1
|
Pan S, Li Z, Wang J, Li X, Meng L, Chen Y, Su M, Li Z. Electron microscopic imaging and NanoSIMS investigation on physiological responses of Aspergillus niger under Pb(II) and Cd(II) stress. Front Bioeng Biotechnol 2023; 10:1096384. [PMID: 36714633 PMCID: PMC9877628 DOI: 10.3389/fbioe.2022.1096384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
In the bioremediation process, coexistence of lead (Pb) and cadmium causes complex toxicity, resulting in the difficulty of bioremediation. This study investigated the physiological responses and bioaccumulation mechanisms of the typical filamentous fungus Aspergillus niger under the coexistence of Pb and Cd. Four treatments were set up, i.e., control, sole Pb, sole Cd, and coexistence of Pb and Cd. The morphology of A. niger were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Then, nano-scale secondary ion mass spectrometry (NanoSIMS) was applied to accurately investigate the distribution of heavy metals in the fungal cells under the coexistence of Pb and Cd. Finally, the metallogenic process and mineral types were simulated by Geochemist's Workbench (GWB). The electron microscopic and NanoSIMS imaging showed that Pb and Cd were accumulated in both the extracellular and intracellular regions of the A. niger cells. In particular, the accumulated Pb content was ten times higher than that of Cd. However, Cd showed stronger toxicity than Pb to A. niger. Compared with the control treatment, Cd stress resulted in a two-fold increase of cell diameter and more extracellular substances, whereas the cell diameter increased nearly four times in the coexistence treatment. Moreover, the bioaccumulation of Pb was more intense than that of Cd during competitive sorption. The GWB simulation confirmed that Pb2+ can form multiple minerals (e.g., PbC2O4, PbHPO4, and Pb3(PO4)2, etc.), which significantly weakened its toxicity on the cell surface. This study elucidated the morphological characteristics of A. niger and competitive bioaccumulation under the coexistence of Pb and Cd, which would facilitate the application of microorganisms to the bioremediation of coexisted metals.
Collapse
Affiliation(s)
- Shang Pan
- College of Agro-grassland Sciences, Nanjing Agricultural University, Nanjing, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - Zhaoyan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiayi Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuefei Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lingzi Meng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunhui Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mu Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Organic Waste Utilization, Nanjing Agricultural University, Nanjing, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Nanjing, China
| |
Collapse
|
2
|
Wang SN, Fang F, Li KY, Yue YR, Xu RZ, Luo JY, Ni BJ, Cao JS. Sludge reduction and microbial community evolution of activated sludge induced by metabolic uncoupler o-chlorophenol in long-term anaerobic-oxic process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115230. [PMID: 35537269 DOI: 10.1016/j.jenvman.2022.115230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Excess sludge management is a restrictive factor for the development of municipal wastewater treatment plants. The addition of metabolic uncouplers has been proven to be effective in sludge reduction. However, the long-term effect of metabolic uncoupler o-chlorophenol (oCP) on the biological wastewater treatment system operated in anaerobic-oxic mode is still unclear. To this end, two parallel reactors operated in anaerobic-oxic mode with and without 10 mg/L of oCP addition were investigated for 91 days. The results showed that 56.1 ± 2.3% of sludge reduction was achieved in the oCP-added system, and the nitrogen and phosphorus removal ability were negatively affected. Dosing oCP stimulated the formation of microbial products and increased the DNA concentration, but resulted in a decrease in the electronic transport activity of activated sludge. Microbial community analysis further demonstrated that a significant reduction of bacterial richness and diversity occurred after oCP dosing. However, after stopping oCP addition, the pollutant removal ability of activated sludge was gradually increased, but the sludge yield, as well as species richness and diversity, did not recover to the previous level. This study will provide insightful guidance on the long-term application of metabolic uncouplers in the activated sludge system.
Collapse
Affiliation(s)
- Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Ke-Yan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ying-Rong Yue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jing-Yang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Sydney, NSW, 2007, Australia
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
Lin Q, Zhang J, Yin L, Zuo W, Li L, Tian Y. Insight investigation of the on-site activated sludge reduction induced by metabolic uncoupler: Effects of 2,6-dichlorophenol on soluble microbial products, microbial activity, and environmental impact. CHEMOSPHERE 2022; 286:131575. [PMID: 34325264 DOI: 10.1016/j.chemosphere.2021.131575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Metabolic uncoupling technology was one of the methods widely used to on-site control the production of excess sludge in wastewater treatment processes. However, the uncoupler effects on soluble microbial products (SMP), microbial activity, and environment impact have few been reported. This study showed that sludge yield was reduced by 33.3% at 2,6-dichlorophenol (2,6-DCP) concentrations of 10 mg/L. The addition of 2,6-DCP also reduced the content of polysaccharide and protein in SMP, and the three-dimension excitation emission matrix (3D-EEM) suggested that the fluorescence intensities of humic acid-like, fulvic acid-like, and tryptophan protein-like substances decreased, proving that 2,6-DCP addition will weaken the interaction between microorganisms and the environmental matrix. Moreover, 2,6-DCP addition will change the microbial morphology and community of activated sludge. The active or respiring bacteria portion was lessened, and sludge flocs become dispersed, but it will not affect its settling performance. Surprisingly, 2,6-DCP has certain biodegradability and could be used as an environmentally friendly metabolic uncoupler under low-concentration dosing conditions. This study systematically evaluated the effect of 2,6-DCP on sludge production, SMP contents, microbial morphology, microbial community, demonstrating the environmental impact and application feasibility in the wastewater treatment systems.
