of biochemical factors in CMV-infected tobacco by ningnanmycin. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:116-122. [PMID: 31027570 DOI: 10.1016/j.pestbp.2019.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 01/09/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Cucumber mosaic virus (CMV) is a plant virus with one of the largest host ranges, the widest distribution, and economic importance, and ningnanmycin (NNM) is a commercial antiviral agent. Studies have shown that NNM induces and promotes pathogenesis-related proteins in tobacco mosaic virus-inoculated tobacco. In the present study, the defense enzymes and the biochemical factors of CMV-inoculated tobacco treated with NNM were measured. The biochemical factors of CMV-inoculated tobacco leaves treated with NNM were analyzed. Results showed that the phenylalanine ammonia-lyase, peroxidase, polypheuoloxidase, and superoxide in the CMV-inoculated tobacco leaves treated with NNM were higher than those in non-treated tobacco leaves. Furthermore, NNM activated the oxidation-reduction process, metabolic process, and oxidoreductase activity in the CMV-infected tobacco.
Collapse
Affiliation(s)
- Di Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Dongmei Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Kai Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Maoxi Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xin Xie
- College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
34
|
Miao XY, Qu HP, Han YL, He CF, Qiu DW, Cheng ZW. The protein elicitor Hrip1 enhances resistance to insects and early bolting and flowering in Arabidopsis thaliana. PLoS One 2019; 14:e0216082. [PMID: 31022256 PMCID: PMC6483360 DOI: 10.1371/journal.pone.0216082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 11/19/2022] Open
Abstract
The elicitor Hrip1 isolated from necrotrophic fungus Alternaria tenuissima, could induce systemic acquired resistance in tobacco to enhance resistance to tobacco mosaic virus. In the present study, we found that the transgenic lines of Hrip1-overexpression in wild type (WT) Arabidopsis thaliana were more resistant to Spodoptera exigua and were early bolting and flowering than the WT. A profiling of transcription assay using digital gene expression profiling was used for transgenic and WT Arabidopsis thaliana. Differentially expressed genes including 40 upregulated and three downregulated genes were identified. In transgenic lines of Hrip1-overexpression, three genes related to jasmonate (JA) biosynthesis were significantly upregulated, and the JA level was found to be higher than WT. Two GDSL family members (GLIP1 and GLIP4) and pathogen-related gene, which participated in pathogen defense action, were upregulated in the transgenic line of Hrip1-overexpression. Thus, Hrip1 is involved in affecting the flower bolting time and regulating endogenous JA biosynthesis and regulatory network to enhance resistance to insect.
Collapse
Affiliation(s)
- Xin-yue Miao
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - Hong-pan Qu
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - Ya-lei Han
- Aerospace Center Hospital, Cardiovascular Department, Beijing, China
| | - Cong-fen He
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
| | - De-wen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-wei Cheng
- Beijing Key Laboratory of Plants Resource Research and Development, School of Sciences, Beijing Technology and Business University, Beijing, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Zhang Y, Gao Y, Liang Y, Dong Y, Yang X, Qiu D. Verticillium dahliae PevD1, an Alt a 1-like protein, targets cotton PR5-like protein and promotes fungal infection. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:613-626. [PMID: 30295911 PMCID: PMC6322577 DOI: 10.1093/jxb/ery351] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
Alt a 1 family proteins (AA1s) have only been observed in the Dothideomycetes and Sordariomycetes classes of fungi, and their biological functions have remained poorly understood. Verticillium dahliae, a soil-borne pathogen that causes plant wilt disease, secretes hundreds of proteins during the process of pathogenic infection, including the AA1 member PevD1. In this study, we found that the pevd1 transcript was present in all of the hosts studied (cotton, Arabidopsis, tomato, and tobacco) and showed elevated expression throughout the infection process. Furthermore, pevd1 knockout mutants displayed attenuated pathogenicity compared with the wild-type (WT) strain and complemented strains in hosts. A partner protein of PevD1, pathogenesis-related protein 5 (PR5)-like protein GhPR5, was isolated from cotton (Gossypium hirsutum) plants by co-purification assays, and the PevD1-GhPR5 interaction was determined to be localized in the C-terminus (PevD1b, amino acids residues 113-155) by pull-down and yeast two-hybrid techniques. Re-introduction of the pevd1b gene into a pevd1 knockout mutant resulted in restoration of the virulence phenotype to WT levels. In addition, PevD1b, which is similar to PevD1, decreased the antifungal activity of GhPR5 in vitro. Our findings reveal an infection strategy in which V. dahliae secretes PevD1 to inhibit GhPR5 antifungal activity in order to overcome the host defence system.
