1
|
Xu JY, Li HQ, Chen JM, Chen FZ. Crystal structure and characterization of monascin from the extracts of Monascus purpureus-fermented rice. Acta Crystallogr C Struct Chem 2024; 80:425-433. [PMID: 39028308 DOI: 10.1107/s2053229624006788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
We present a novel solid form of monascin, an azaphilonoid derivative extracted from Monascus purpureus-fermented rice. The crystal structure, C21H26O5, was characterized by single-crystal X-ray diffraction and belongs to the orthorhombic space group P212121. To gain insight into the electronic properties of the short contacts in the crystalline state of monascin, we utilized the Experimental Library of Multipolar Atom Model 2 (ELMAM2) database to transfer the electron density of monascin in its crystalline state. Hirshfeld surface analysis, fingerprint analysis, electronic properties and energetic characterization reveal that intermolecular C-H...O hydrogen bonds play a crucial role in the noncovalent bonding interactions by connecting molecules into two- and three-dimensional networks. The molecular electrostatic potential (MEP) map of the monascin molecule demonstrates that negatively charged regions located at four O atoms are favoured binding sites for more positively charged amino acid residues during molecular recognition. In addition, powder X-ray diffraction confirms that no transformation occurs during the crystallization of monascin.
Collapse
Affiliation(s)
- Jia Yin Xu
- Mongolian Pharmaceutical Preparation Center, International Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People's Republic of China
| | - Han Qing Li
- State Clinical Trial Institution of New Drugs, International Mongolian Hospital of Inner Mongolia, Hohhot, Inner Mongolia 010065, People's Republic of China
| | - Jian Ming Chen
- Department of Natural Chemistry, Greenpure Biopharma Co. Ltd, Chengdu, Sichuan 614041, People's Republic of China
| | - Feng Zheng Chen
- School of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan 614000, People's Republic of China
| |
Collapse
|
2
|
Yang T, Liu X, Xue L, Liu X, Zhang L, Lan L, Zhang H, Sun G. Quality assessment of Red Yeast Rice by fingerprint and fingerprint-effect relationship combined with antioxidant activity. Food Chem 2024; 438:137744. [PMID: 37995583 DOI: 10.1016/j.foodchem.2023.137744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
Red Yeast Rice (RYR) is an important functional food ingredient that plays a critical role in promoting dietary guidance and maintaining health. To ensure its quality, four key compounds were quantified, and both HPLC fingerprint and electrochemical fingerprint (ECFP) were applied to assess quality. Additionally, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•) scavenging test and ECFP were applied to assay the total antioxidant activity, with ascorbic acid as the positive control. The results showed that the holistic quality of samples was divided into 4 grades based on HPLC fingerprint analysis by the comprehensive linear quantitative fingerprint method. Additionally, the area of the total peak (Atp) in ECFP was found to be linearly correlated with the antioxidant activity (R > 0.99). A further fingerprint-efficacy relationship analysis determined the significant contributions to the antioxidant activity of peaks 20-Daidzein, 21-Glycitein, and 24-Genistein. Overall, this study suggested a comprehensive and reliable approach to the quality assessment of RYR.
Collapse
Affiliation(s)
- Ting Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xiaoling Liu
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lan Xue
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China.
| | - Xi Liu
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China.
| | - Limei Zhang
- Beijing Peking University WBL Biotech Co. Ltd., Beijing 100094, China.
| | - Lili Lan
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hong Zhang
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Guoxiang Sun
- Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Yang Z, Li W, Yuan Y, Liang Z, Yan Y, Chen Y, Ni L, Lv X. Metagenomic Insights into the Regulatory Effects of Microbial Community on the Formation of Biogenic Amines and Volatile Flavor Components during the Brewing of Hongqu Rice Wine. Foods 2023; 12:3075. [PMID: 37628073 PMCID: PMC10453061 DOI: 10.3390/foods12163075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
As one of the typical representatives of Chinese rice wine (Huangjiu), Hongqu rice wine is produced with glutinous rice as the main raw material and Hongqu as the fermentation starter. The complex microbial flora in the brewing process may have a great influence on the formation of the flavor quality and drinking safety of Hongqu rice wine. Previous studies have shown that high biogenic amine (BA) content in rice wine has potential physiological toxicity and has become a bottleneck problem restricting the development of the rice wine industry. This study aimed to evaluate the regulatory effects of the microbial community on the formation of BAs and volatile flavor components during the brewing of Hongqu rice wine. The results demonstrated that histamine, putrescine, cadaverine, tyramine, tryptamine, spermine, and spermidine were the main BAs in Hongqu rice wine. The contents of putrescine, cadaverine, histamine, tyramine, and spermidine in Hongqu rice wine of HBAs (with higher BAs content) were significantly higher than those in LBAs (with lower BAs content). GC-MS testing results showed that there were significant differences in the composition of volatile organic compounds (VOCs) between HBAs and LBAs. Among them, VOCs such as 2-methoxy-4-vinylphenol, ethyl caprate, phenethyl acetate, ethyl lactate, ethyl myristate, ethyl palmitate, ethyl n-octadecanoate, ethyl oleate, and ethyl linoleate were identified as the characteristic volatile components with significant differences between HBAs and LBAs. Microbiome analysis based on metagenomic sequencing revealed that unclassified_g_Pantoea, Klebsiella pneumoniae, Panobacter disperse, unclassified_f_Enterobacteriaceae, Leuconostoc mesenteroides, and Saccharomyces cerevisiae were the dominant microbial species in the HBA brewing process, while Weissella confuse, Pediococcus acidilactici, Saccharomyces cerevisiae, and Aspergillus niger were the dominant microbial species in the LBA brewing process. Furthermore, correlation heatmap analysis demonstrated that BAs were positively related to Lactobacillus curvatus, Lactococcus lactis, and Leuconostoc mesenteroides. Bioinformatical analysis based on the KEGG database revealed that the microbial genes encoding enzymes involved in BAs' synthesis were more abundant in HBAs, and the abundances of microbial genes encoding enzymes related to BAs' degradation and the metabolism of characteristic volatile components were higher in LBAs. Overall, this work provides important scientific data for enhancing the flavor quality of Hongqu rice wine and lays a solid foundation for the healthy development of the Hongqu rice wine industry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xucong Lv
- Food Nutrition and Health Research Center, School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China; (Z.Y.); (W.L.); (Y.Y.); (Z.L.); (Y.Y.); (Y.C.); (L.N.)