Collapse
Affiliation(s)
- QingYuan Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Linlin Yin
- National Engineering Research Center of Urban Water Resources, Harbin, 150090, PR China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
De Vela RJ, Wigley K, Baronian K, Gostomski PA. Effect of metabolic uncouplers on the performance of toluene-degrading biotrickling filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41881-41895. [PMID: 33791957 DOI: 10.1007/s11356-021-13708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The biomass control potential of three metabolic uncouplers (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), carbonyl cyanide m-chlorophenylhydrazone (CCCP), and m-chlorophenol (m-CP)) was tested in biotrickling filters (BTFs) degrading toluene. The experiments employed two types of reactors: a traditional column design and a novel differential BTF (DBTF) reactor developed by De Vela and Gostomski (J Environ Eng 147:04020159, 2021). Uncouplers caused the toluene elimination capacity (EC) (~33 g/m3h for column reactors and ~600 g/m3h for DBTF) to decrease by 15-97% in a dose-dependent fashion. The EC completely recovered in the column reactor in 3 to 13 days, while only partial recovery happened in the DBTF. Short-term (1 to 3 days) true uncoupling was indicated by the 20-160% increase in %CO2 recovery, depending on concentration. FCCP and CCCP increased the pressure drop due to increased extracellular polymeric substances (EPS) production for protection against the uncouplers. The 4.0-mM m-CP weakened the biofilm in the BTF bed, as evidenced by the 130-500% increase in the total organic carbon in the liquid sump of the column and DBTF reactors. Moreover, a microbial shift led to the proliferation of genera that degrade uncouplers, further demonstrating that the uncouplers tested were not a sustainable biomass control strategy in BTFs.
Collapse
Affiliation(s)
- Roger Jay De Vela
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand.
- Camarines Norte State College, F. Pimentel Avenue, 4600, Daet, Camarines Norte, Philippines.
| | - Kathryn Wigley
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Kim Baronian
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| | - Peter Alan Gostomski
- Chemical and Process Engineering Department, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
5
|
Chen X, Lu Q, Wang S, Sun X, Li Q, Wei X, Yang Y, Wang Y. Correlation between the uncoupling metabolism induced by 2,4,6-trichlorophenol and sludge toxicity in sequence batch reactors. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1971-1981. [PMID: 33263576 DOI: 10.2166/wst.2020.460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The correlation between sludge reduction induced by 2,4,6-trichlorophenol (2,4,6-TCP) as an uncoupler and sludge toxicity was investigated in sequence batch reactors over a 100-d operation period. The influent concentrations of 2,4,6-TCP tested were 10 mg/L, 30 mg/L, and 50 mg/L. Sludge reduction, chemical oxygen demand (COD) removal rate, and sludge toxicity were measured. The results showed that from 30 to 80 d, when the COD removal rate was at an acceptable level, the sludge reduction levels for the 10 mg/L, 30 mg/L, and 50 mg/L groups were 9.7%, 31.6%, and 41.5%, respectively, and the average sludge toxicity values were 24.2%, 38.0%, and 53.0%, respectively. Sludge reduction was positively correlated with sludge toxicity. The two-dimensional polyacrylamide gel electrophoresis/results showed that extracellular and intracellular proteins secreted by the activated sludge during uncoupling metabolism were positively correlated with sludge toxicity. Taking the COD removal rate, sludge reduction, and sludge toxicity into consideration, the optimal influent concentration of the uncoupler 2,4,6-TCP was 30 mg/L when the initial mixed liquid suspended solids of sludge was 2,500 mg/L.
Collapse
Affiliation(s)
- Xiurong Chen
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China and National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Quanling Lu
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China and National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Shanshan Wang
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China and National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Xiaoli Sun
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China and National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Qiuyue Li
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China and National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Xiao Wei
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China and National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Yingying Yang
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China and National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| | - Yuan Wang
- Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China and National Engineering Laboratory for High-concentration Refractory Organic Wastewater Treatment Technologies (NELHROWTT), East China University of Science and Technology, Shanghai 200237, China E-mail:
| |
Collapse
|
6
|
Wang S, Ji B, Zhang M, Ma Y, Gu J, Liu Y. Defensive responses of microalgal-bacterial granules to tetracycline in municipal wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 312:123605. [PMID: 32504951 DOI: 10.1016/j.biortech.2020.123605] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, tetracycline has been frequently detected in municipal wastewater, posing a pressing threat for wastewater treatment. This study investigated the defensive responses of microalgal-bacterial granules to tetracycline. It was found that the physical structure of microalgal-bacterial granules tended to shift from individual granules to loosely inter-connected agglomerates. In response to tetracycline, microalgae instead of bacteria in granules were found to produce more low molecular weight polysaccharides in extracellular polymeric substances (EPS), which increased from 0.26 mg C/g VSS in the control to 17.81 and 25.15 mg C/g VSS after being exposed to 1 and 10 mg/L of tetracycline, respectively. It was further revealed that tetracycline could bind to tryptophan in EPS proteins, and this action in turn could help to alleviate the direct toxicity of tetracycline to microorganisms in granules. Moreover, it appeared that the abundance of Pseudomonas-carrying tetracycline resistant genes increased substantially, together with gradual disappearance of Cyanobacteria.