Collapse
Affiliation(s)
- Yi Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhan Gao
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yijie Dong
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Correspondence: or
| |
Collapse
|
36
|
Blum A, Bressan M, Zahid A, Trinsoutrot-Gattin I, Driouich A, Laval K. Verticillium Wilt on Fiber Flax: Symptoms and Pathogen Development In Planta. PLANT DISEASE 2018; 102:2421-2429. [PMID: 30281419 DOI: 10.1094/pdis-01-18-0139-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fiber flax (Linum usitatissimum L.), an important crop in Normandy (France), is increasingly affected by Verticillium wilt caused by the soilborne fungus Verticillium dahliae. This disease leads to nonnegligible yield losses and depreciated fibers that are consequently difficult to upgrade. Verticillium wilt is a major threat to a broad range of agriculture. In this study, susceptible fiber flax cultivar Adélie was infected by VdLu01 (isolated from fiber flax, this study) or green fluorescent protein-tagged VdLs17 (transformed and provided by the department of Plant Pathology, University of California, Davis). Between 3 and 4 weeks postinoculation, wilting symptoms on leaves were first observed, with acropetal growth during the following weeks. Pathogen development was tracked by confocal laser-scanning microscopy during the asymptomatic and symptomatic stages. First, conidia germination led to the development of hyphae on root epidermis; more particularly, on the zone of cell differentiation and around emerging lateral roots, while the zone of cell division and the root tip were free of the pathogen. At 3 days postinoculation, the zone of cell differentiation and lateral roots were embedded into a fungal mass. Swelling structures such as appressoria were observed at 1 week postinoculation. At 2 weeks postinoculation and onward, the pathogen had colonized xylem vessels in roots, followed by the stem and, finally, leaves during the symptomatic stage. Additionally, observations of infected plants after retting in the field revealed microsclerotia embedded inside the bast fiber bundle, thus potentially contributing to weakening of fiber. All of these results provide a global account of V. dahliae development when infecting fiber flax.
Collapse
Affiliation(s)
- Adrien Blum
- UniLaSalle-Campus Rouen, Unité Aghyle, CS 40118, LaSalle Beauvais-Esitpa, 76134 Mont-Saint-Aignan Cedex, France; and Glycobiologie et Matrice Extracellulaire végétale EA 4358, SFR Végétal-Agronomie, Université de Rouen 76821 Mont-Saint-Aignan, France
| | | | - Abderrakib Zahid
- Glycobiologie et Matrice Extracellulaire végétale EA 4358, SFR Végétal-Agronomie, Université de Rouen; and Département de Production, Protection et Biotechnologie végétale (Unité de Génétique, Biotechnologies et Amélioration des Plantes) Institut Agronomique et Vétérinaire Hassan II B.P. 6202 Rabat-Instituts, Madinat Al Irfan C.P. 10101, Morocco
| | | | - Azeddine Driouich
- Glycobiologie et Matrice Extracellulaire végétale EA 4358, SFR Végétal-Agronomie, Université de Rouen
| | | |
Collapse
|
37
|
Ashwin NMR, Barnabas L, Ramesh Sundar A, Malathi P, Viswanathan R, Masi A, Agrawal GK, Rakwal R. CfPDIP1, a novel secreted protein of Colletotrichum falcatum, elicits defense responses in sugarcane and triggers hypersensitive response in tobacco. Appl Microbiol Biotechnol 2018; 102:6001-6021. [PMID: 29728727 DOI: 10.1007/s00253-018-9009-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/03/2018] [Accepted: 04/08/2018] [Indexed: 02/05/2023]
Abstract
Colletotrichum falcatum, a hemibiotrophic fungal pathogen, causes one of the major devastating diseases of sugarcane-red rot. C. falcatum secretes a plethora of molecular signatures that might play a crucial role during its interaction with sugarcane. Here, we report the purification and characterization of a novel secreted protein of C. falcatum that elicits defense responses in sugarcane and triggers hypersensitive response (HR) in tobacco. The novel protein purified from the culture filtrate of C. falcatum was identified by MALDI TOF/TOF MS and designated as C. falcatum plant defense-inducing protein 1 (CfPDIP1). Temporal transcriptional profiling showed that the level of CfPDIP1 expression was greater in incompatible interaction than the compatible interaction until 120 h post-inoculation (hpi). EffectorP, an in