Collapse
Affiliation(s)
- Shulian Wang
- Hubei Key Laboratory of Ecological Remediation for Rivers-Lakes and Algal Utilization, School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Meng Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Jun Gu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| |
Collapse
|
7
|
El-Nahhal I, Redon R, Raynaud M, El-Nahhal Y, Mounier S. Characterization of the fate and changes of post-irradiance fluorescence signal of filtered anthropogenic effluent dissolved organic matter from wastewater treatment plant in the coastal zone of Gapeau river. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:23141-23158. [PMID: 32333342 DOI: 10.1007/s11356-020-08842-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic effluent dissolved organic matter (DOM) plays an important role in coastal zone pollution. The objectives of the present study were to characterize the fluorescence signal of anthropogenic effluent DOM from wastewater treatment plant and to evaluate the effect of solar irradiation on the fluorescence signal in the coastal zone. Solar irradiation experiments were conducted to evaluate the effect photochemical degradation using excitation-emission matrix (EEM) method combined with parallel factor analysis (PARAFAC). Results showed high fluorescence of DOM before irradiation and the intensity tends to decrease after 4th and 15th day of irradiation. Rapid photochemical degradation of humic-like fluorophores and appearance of a post-irradiance dominant anthropogenic effluent DOM fluorophores were also observed after irradiation. Our experiments showed a sharp reduction in fluorescence intensity which occurred after 4th day of solar irradiation and the fluorescence signal did not disappeared after 15th day indicating the formation of a specific signal due to solar irradiation. PARAFAC model divided the bulk EEM spectra into three individual fluorescent components with C1 "terrestrial humic-like" and C2 "humic-like of longer wavelength" and C3 is a noisy component with two emission maxima. Multilinear regression of PARAFAC components contribution with mixing composition was most suitable according to the equation C*i = AWWi,0 + AWWi,1.fSW + AWWi,2.fRW, where C*i is the normalized contribution of PARAFAC component number i in a given irradiation day; AWWi,0, AWWi,1, AWWi,2 are the multilinear regression coefficients and contain implicitly the effect of fWW; and WW, SW, and RW are treated wastewater, sea water, and river water respectively. The values of AWWi,0, AWWi,1, and AWWi,2 fitted second-order kinetics with irradiation process with kinetic constant of 9.68, - 987.35, and - 977.67 respectively for C1 equation and the same trend for C2 and no values for C3 due to its noisy character indicating the rapid degradation with increase of fSW and fRW and the predominance of the residual fluorescence coming from fWW which is the content fraction of anthropogenic effluent DOM because AWWi,0 was 100 times less sensitive to photobleaching. A suitable model for predicting the fluorescence EEMs as a function of mixing composition was developed.
Collapse
Affiliation(s)
- Ibrahim El-Nahhal
- CNRS, IRD, MIO, Université de Toulon, Aix Marseille Univ, CS 60584, 83041, Toulon Cedex 9, France.
| | - Roland Redon
- CNRS, IRD, MIO, Université de Toulon, Aix Marseille Univ, CS 60584, 83041, Toulon Cedex 9, France
| | - Michel Raynaud
- CNRS, IRD, MIO, Université de Toulon, Aix Marseille Univ, CS 60584, 83041, Toulon Cedex 9, France
| | - Yasser El-Nahhal
- Department of Environmental and Earth Sciences, Faculty of Science, The Islamic University-Gaza, P.O Box 108, 00970, Gaza, Gaza Strip, Palestine
| | - Stéphane Mounier
- CNRS, IRD, MIO, Université de Toulon, Aix Marseille Univ, CS 60584, 83041, Toulon Cedex 9, France
| |
Collapse
|
8
|
Feng X, Guo W, Zheng H, Yang S, Du J, Wu Q, Luo H, Zhou X, Jin W, Ren N. Inhibition of biofouling in membrane bioreactor by metabolic uncoupler based on controlling microorganisms accumulation and quorum sensing signals secretion. CHEMOSPHERE 2020; 245:125363. [PMID: 31877457 DOI: 10.1016/j.chemosphere.2019.125363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Biofouling is a limiting bottleneck in the development of membrane bioreactor (MBR) since the birth of this technology. Recently, the biofouling control strategy based on interfering with the bacterial quorum sensing (QS) system is highly desirable for biofouling control in MBR. In this study, three lab-scale parallel MBR systems were operated over 100 days to investigate the inhibitory effect of a metabolic uncoupler (3,3',4',5-tetrachlorosalicylanilide, TCS) on biofouling and the potential mechanism for biofouling control. Compared to the control MBR, the fouling cycle duration of MBR 2 with 100 μg/L TCS extended over two times. The attached biomass on membrane in MBR 2 decreased over 50% at the end of each operating period, which indicated that the addition of TCS significantly mitigated microorganisms accumulation on membrane. The content of interspecies QS signal (autoinducer-2) and intraspecific QS signals (N-octanoyl-dl-homoserine lactone, C8-HSL) was reduced by the TCS, suggesting the secretion of QS signals in MBR were affected by uncoupler. Although the addition of TCS induced brief fluctuations of extracellular proteins and polysaccharides, microorganisms seemed to rapidly acclimatize to the presence of TCS and then the secretion of extracellular polymeric substances (EPS) was inhibited by 100 μg/L TCS. The continuous operation of MBR was not be affected by the low-concentration uncoupler via the analysis of substrate removal and sludge growth. This study systematically evaluated the effect and inhibitory efficiency of TCS on biofouling, biomass accumulation, QS signals, EPS and treatment performances, demonstrating the feasibility of metabolic uncoupler for biofouling control in MBR.
Collapse
Affiliation(s)
- Xiaochi Feng
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wanqian Guo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China.
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Shanshan Yang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Juanshan Du
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Qinglian Wu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Haichao Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Nanqi Ren
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
9
|
Wang Y, Wang D, Yi N, Li Y, Ni BJ, Wang Q, Wang H, Li X. Insights into the toxicity of troclocarban to anaerobic digestion: Sludge characteristics and methane production. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121615. [PMID: 31740317 DOI: 10.1016/j.jhazmat.2019.121615] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/27/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Triclocarban (TCC), as the most typical antibacterial agent, is widely discovered in many ecological environment, especially in sludge. However, so far, no studies have reported the effect of TCC exposure on the properties of excess sludge. Therefore, in this study, TCC's toxicities to waste activated sludge (WAS) were analyzed by investigating the variation of physicochemical properties of sludge. It was found that TCC exposure has no effect on sludge pH, while it facilitated organic substances release from sludge, e.g. dissolved organic matter (DOM), protein and polysaccharide, which caused an increase of sludge reduction and changed the structure of functional groups and surface morphology of sludge. Moreover, we explored the effect of TCC on anaerobic digestion of WAS and found methane production was seriously inhibited by TCC. The related mechanism tests had illustrated that TCC exposure did not affect the hydrolysis process, but promoted the acidification and acetogenesis, and importantly inhibited the methanogenesis process. Methanogenic community was further evaluated and observed that the presence of TCC could vary the microbial community of methanogens with the abundance of aceticlastic methanogens increasing and hydrogenotrophic methanogens decreasing. These findings reached in this study would widen the understanding scope for TCC's toxicity to WAS.
Collapse
Affiliation(s)
- Yali Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China; Xiong'an Institute of Eco-Environment, Hebei University, Baoding, 071002, PR China.
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Neng Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Hongjie Wang
- Xiong'an Institute of Eco-Environment, Hebei University, Baoding, 071002, PR China.
| | - Xiaoming Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
10
|
Fang F, Wang SN, Li KY, Dong JY, Xu RZ, Zhang LL, Xie WM, Cao JS. Formation of microbial products by activated sludge in the presence of a metabolic uncoupler o-chlorophenol in long-term operated sequencing batch reactors. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121311. [PMID: 31585278 DOI: 10.1016/j.jhazmat.2019.121311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Metabolic uncouplers are widely used for reducing excess sludge in biological wastewater treatment systems. However, the formation of microbial products, such as extracellular polymeric substances, polyhydroxyalkanoate and soluble microbial products by activated sludge in the presence of metabolic uncouplers remains unrevealed. In this study, the impacts of a metabolic uncoupler o-chlorophenol (oCP) on the reduction of activated sludge yield and formation of microbial products in laboratory-scale sequencing batch reactors (SBRs) were evaluated for a long-term operation. The results show the average reduction of sludge yield in the four reactors was 17.40%, 25.80%, 33.02% and 39.50%, respectively, when dosing 5, 10, 15, and 20 mg/L oCP. The oCP addition slightly reduced the pollutant removal efficiency and decreased the formation of soluble microbial products in the SBRs, but stimulated the productions of extracellular polymeric substances and polyhydroxyalkanoate in activated sludge. Furthermore, the significant reduction of electronic transport system activity occurred after the oCP addition. Microbial community analysis of the activated sludge indicates dosing oCP resulted in a decrease of sludge richness and diversity in the SBRs. Hopefully, this study would provide useful information for reducing sludge yield in biological wastewater treatment systems and behaviors of activated sludge in the presence of uncouplers.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Su-Na Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ke-Yan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jin-Yun Dong
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Run-Ze Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lu-Lu Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Wen-Ming Xie
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
11
|
Yang X, Xu X, Wei X, Li J, Wan J. Assessment of the Sludge Reduction of the Metabolic Uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS) in Activated Sludge Culture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16101686. [PMID: 31091739 PMCID: PMC6571806 DOI: 10.3390/ijerph16101686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/01/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022]
Abstract
Batch experiments were completed to assess the sludge reduction of the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS). The effects of various TCS concentrations on sludge yield were evaluated and the mechanisms associated with sludge reduction were assessed. We discovered that TCS addition resulted in a reduction in sludge. Furthermore, a low dose of TCS (≤3 mg/L) resulted in a slight reduction in the efficiency of the wastewater treatment system, while >3 mg/L TCS reduced matrix removal efficiency, with an especially remarkable inhibition effect on ammonia removal. An increase in TCS addition was associated with a gradual decrease in both the electron transport system (ETS) activity and the specific cellular ATP (SATP) in the TCS system. It was demonstrated that TCS plays an important role in metabolic uncoupling. However, with the addition of TCS, both contents and compositions were increased, and the protein content increased more than polysaccharide production in extracellular polymeric substances (EPS). At TCS concentrations of ≤3 mg/L, DNA content was stable, but it increased rapidly from 4.97 mg/L to 15.34 mg/L as the TCS concentration was elevated from 6 mg/L to 12 mg/L. This implied that the mechanisms of sludge reduction were different for different TCS concentrations, including uncoupling metabolism, maintenance metabolism and lysis-cryptic growth.
Collapse
Affiliation(s)
- Xiaofan Yang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 24100, China.
| | - Xiaoping Xu
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 24100, China.
| | - Xueyu Wei
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 24100, China.
| | - Jincheng Li
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 24100, China.
| | - Jie Wan
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 24100, China.
| |
Collapse
|
12
|
Ding A, Lin D, Zhao Y, Ngo HH, Guo W, Bai L, Luo X, Li G, Ren N, Liang H. Effect of metabolic uncoupler, 2,4‑dinitrophenol (DNP) on sludge properties and fouling potential in ultrafiltration membrane process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1882-1888. [PMID: 30286354 DOI: 10.1016/j.scitotenv.2018.09.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Energy uncoupling technology was applied to the membrane process to control the problem of bio-fouling. Different dosages of uncoupler (2,4‑dinitrophenol, DNP) were added to the activated sludge, and a short-term ultrafiltration test was systematically investigated for analyzing membrane fouling potential and underlying mechanisms. Ultrafiltration membrane was used and made of polyether-sulfone with a molecular weight cut off (MWCO) of 150 kDa. Results indicated that low DNP concentration (15-30 mg/g VSS) aggravated membrane fouling because more soluble microbial products were released and then rejected by the membrane, which significantly increased cake layer resistance compared with the control. Conversely, a high dosage of DNP (45 mg/g VSS) retarded membrane fouling owing to the high inhibition of extracellular polymeric substances (proteins and polysaccharides) of the sludge, which effectively prevented the formation of cake layer on the membrane surface. Furthermore, analyses of fouling model revealed that a high dosage of DNP delayed the fouling model from pore blocking transition to cake filtration, whereas this transition process was accelerated in the low dosage scenario.