silico tool, has predicted CfPDIP1 as a potential effector. Functional characterization of full length and two other domain deletional variants (CfPDIP1ΔN1-21 and CfPDIP1ΔN1-45) of recombinant CfPDIP1 proteins has indicated that CfPDIP1ΔN1-21 variant elicited rapid alkalinization and induced a relatively higher production of hydrogen peroxide (H2O2) in sugarcane suspension culture. However, in Nicotiana tabacum, all the three forms of recombinant CfPDIP1 proteins triggered HR along with the induction of H2O2 production and callose deposition. Further characterization using detached leaf bioassay in sugarcane revealed that foliar priming with CfPDIP1∆1-21 has suppressed the extent of lesion development, even though the co-infiltration of CfPDIP1∆1-21 with C. falcatum on unprimed leaves increased the extent of lesion development than control. Besides, the foliar priming has induced systemic expression of major defense-related genes with the concomitant reduction of pathogen biomass and thereby suppression of red rot severity in sugarcane. Comprehensively, the results have suggested that the novel protein, CfPDIP1, has the potential to trigger a multitude of defense responses in sugarcane and tobacco upon priming and might play a potential role during plant-pathogen interactions.
Collapse
Affiliation(s)
- N M R Ashwin
- Plant Pathology Section, Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641 007, India
| | - Leonard Barnabas
- Plant Pathology Section, Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641 007, India
| | - Amalraj Ramesh Sundar
- Plant Pathology Section, Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641 007, India.
| | - Palaniyandi Malathi
- Plant Pathology Section, Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641 007, India
| | - Rasappa Viswanathan
- Plant Pathology Section, Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore, Tamil Nadu, 641 007, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu, Nepal
- GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
- Faculty of Health and Sport Sciences, and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
38
|
Marton K, Flajšman M, Radišek S, Košmelj K, Jakše J, Javornik B, Berne S. Comprehensive analysis of Verticillium nonalfalfae in silico secretome uncovers putative effector proteins expressed during hop invasion. PLoS One 2018; 13:e0198971. [PMID: 29894496 PMCID: PMC5997321 DOI: 10.1371/journal.pone.0198971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022] Open
Abstract
The vascular plant pathogen Verticillium nonalfalfae causes Verticillium wilt in several important crops. VnaSSP4.2 was recently discovered as a V. nonalfalfae virulence effector protein in the xylem sap of infected hop. Here, we expanded our search for candidate secreted effector proteins (CSEPs) in the V. nonalfalfae predicted secretome using a bioinformatic pipeline built on V. nonalfalfae genome data, RNA-Seq and proteomic studies of the interaction with hop. The secretome, rich in carbohydrate active enzymes, proteases, redox proteins and proteins involved in secondary metabolism, cellular processing and signaling, includes 263 CSEPs. Several homologs of known fungal effectors (LysM, NLPs, Hce2, Cerato-platanins, Cyanovirin-N lectins, hydrophobins and CFEM domain containing proteins) and avirulence determinants in the PHI database (Avr-Pita1 and MgSM1) were found. The majority of CSEPs were non-annotated and were narrowed down to 44 top priority candidates based on their likelihood of being effectors. These were examined by spatio-temporal gene expression profiling of infected hop. Among the highest in planta expressed CSEPs, five deletion mutants were tested in pathogenicity assays. A deletion mutant of VnaUn.279, a lethal pathotype specific gene with sequence similarity to SAM-dependent methyltransferase (LaeA), had lower infectivity and showed highly reduced virulence, but no changes in morphology, fungal growth or conidiation were observed. Several putative secreted effector proteins that probably contribute to V. nonalfalfae colonization of hop were identified in this study. Among them, LaeA gene homolog was found to act as a potential novel virulence effector of V. nonalfalfae. The combined results will serve for future characterization of V. nonalfalfae effectors, which will advance our understanding of Verticillium wilt disease.
Collapse
Affiliation(s)
- Kristina Marton
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Flajšman
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Katarina Košmelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Jakše
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Branka Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
39
|
Liang Y, Cui S, Tang X, Zhang Y, Qiu D, Zeng H, Guo L, Yuan J, Yang X. An Asparagine-Rich Protein Nbnrp1 Modulate Verticillium dahliae Protein PevD1-Induced Cell Death and Disease Resistance in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2018; 9:303. [PMID: 29563924 PMCID: PMC5846053 DOI: 10.3389/fpls.2018.00303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 05/05/2023]
Abstract
PevD1 is a fungal protein secreted by Verticillium dahliae. Our previous researches showed that this protein could induce hypersensitive responses-like necrosis and systemic acquired resistance (SAR) in cotton and tobacco. To understand immune activation mechanisms whereby PevD1 elicits defense response, the yeast two-hybrid (Y2H) assay was performed to explore interacting protein of PevD1 in Arabidopsis thaliana, and a partner AtNRP (At5g42050) was identified. Here, AtNRP homolog in Nicotiana benthamiana was identified and designated as Nbnrp1. The Nbnrp1 could interact with PevD1 via Y2H and bimolecular fluorescence complementation (BiFC) analyses. Moreover, truncated protein binding assays demonstrated that the C-terminal 132 amino acid (development and cell death, DCD domain) of Nbnrp1 is required for PevD1-Nbnrp1 interaction. To further investigate the roles of Nbnrp1 in PevD1-induced defense response, Nbnrp1-overexpressing and Nbnrp1-silence transgenic plants were generated. The overexpression of Nbnrp1 conferred enhancement of PevD1-induced necrosis activity and disease resistance against tobacco mosaic virus (TMV), bacterial pathogen Pseudomonas syringae pv. tabaci and fungal pathogen V. dahliae. By contrast, Nbnrp1-silence lines displayed attenuated defense response compared with the wild-type. It is the first report that an asparagine-rich protein Nbnrp1 positively regulated V. dahliae secretory protein PevD1-induced cell death response and disease resistance in N. benthamiana.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
40
|
Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:614-636. [PMID: 29266460 DOI: 10.1111/tpj.13807] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.
Collapse
Affiliation(s)
- Laura Bacete
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Eva Miedes
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
41
|
Ashwin NMR, Barnabas L, Ramesh Sundar A, Malathi P, Viswanathan R, Masi A, Agrawal GK, Rakwal R. Comparative secretome analysis of Colletotrichum falcatum identifies a cerato-platanin protein (EPL1) as a potential pathogen-associated molecular pattern (PAMP) inducing systemic resistance in sugarcane. J Proteomics 2017; 169:2-20. [PMID: 28546091 DOI: 10.1016/j.jprot.2017.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/12/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023]
Abstract
UNLABELLED Colletotrichum falcatum, an intriguing hemibiotrophic fungal pathogen causes red rot, a devastating disease of sugarcane. Repeated in vitro subculturing of C. falcatum under dark condition alters morphology and reduces virulence of the culture. Hitherto, no information is available on this phenomenon at molecular level. In this study, the in vitro secretome of C. falcatum cultured under light and dark conditions was analyzed using 2-DE coupled with MALDI TOF/TOF MS. Comparative analysis identified nine differentially abundant proteins. Among them, seven proteins were less abundant in the dark-cultured C. falcatum, wherein only two protein species of a cerato-platanin protein called EPL1 (eliciting plant response-like protein) were found to be highly abundant. Transcriptional expression of candidate high abundant proteins was profiled during host-pathogen interaction using qRT-PCR. Comprehensively, this comparative secretome analysis identified five putative effectors, two pathogenicity-related proteins and one pathogen-associated molecular pattern (PAMP) of C. falcatum. Functional characterization of three distinct domains of the PAMP (EPL1) showed that the major cerato-platanin domain (EPL1∆N1-92) is exclusively essential for inducing defense and hypersensitive response (HR) in sugarcane and tobacco, respectively. Further, priming with EPL1∆N1-92 protein induced systemic resistance and significantly suppressed the red rot severity in sugarcane. BIOLOGICAL SIGNIFICANCE Being the first secretomic investigation of C. falcatum, this study has identified five potential effectors, two pathogenicity-related proteins and a PAMP. Although many reports have highlighted the influence of light on pathogenicity, this study has established a direct link between light and expression of effectors, for the first time. This study has presented the influence of a novel N-terminal domain of EPL1 in physical and biological properties and established the functional role of major cerato-platanin domain of EPL1 as a potential elicitor inducing systemic resistance in sugarcane. Comprehensively, the study has identified proteins that putatively contribute to virulence of C. falcatum and for the first time, demonstrated the potential role of EPL1 in inducing PAMP-triggered immunity (PTI) in sugarcane.