Collapse
Affiliation(s)
- An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Yingxue Zhao
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Faculty of Engineering, University of Technology Sydney, P.O. Box 123, Broadway, Sydney, NSW 2007, Australia.
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| |
Collapse
|
13
|
Feng XC, Guo WQ, Zheng HS, Wu QL, Luo HC, Ren NQ. Effect of metabolic uncoupler, 3,3′,4′,5-tetrachlorosalicylanilide (TCS) on Bacillus subtilis: biofilm formation, flocculability and surface characteristics. RSC Adv 2018; 8:16178-16186. [PMID: 35542191 PMCID: PMC9080271 DOI: 10.1039/c8ra02315h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/23/2018] [Indexed: 11/21/2022] Open
Abstract
In order to understand the inhibitory mechanism of metabolic uncoupler in biofilm, this study investigated the effect of TCS on B. subtilis biofilm formation, flocculability, surface characteristics and thermodynamic properties. An optimal concentration of TCS, a metabolic uncoupler, was observed to substantially inhibit biofilm formation and the secretion of extracellular polymeric substances (EPS). The effect of TCS on the zeta potential and flocculability of bacterial suspension implied the addition of 100 μg L−1 TCS increased the net negative charge of cell surface which induced the reduction of B. subtilis flocculability. Meanwhile, the effects of TCS on bacterial surfacial thermodynamic properties were analyzed by the Derjaguin–Landau–Verwey–Overbeek (DLVO) and extend DLVO (XDLVO) theories. As DLVO and XDLVO predicted, the primary energy barrier between bacterial cells incubated with 100 μg L−1 TCS were increased compared to that of control, indicating that B. subtilis incubated with 100 μg L−1 TCS must consume more energy to aggregate or form biofilm. This study aimed to investigate the inhibitory mechanism of metabolic uncoupler on biofilm formation through surface characteristics and thermodynamics analysis.![]()
Collapse
Affiliation(s)
- Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - He-Shan Zheng
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Qing-Lian Wu
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Hai-Chao Luo
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment
- Harbin Institute of Technology
- Harbin
- P. R. China
| |
Collapse
|
14
|
Ferrer-Polonio E, Fernández-Navarro J, Alonso-Molina JL, Amorós-Muñoz I, Bes-Piá A, Mendoza-Roca JA. Changes in the process performance, sludge production and microbial activity in an activated sludge reactor with addition of a metabolic uncoupler under different operating conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 203:349-357. [PMID: 28806651 DOI: 10.1016/j.jenvman.2017.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/01/2017] [Accepted: 08/05/2017] [Indexed: 06/07/2023]
Abstract
Sludge production in wastewater treatment plants is nowadays a big concern due to the high produced amounts and their characteristics. Consequently, the study of techniques that reduce the sludge generation in wastewater treatment plants is becoming of great importance. In this work, four laboratory sequencing batch reactors (SBRs), which treated municipal wastewater, were operated to study the effect of adding the metabolic uncoupler 3,3',4',5-tetrachlorosalicylanilide (TCS) on the sludge reduction, the SBRs performance and the microbial hydrolytic enzymatic activities (MHEA). In addition, different operating conditions of the SBRs were tested to study the effect of the TCS on the process: two dissolved oxygen (DO) concentrations (2 and 9 mg L-1) and two F/M ratio (0.18 and 0.35 g COD·g MLVSS-1·d-1). The sludge production decreased under high DO concentrations. At the same time, the DNA and EPS production increased in the four SBRs. After these stress conditions, the performance of the reactors were recovered when DO was around 2 mg L-1. From that moment on, results showed that TCS addition implied a reduction of the adenosine triphosphate (ATP) production, which implied a decrease in the sludge production. In spite of this reduction, the SBRs performances did not decay due to the increase in the global MHEA. Additionally, the sludge reduction was enhanced by the increase of the F/M ratio, achieving 28% and 60% of reduction for the low and the high F/M ratio, respectively.
Collapse
Affiliation(s)
- E Ferrer-Polonio
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - J Fernández-Navarro
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - J L Alonso-Molina
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - I Amorós-Muñoz
- Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - A Bes-Piá
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - J A Mendoza-Roca
- Instituto de Seguridad Industrial, Radiofísica y Medioambiental, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
15
|
Dong H, Wei D, Wang S, Wang X, Yan T, Yan L, Du B, Wei Q. Production of soluble microbial products in aerobic granular sludge system under the stress of toxic 4-chlorophenol. ENVIRONMENTAL TECHNOLOGY 2017; 38:3192-3200. [PMID: 28162032 DOI: 10.1080/09593330.2017.1291758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The purpose of this study was to evaluate the effect of toxic 4-chlorophenol (4-CP) on the production of soluble microbial products (SMP) in an aerobic granular sludge system. Compared with the control experiment, [Formula: see text] removal efficiency generally reduced by 37.90% after the exposure of 4-CP of 10 mg L-1, indicating that 4-CP had a toxic effect on the performance of biological nitrification. Meanwhile, the contents of polysaccharides and proteins (PN) of SMP increased from 31.0 ± 0.32 and 0.8 ± 0.12 mg L-1 to 39.0 ± 0.56 and 61.70 ± 0.78 mg L-1, respectively. Specific oxygen uptake rate (SOUR) showed that the values of (SOUR)H, [Formula: see text]and [Formula: see text] reduced by 27%, 48% and 41% in the presence of 4-CP. The characteristic and chemical components of SMP were assessed by using three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence spectra, two-dimensional correlation spectroscopy (2D-COS), scanning electron microscope and Fourier transform infrared spectroscopy . 3D-EEM implied that SMP were mainly composed of tryptophan PN-like, aromatic PN-like and humic acid-like substances after 4-CP exposure. Synchronous fluorescence spectra coupled with 2D-COS suggested that SMP samples changed in the following sequences: PN-like substances > humic acid-like substances in the absence of 4-CP, and shorter wavelength > longer wavelength in PN-like substances in the presence of 4-CP.