Collapse
Affiliation(s)
- N M R Ashwin
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Leonard Barnabas
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Amalraj Ramesh Sundar
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, India.
| | - Palaniyandi Malathi
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Rasappa Viswanathan
- Division of Crop Protection, Indian Council of Agricultural Research - Sugarcane Breeding Institute, Coimbatore 641007, India
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova 35020, Italy
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 13265, Nepal; GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry, Kathmandu 13265, Nepal; GRADE (Global Research Arch for Developing Education) Academy Private Limited, Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences, and Tsukuba International Academy for Sport Studies (TIAS), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
42
|
Boutrot F, Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:257-286. [PMID: 28617654 DOI: 10.1146/annurev-phyto-080614-120106] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to would-be pathogens and pests, and thus have a sophisticated immune system to ward off these threats, which otherwise can have devastating ecological and economic consequences on ecosystems and agriculture. Plants employ receptor kinases (RKs) and receptor-like proteins (RLPs) as pattern recognition receptors (PRRs) to monitor their apoplastic environment and detect non-self and damaged-self patterns as signs of potential danger. Plant PRRs contribute to both basal and non-host resistances, and treatment with pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) or damage-associated molecular patterns (DAMPs) recognized by plant PRRs induces both local and systemic immunity. Here, we comprehensively review known PAMPs/DAMPs recognized by plants as well as the plant PRRs described to date. In particular, we describe the different methods that can be used to identify PAMPs/DAMPs and PRRs. Finally, we emphasize the emerging biotechnological potential use of PRRs to improve broad-spectrum, and potentially durable, disease resistance in crops.
Collapse
Affiliation(s)
- Freddy Boutrot
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom;
| |
Collapse
|
43
|
VdPKS1 is required for melanin formation and virulence in a cotton wilt pathogen Verticillium dahliae. SCIENCE CHINA-LIFE SCIENCES 2017; 60:868-879. [PMID: 28755294 DOI: 10.1007/s11427-017-9075-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/06/2017] [Indexed: 01/16/2023]
Abstract
Verticillium dahliae is a soil-borne phytopathogenic fungus that causes vascular wilt disease in a broad range of hosts. This pathogen survives for many years in soil in the form of melanized microsclerotia. To investigate the melanin synthesis in V. dahliae, we identified a polyketide synthase gene in V. dahliae, namely VdPKS1. PKS1 is known to involve in the dihydroxynaphthalene melanin synthesis pathway in many fungi. We found that VdPKS1 was required for melanin formation but not for microsclerotial production in V. dahliae. The VdPKS1 gene-disruption mutant (vdpks1) formed melanin-deficient albino microsclerotia, which did not affect the fungal colonization in host tissues but significantly reduced the disease severity. Gene transcription analysis in the wild-type and the vdpks1 strains suggested that VdPKS1 gene-disruption influenced the expression of a series of genes involved in ethylene biosynthesis, microsclerotial formation and pathogenesis. Our results suggest that the VdPKS1-mediated melanin synthesis is important for virulence and developmental traits of V. dahliae.