Collapse
Affiliation(s)
- Heng Dong
- a School of Resources and Environment, University of Jinan , Jinan , People's Republic of China
| | - Dong Wei
- a School of Resources and Environment, University of Jinan , Jinan , People's Republic of China
| | - Siyu Wang
- a School of Resources and Environment, University of Jinan , Jinan , People's Republic of China
| | - Xiaodong Wang
- a School of Resources and Environment, University of Jinan , Jinan , People's Republic of China
- c Shan Dong Lan Xi Environmental Protection Technology Co., Ltd , Jinan , People's Republic of China
| | - Tao Yan
- a School of Resources and Environment, University of Jinan , Jinan , People's Republic of China
| | - Liangguo Yan
- a School of Resources and Environment, University of Jinan , Jinan , People's Republic of China
| | - Bin Du
- a School of Resources and Environment, University of Jinan , Jinan , People's Republic of China
- b Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , People's Republic of China
| | - Qin Wei
- b Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering , University of Jinan , Jinan , People's Republic of China
| |
Collapse
|
16
|
Yang F, Zhang W, Li J, Wang S, Tao Y, Wang Y, Zhang Y. The enhancement of atrazine sorption and microbial transformation in biochars amended black soils. CHEMOSPHERE 2017; 189:507-516. [PMID: 28961536 DOI: 10.1016/j.chemosphere.2017.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/26/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Generally, biochar plays an important role in controlling migration and accumulation of pollutants in soil. In this dissertation, biochars derived from wheat straws at various pyrolysis temperatures are used to investigate how biochar amendment affects adsorption and microbial degradation of atrazine (typical diffuse herbicide) in soils. In order to explore the influence of soil components, soil samples with different organic matter content are collected from typical agricultural sites, which are characterized as black soils in the northeast region of China. The basic sorption characteristics of biochars from wheat straws prepared at diverse pyrolysis temperature are analyzed, along with the comparisons of the sorption difference in the raw soil and soil amended with biochars at four levels of ratio (0.1%, 0.5%, 1.0% and 2.0%). By incubation experiments, atrazine degradation in non-sterile and sterile soils and effects of atrazine degradation rate after biochar amendment are also studied. Atrazine degradation is significantly enhanced in biochar amended soils, which may be because that biochar supplement can promote the growth and metabolism of microorganisms in the soil. Our findings reveal that wheatstraw- derived biochars may be effective remediation reagents for activating degradation of the soil functional microorganism and enhancing sorption of organic matter content, which can be applied to environmental-friendly accelerate the remediation of atrazine contaminated black soils.
Collapse
Affiliation(s)
- Fan Yang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China; College of Science, Northeast Agricultural University, Harbin 150030, China
| | - Wei Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jinmei Li
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuyao Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
17
|
Wang Y, Zhang X, Zhang X, Meng Q, Gao F, Zhang Y. Characterization of spectral responses of dissolved organic matter (DOM) for atrazine binding during the sorption process onto black soil. CHEMOSPHERE 2017; 180:531-539. [PMID: 28432890 DOI: 10.1016/j.chemosphere.2017.04.063] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/04/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
This study was aim to investigate the interaction between soil-derived dissolved organic matter (DOM) and atrazine as a kind of pesticides during the sorption process onto black soil. According to the experimental data, the adsorption capacity of Soil + DOM, Soil and DOM were 41.80, 31.45 and 9.35 mg kg-1, separately, which indicated that DOM significantly enhanced the adsorption efficiency of atrazine by soil. Data implied that the pseudo-second-order kinetic equation could well explain the adsorption process. The adsorption isotherms (R2 > 0.99) had a satisfactory fit in both Langmuir and Freundlich models. Three-dimensional excitation-emission matrix (3D-EEM), synchronous fluorescence, two-dimensional correlation spectroscopy (2D-COS) and Fourier transform infrared spectroscopy (FT-IR) were selected to analyze the interaction between DOM and atrazine. 3D-EEM showed that humic acid-like substances were the main component of DOM. The fluorescence of DOM samples were gradually quenched with the increased of atrazine concentrations. Synchronous fluorescence spectra showed that static fluorescence quenching was the main quenching process. 2D-COS indicated that the order of the spectral changes were as following: 336 nm > 282 nm. Furthermore, the fluorescence quenching of humic-like fraction occurred earlier than that of protein-like fraction under atrazine surroundings. FT-IR spectra indicated that main compositions of soil DOM include proteins, polysaccharides and humic substances. The findings of this study are significant to reveal DOM played an important role in the environmental fate of pesticides during sorption process onto black soil and also provide more useful information for understanding the interaction between DOM and pesticides by using spectral responses.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xinyuan Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xing Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qingjuan Meng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Fengjie Gao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
18
|
Li K, Wei D, Yan T, Du B, Wei Q. Responses of soluble microbial products and extracellular polymeric substances to the presence of toxic 2,6-dichlorophenol in aerobic granular sludge system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:594-600. [PMID: 27623368 DOI: 10.1016/j.jenvman.2016.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/04/2016] [Accepted: 09/03/2016] [Indexed: 06/06/2023]
Abstract
The objective of this study was to evaluate the responses of soluble microbial products (SMP) and extracellular polymeric substances (EPS) to the presence of toxic 2,6-dichlorophenol (2,6-DCP) in aerobic granular sludge (AGS) system. Batch experiment showed that NH4+-N removal efficiency significantly decreased from 99.6% to 47.2% in the toxic 2,6-DCP of 20 mg/L. Moreover, the inhibition degrees of 2,6-DCP on (SOUR)H, [Formula: see text] and [Formula: see text] were 7.8%, 32.1% and 9.5%, respectively. The main components of SMP, including protein (PN) and polysaccharide (PS) increased from 2.3 ± 0.74 and 16.8 ± 0.12 mg/L to 66.4 ± 0.56 and 18.0 ± 0.19 mg/L in the presence of 2,6-DCP. Three-dimensional excitation-emission matrix (3D-EEM) spectroscopy identified tryptophan PN-like, humic acid-like and fulvic acid-like substances in the control SMP, and their fluorescence intensities increased after exposure to 2,6-DCP. Synchronous fluorescence spectra suggested that the fluorescence quenching between EPS and 2,6-DCP was a static quenching process. The obtained results could provide insightful information on the responses of microbial products to AGS in the presence of toxic chlorophenols.