Collapse
|
44
|
Zhou R, Zhu T, Han L, Liu M, Xu M, Liu Y, Han D, Qiu D, Gong Q, Liu X. The asparagine-rich protein NRP interacts with the Verticillium effector PevD1 and regulates the subcellular localization of cryptochrome 2. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3427-3440. [PMID: 28633330 DOI: 10.1093/jxb/erx192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 05/16/2017] [Indexed: 05/20/2023]
Abstract
The soil-borne fungal pathogen Verticillium dahliae infects a wide range of dicotyledonous plants including cotton, tobacco, and Arabidopsis. Among the effector proteins secreted by V. dahliae, the 16 kDa PevD1 induces a hypersensitive response in tobacco. Here we report the high-resolution structure of PevD1 with folds resembling a C2 domain-like structure with a calcium ion bound to the C-terminal acidic pocket. A yeast two-hybrid screen, designed to probe for molecular functions of PevD1, identified Arabidopsis asparagine-rich protein (NRP) as the interacting partner of PevD1. Extending the pathway of V. dahliae effects, which include induction of early flowering in cotton and Arabidopsis, NRP was found to interact with cryptochrome 2 (CRY2), leading to increased cytoplasmic accumulation of CRY2 in a blue light-independent manner. Further physiological and genetic evidence suggests that PevD1 indirectly activates CRY2 by antagonizing NRP functions. The promotion of CRY2-mediated flowering by a fungal effector outlines a novel pathway by which an external stimulus is recognized and transferred in changing a developmental program.
Collapse
Affiliation(s)
- Ruimin Zhou
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tong Zhu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Han
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing 100081, China
| | - Mengjie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing 100081, China
| | - Mengyuan Xu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanli Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dandan Han
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing 100081, China
| | - Qingqiu Gong
- Tianjin Key Laboratory of Protein Science, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Zhang Y, Liang Y, Qiu D, Yuan J, Yang X. Comparison of cerato-platanin family protein BcSpl1 produced in Pichia pastoris and Escherichia coli. Protein Expr Purif 2017; 136:20-26. [PMID: 28606662 DOI: 10.1016/j.pep.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/20/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022]
Abstract
The Botrytis cinerea BcSpl1 protein is a member of the cerato-platanin family, and consists of 137 amino acids and two disulfide bridges. This protein induces the onset of necrosis in infiltrated plant hosts. Recombinant BcSpl1 proteins produced in Pichia pastoris (pBcSpl1) and Escherichia coli (eBcSpl1) were initially compared regarding their abilities to induce necrosis and systemic acquired resistance (SAR). The pBcSpl1 and eBcSpl1 treatments led to the development of necrotic lesions on tomato leaves, and provided tomato plants with SAR to B. cinerea. The lesion area of leaves infiltrated with the BcSpl1 proteins decreased by 22.7% (pBcSpl1) and 21.8% (eBcSpl1). Additionally, eBcSpl1 up-regulated the expression levels of some defense-related genes, including PR-1a, prosystemin, PI I, and PI II, as well as SIPK and TPK1b, which encode two protein kinases. Furthermore, eBcSpl1 exhibited chitin-binding properties. Our data revealed that the E. coli expression system produces higher BcSpl1 yields than the P. pastoris system. This high-yield expression of BcSpl1 may be relevant for future large-scale applications of this elicitor to improve crop production.
Collapse
Affiliation(s)
- Yi Zhang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Yingbo Liang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Jingjing Yuan
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Beijing 100081, China.