Collapse
Affiliation(s)
- Kai Li
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Tao Yan
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
19
|
Kimura ZI, Hirano Y, Matsuzawa Y, Hiraishi A. Effects of 3,5-dichlorophenol on excess biomass reduction and bacterial community dynamics in activated sludge as revealed by a polyphasic approach. J Biosci Bioeng 2016; 122:467-74. [DOI: 10.1016/j.jbiosc.2016.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/23/2016] [Accepted: 03/22/2016] [Indexed: 11/25/2022]
|
20
|
A Fluorescence Approach to Assess the Production of Soluble Microbial Products from Aerobic Granular Sludge Under the Stress of 2,4-Dichlorophenol. Sci Rep 2016; 6:24444. [PMID: 27075778 PMCID: PMC4830994 DOI: 10.1038/srep24444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/22/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, a fluorescence approach was used to evaluate the production of soluble microbial products (SMP) in aerobic granular sludge system under the stress of 2,4-dichlorophenol (2,4-DCP). A combined use of three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM), Parallel factor analysis (PARAFAC), synchronous fluorescence and two-dimensional correlation spectroscopy (2D-COS) were explored to respect the SMP formation in the exposure of different doses of 2,4-DCP. Data implied that the presence of 2,4-DCP had an obvious inhibition on biological nitrogen removal. According to EEM-PARAFAC, two fluorescent components were derived and represented to the presence of fulvic-like substances and humic-like substances in Component 1 and protein-like substances in Component 2. It was found from synchronous fluorescence that protein-like peak presented slightly higher intensity than that of fulvic-like peak. 2D-COS further revealed that fluorescence change took place sequentially in the following order: protein-like fraction > fulvic-like fraction. The obtained results could provide a potential application of fluorescence spectra in the released SMP assessment in the exposure of toxic compound during wastewater treatment.
Collapse
|
21
|
Xie WM, Ni BJ, Sheng GP, Seviour T, Yu HQ. Quantification and kinetic characterization of soluble microbial products from municipal wastewater treatment plants. WATER RESEARCH 2016; 88:703-710. [PMID: 26580086 DOI: 10.1016/j.watres.2015.10.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 06/05/2023]
Abstract
Soluble microbial products (SMP) formed by microorganisms in wastewater treatment plants (WWTPs) adversely affect final effluent quality and treatment efficiency. It is difficult to distinguish SMP from residual proteins, lipids and carbohydrates present in the influent that may persist during treatment. No method is currently available to determine quantitatively the extent to which SMP contribute to organic discharges from municipal WWTPs. In this work a modeling approach is presented which allows the SMP fraction of the effluent of a municipal WWTP to be quantified and described. The model is validated, in terms of utilization-associated products, biomass-associated products and extracellular polymeric substances, using influent from a municipal WWTP. SMP was found to account for, on average, 27 mg/L of chemical oxygen demand (COD), or 61% of the total COD in the WWTP effluent. Over 90% of the SMP was comprised of biomass-associated products. Five main factors influencing SMP formation in WWTP were evaluated. Neither wastewater composition nor mixed liquor suspended solids concentration was found to affect SMP production. On the other hand, a positive correlation was observed for SMP formation with both solids retention time and influent COD concentration, and a negative correlation with hydraulic retention time. Thus, operating or designing WWTPs with short solids retention and long hydraulic retention times could be considered as solutions for minimizing SMP production.
Collapse
Affiliation(s)
- Wen-Ming Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026 China
| | - Bing-Jie Ni
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026 China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026 China
| | - Thomas Seviour
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, School of Biological Sciences, 637551 Singapore.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026 China.
| |
Collapse
|
22
|
Li K, Wei D, Zhang G, Shi L, Wang Y, Wang B, Wang X, Du B, Wei Q. Toxicity of bisphenol A to aerobic granular sludge in sequencing batch reactors. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.05.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Fang F, Hu HL, Qin MM, Xue ZX, Cao JS, Hu ZR. Effects of metabolic uncouplers on excess sludge reduction and microbial products of activated sludge. BIORESOURCE TECHNOLOGY 2015; 185:1-6. [PMID: 25746471 DOI: 10.1016/j.biortech.2015.02.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 06/04/2023]
Abstract
The present study investigated the influences of three metabolic uncouplers (pCP, oCP and oNP) on excess activated sludge reduction and microbial products of extracellular polymeric substances (EPS) and intracellular storage product (polyhydroxybutyrate, PHB) in short-term tests. Results showed sludge was reduced 58.2%, 59.8% and 80.8%, respectively, at pCP, oCP and oNP concentrations of 20mg/L. The dosage of three uncouplers had no obviously influences on COD removal and sludge settleability, but had significant inhibition effect on ammonia removal, especially for oNP. Low concentration of pCP and oNP (5mg/L) dosing resulted in protein and polysaccharide content increased in EPS, however, they were decreased at high pCP and oNP concentrations (>5mg/L). To oCP, the protein content in EPS was increased linearly with oCP concentration. Furthermore, metabolic uncouplers addition stimulated the production of PHB. Among three uncouplers, oCP could be an alternative uncoupler for sludge reduction in activated sludge process.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Hai-Lan Hu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Min-Min Qin
- College of Environment, Hohai University, Nanjing 210098, China
| | - Zhao-Xia Xue
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jia-Shun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Zhi-Rong Hu
- EnviroSim Associates Ltd, McMaster Innovation Park, 175 Longwood Road South, Suite 114A, Hamilton, Ontario L8P 0A1, Canada
| |
Collapse
|
24
|
Wang YP, Yu SS, Zhang HL, Li WW, Cheng YY, Yu HQ. Roles of 3,3',4',5-tetrachlorosalicylanilide in regulating extracellular electron transfer of Shewanella oneidensis MR-1. Sci Rep 2015; 5:7991. [PMID: 25612888 PMCID: PMC4303895 DOI: 10.1038/srep07991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022] Open
Abstract
Microbial extracellular electron transfer (EET) is critically involved in many pollutant conversion processes in both natural environment and engineered bioelectrochemical systems (BES), but typically with limited efficiency and poor controllability. In this study, we discover an important role of uncouplers in affecting the microbial energy metabolism and EET. Dose of lower-concentration 3,3',4',5-tetrachlorosalicylanilide (TCS) in the anolyte promoted the current generation and substrate degradation of an MFC inoculated with Shewanella oneidensis MR-1. However, higher TCS dosage caused obvious microbial inhibition. Our results suggest a previously unknown role of uncouplers in regulating the microbial EET. In addition, the underlying mechanisms of such processes are investigated. This work broadens our view about the EET behaviors of microorganisms in real water environment where uncouplers are usually present, and suggests a possible new approach to regulate microbial EET in BES.
Collapse
Affiliation(s)
- Yong-Peng Wang
- 1] Department of Chemistry, University of Science &Technology of China, Hefei, 230026, China [2] China Academy of Engineering Physics, P. O. Box 919, Mianyang 621900, China
| | - Sheng-Song Yu
- Department of Chemistry, University of Science &Technology of China, Hefei, 230026, China
| | - Hai-Ling Zhang
- 1] Department of Chemistry, University of Science &Technology of China, Hefei, 230026, China [2] China Academy of Engineering Physics, P. O. Box 919, Mianyang 621900, China
| | - Wen-Wei Li
- 1] Department of Chemistry, University of Science &Technology of China, Hefei, 230026, China [2] Collaborative Innovation Center of Suzhou Nano Science and Technology, University of Science &Technology of China, Hefei, 230026, China
| | - Yuan-Yuan Cheng
- Department of Chemistry, University of Science &Technology of China, Hefei, 230026, China
| | - Han-Qing Yu
- Department of Chemistry, University of Science &Technology of China, Hefei, 230026, China
| |
Collapse
|
25
|
Feng XC, Guo WQ, Yang SS, Zheng HS, Du JS, Wu QL, Ren NQ. Possible causes of excess sludge reduction adding metabolic uncoupler, 3,3',4',5-tetrachlorosalicylanilide (TCS), in sequence batch reactors. BIORESOURCE TECHNOLOGY 2014; 173:96-103. [PMID: 25285765 DOI: 10.1016/j.biortech.2014.09.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 06/03/2023]
Abstract
Two parallel sequence batch reactors (SBRs) were operated, with and without TCS addition, to research the causes of sludge reduction by uncouplers. Three possible mechanisms of sludge reduction by TCS were studied: (1) occurrence of metabolic uncoupling, (2) consumption of more energy to resist the infection of TCS, (3) promotion of lysis-cryptic growth by TCS addition. Results showed the remarkable reduction of electronic transport system (ETS) activity and specific cellular ATP (SATP) in TCS reactor, which proved the occurrence of metabolic uncoupling. The increasing amounts of extracellular polymeric substances (EPS), as measured by chemical methods and excitation-emission matrix (EEM) fluorescence spectra, implied microorganisms consumed more energy to resist TCS. The similar DNA concentrations of the effluents in two reactors indicated sludge lysis was not intensified by TCS. Therefore, uncoupler might not only cause metabolic uncoupling but also induce more energy consumption in the production of some substances to resist uncoupler.
Collapse
Affiliation(s)
- Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wan-Qian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - He-Shan Zheng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Juan-Shan Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qu-Li Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
26
|
Feng XC, Guo WQ, Chen C, Yang SS, Jin WB, Ren NQ, Zheng HS, Du JS, Liu B. Treatability study of 3,3',4',5-tetrachlorosalicylanilide (TCS) combined with 2,4,6-trichlorophenol (TCP) to reduce excess sludge production in a sequence batch reactor. BIORESOURCE TECHNOLOGY 2013; 143:642-646. [PMID: 23856019 DOI: 10.1016/j.biortech.2013.05.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 06/02/2023]
Abstract
The present study investigated the synergistic effects of a novel combined uncoupler of TCS and TCP on excess activated sludge reduction during a 60-day operation using a sequence batch reactor (SBR). Response surface methodology (RSM) was employed to obtain the optimal dosage of the combined uncoupler. The results of 60-day operation demonstrated the combined uncoupler had effectively reduced the sludge yield by approximately 52%, without serious affecting the substrate removal efficiency. The high sludge reduction rate revealed that it was feasible and effective to utilize a combined uncoupler to limit excess activated sludge. The three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy analysis of activated sludge with different metabolic uncouplers indicated that tryptophan, tyrosine protein-like substances and tryptophan, tyrosine amino-like substances were reduced by adding a combined uncoupler. Moreover, the variation of sludge components provided a better understanding of the effects of uncouplers on activated sludge reduction.
Collapse
Affiliation(s)
- Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|