| |
Collapse
|
46
|
Cheng XX, Zhao LH, Klosterman SJ, Feng HJ, Feng ZL, Wei F, Shi YQ, Li ZF, Zhu HQ. The endochitinase VDECH from Verticillium dahliae inhibits spore germination and activates plant defense responses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:12-23. [PMID: 28483050 DOI: 10.1016/j.plantsci.2017.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 05/06/2023]
Abstract
Chitinases function in the digestion of chitin molecules, which are present principally in insects and fungi. In plants, chitinase genes play important roles in defense, and their expression can be triggered in response to both biotic and abiotic stresses. In this study, we cloned and characterized an endochitinase (VDECH) from Verticillium dahliae, strain Vd080. The VDECH coding region consists of 1845bp with two exons and one 54bp intron, encoding a 615 amino acid protein with the predicted molecular weight (MW) of 63.9kDa. The VDECH cDNA without signal peptide-encoding region was introduced into pCold-TF vector and the recombinant protein HIS-VDECH with a predicted MW of ∼114kDa was expressed. HIS-VDECH showed high tolerance to extreme temperature, exhibiting efficient chitinolytic activity at 50°C. In addition, VDECH triggered typical plant defense responses, including a hypersensitive response, oxidative burst, and elicited increased expression of defense-related genes in both Arabidopsis and cotton. VDECH-treatment of the conidial spores of V. dahliae and Fusarium oxysporum resulted in marked reductions in the germination of these spores in both fungi. After 36h of incubation with VDECH, the inhibition rate of germination was recorded at 99.57% for V. dahliae, and 96.89% for F. oxysporum. These results provide evidence that VDECH is recognized by the plant to elicit defense responses, and also that VDECH is an effective inhibitor of conidia germination, both of which may be exploited for disease control.
Collapse
Affiliation(s)
- Xiao-Xiao Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Li-Hong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | | | - Hong-Jie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zi-Li Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Yong-Qiang Shi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China
| | - Zhi-Fang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| | - He-Qin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, 455000, China.
| |
Collapse
|
47
|
Zhang Y, Gao Y, Liang Y, Dong Y, Yang X, Yuan J, Qiu D. The Verticillium dahliae SnodProt1-Like Protein VdCP1 Contributes to Virulence and Triggers the Plant Immune System. FRONTIERS IN PLANT SCIENCE 2017; 8:1880. [PMID: 29163605 PMCID: PMC5671667 DOI: 10.3389/fpls.2017.01880] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/16/2017] [Indexed: 05/05/2023]
Abstract
During pathogenic infection, hundreds of proteins that play vital roles in the Verticillium dahliae-host interaction are secreted. In this study, an integrated proteomic analysis of secreted V. dahliae proteins was performed, and a conserved secretory protein, designated VdCP1, was identified as a member of the SnodProt1 phytotoxin family. An expression analysis of the vdcp1 gene revealed that the transcript is present in every condition studied and displays elevated expression throughout the infection process. To investigate the natural role of VdCP1 in V. dahliae, two vdcp1 knockout mutants and their complementation strains were generated. Bioassays of these mutants revealed no obvious phenotypic differences from the wild-type (WT) in terms of mycelial growth, conidial production or mycelial/spore morphology. However, compared with the WT, the vdcp1 knockout mutants displayed attenuated pathogenicity in cotton plants. Furthermore, treating plants with purified recombinant VdCP1 protein expressed in Pichia pastoris induced the accumulation of reactive oxygen species (ROS), expression of several defense-related genes, leakage of ion electrolytes, enhancement of defense-related enzyme activity and production of salicylic acid. Moreover, VdCP1 conferred resistance to Botrytis cinerea and Pseudomonas syringae pv. tabaci in tobacco and to V. dahliae in cotton. Further research revealed that VdCP1 possesses chitin-binding properties and that the growth of vdcp1 knockout mutants was more affected by treatments with chitinase, indicating that VdCP1 could protect V. dahliae cell wall from enzymatic degradation, which suggests an effector role of VdCP1 in infecting hosts.
Collapse
|
48
|
Nováková M, Kim PD, Šašek V, Burketová L, Jindřichová B, Šantrůček J, Valentová O. Separation and identification of candidate protein elicitors from the cultivation medium of Leptosphaeria maculans inducing resistance in Brassica napus. Biotechnol Prog 2016; 32:918-28. [PMID: 27009514 DOI: 10.1002/btpr.2266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/21/2016] [Indexed: 12/18/2022]
Abstract
The Dothideomycete Leptosphaeria maculans, a worldwide fungal pathogen of oilseed rape (Brassica napus), secretes a broad spectrum of molecules into the cultivation medium during growth in vitro. Here, candidate elicitor molecules, which induce resistance in B. napus to L. maculans, were identified in the cultivation medium. The elicitation activity was indicated by increased transcription of pathogenesis-related gene 1 (PR1) and enhanced resistance of B. napus plants to the invasion of L. maculans. The elicitation activity was significantly lowered when the cultivation medium was heated to 80°C. Active components were further characterized by specific cleavage with the proteolytic enzymes trypsin and proteinase K and with glycosidases α-amylase and β-glucanase. The elicitor activity was eliminated by proteolytic digestion while glycosidases had no effect. The filtered medium was fractionated by either ion-exchange chromatography or isoelectric focusing. Mass spectrometry analysis of the most active fractions obtained by both separation procedures revealed predominantly enzymes that can be involved in the degradation of plant cell wall polysaccharides. This is the first study searching for L. maculans-specific secreted elicitors with a potential to be used as defense-activating agents in the protection of B. napus against L. maculans in agriculture. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:918-928, 2016.
Collapse
Affiliation(s)
- Miroslava Nováková
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.,Laboratory of Pathological Plant Physiology, Inst. of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Phuong Dinh Kim
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Vladimír Šašek
- Laboratory of Pathological Plant Physiology, Inst. of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Inst. of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Barbora Jindřichová
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic.,Laboratory of Pathological Plant Physiology, Inst. of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Jiří Šantrůček
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Olga Valentová
- Dept. of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| |
Collapse
|
49
|
Liu M, Khan NU, Wang N, Yang X, Qiu D. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis. Int J Biol Sci 2016; 12:931-43. [PMID: 27489497 PMCID: PMC4971732 DOI: 10.7150/ijbs.15447] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca2+-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Najeeb Ullah Khan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ningbo Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiufen Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
50
|
Shcherbakova LA, Odintsova TI, Stakheev AA, Fravel DR, Zavriev SK. Identification of a Novel Small Cysteine-Rich Protein in the Fraction from the Biocontrol Fusarium oxysporum Strain CS-20 that Mitigates Fusarium Wilt Symptoms and Triggers Defense Responses in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 6:1207. [PMID: 26779237 PMCID: PMC4703993 DOI: 10.3389/fpls.2015.01207] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/15/2015] [Indexed: 05/06/2023]
Abstract
The biocontrol effect of the non-pathogenic Fusarium oxysporum strain CS-20 against the tomato wilt pathogen F. oxysporum f. sp. lycopersici (FOL) has been previously reported to be primarily plant-mediated. This study shows that CS-20 produces proteins, which elicit defense responses in tomato plants. Three protein-containing fractions were isolated from CS-20 biomass using size exclusion chromatography. Exposure of seedling roots to one of these fractions prior to inoculation with pathogenic FOL strains significantly reduced wilt severity. This fraction initiated an ion exchange response in cultured tomato cells resulting in a reversible alteration of extracellular pH; increased tomato chitinase activity, and induced systemic resistance by enhancing PR-1 expression in tomato leaves. Two other protein fractions were inactive in seedling protection. The main polypeptide (designated CS20EP), which was specifically present in the defense-inducing fraction and was not detected in inactive protein fractions, was identified. The nucleotide sequence encoding this protein was determined, and its complete amino acid sequence was deduced from direct Edman degradation (25 N-terminal amino acid residues) and DNA sequencing. The CS20EP was found to be a small basic cysteine-rich protein with a pI of 9.87 and 23.43% of hydrophobic amino acid residues. BLAST search in the NCBI database showed that the protein is new; however, it displays 48% sequence similarity with a hypothetical protein FGSG_10784 from F. graminearum strain PH-1. The contribution of CS20EP to elicitation of tomato defense responses resulting in wilt mitigating is discussed.
Collapse
Affiliation(s)
- Larisa A. Shcherbakova
- Laboratory of Physiological Plant Pathology, All-Russian Research Institute of PhytopathologyMoscow, Russia
| | - Tatyana I. Odintsova
- Laboratory of Molecular-Genetic Bases of Plant Immunity, Vavilov Institute of General GeneticsMoscow, Russia
| | - Alexander A. Stakheev
- Laboratory of Molecular Diagnostic, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
| | - Deborah R. Fravel
- Crop Production and Protection, United States Department of Agriculture, Agricultural Research ServiceBeltsville, MD, USA
| | - Sergey K. Zavriev
- Laboratory of Molecular Diagnostic, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscow, Russia
| |
Collapse
|