| |
Collapse
|
4
|
Feng SS, Li W, Hu YJ, Feng JX, Deng J. The biological activity and application of Monascus pigments: a mini review. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2021-0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Monascus pigments (MPs), as secondary metabolites of Monascus, are microbial pigments which have been used for thousands of years. MPs are widely used in food industry as food pigments and preservatives, which have the stability of light resistance, high temperature resistance and acid-base change resistance. In addition, the antioxidant, antibacterial, antiviral and anti-tumor biological activities of MPs have also attracted people’s attention. Moreover, Due to the presence of citrinin, the safety of MPs still needs to be discussed and explored. In this paper, the production, biological activity, application in various fields and methods of detection and reduction of citrinin of MPs were reviewed, which provide new insights into the study and safe application related to human different diseases, medicines or health care products with MPs as active substances.
Collapse
Affiliation(s)
- Shan-Shan Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Wen Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Yong-Jun Hu
- Department of Ultrasound , Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University , Changsha , Hunan 410002 , China
| | - Jian-Xiang Feng
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization , National Engineering Research Center of Rice and Byproduct Deep Processing , College of Food Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- College of Life Sciences and Chemistry , Hunan University of Technology, Zhuzhou , China
| |
Collapse
|
5
|
Kumar Shetty AV, Dave N, Murugesan G, Pai S, Pugazhendhi A, Varadavenkatesan T, Vinayagam R, Selvaraj R. Production and extraction of red pigment by solid-state fermentation of broken rice using Monascus sanguineus NFCCI 2453. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
He Y, Liu J, Chen Q, Gan S, Sun T, Huo S. Monascus sanguineus May Be a Natural Nothospecies. Front Microbiol 2021; 11:614910. [PMID: 33414778 PMCID: PMC7782312 DOI: 10.3389/fmicb.2020.614910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The genus Monascus has important economic and ecological values. In 2016, we isolated a strain M. sanguineus. After studying the phylogenetic relationship of Monascus, we believe that M. sanguineus is an independent species and speculate that it is a natural nothospecies. Recently, the morphological characteristics and sequences of seven genes (ITS, LSU, β-tubulin, calmodulin, RNA polymerase II subunit, β-ketoacyl synthase, and mating-type locus 1-1) of 15 Monascus strains were analyzed, including sequencing of multiple clones of five protein genes in four M. sanguineus strains. Two types of haplotypes (A and B) were observed in the five protein genes of M. sanguineus. Haplotype A was closely related to M. ruber, and haplotype B may be derived from an unknown Monascus species. The results demonstrated that M. sanguineus including type strains may be a natural nothospecies. This study laid the foundation for further exploration of the M. sanguineus genome, and the study may be of significant importance for the Monascus fermentation industry.
Collapse
Affiliation(s)
- Yatao He
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China.,Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Junlin Liu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Qian Chen
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Senning Gan
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Ting Sun
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shengdong Huo
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
7
|
Lin L, Xu J. Fungal Pigments and Their Roles Associated with Human Health. J Fungi (Basel) 2020; 6:E280. [PMID: 33198121 PMCID: PMC7711509 DOI: 10.3390/jof6040280] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Fungi can produce myriad secondary metabolites, including pigments. Some of these pigments play a positive role in human welfare while others are detrimental. This paper reviews the types and biosynthesis of fungal pigments, their relevance to human health, including their interactions with host immunity, and recent progresses in their structure-activity relationships. Fungal pigments are grouped into carotenoids, melanin, polyketides, and azaphilones, etc. These pigments are phylogenetically broadly distributed. While the biosynthetic pathways for some fungal pigments are known, the majority remain to be elucidated. Understanding the genes and metabolic pathways involved in fungal pigment synthesis is essential to genetically manipulate the production of both the types and quantities of specific pigments. A variety of fungal pigments have shown wide-spectrum biological activities, including promising pharmacophores/lead molecules to be developed into health-promoting drugs to treat cancers, cardiovascular disorders, infectious diseases, Alzheimer's diseases, and so on. In addition, the mechanistic elucidation of the interaction of fungal pigments with the host immune system provides valuable clues for fighting fungal infections. The great potential of fungal pigments have opened the avenues for academia and industries ranging from fundamental biology to pharmaceutical development, shedding light on our endeavors for disease prevention and treatment.
Collapse
Affiliation(s)
- Lan Lin
- School of Life Science and Technology, Department of Bioengineering, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210096, Jiangsu, China;
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
8
|
Tan H, Xing Z, Chen G, Tian X, Wu Z. Evaluating Antitumor and Antioxidant Activities of Yellow Monascus Pigments from Monascus ruber Fermentation. Molecules 2018; 23:molecules23123242. [PMID: 30544614 PMCID: PMC6321613 DOI: 10.3390/molecules23123242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Yellow Monascus pigments can be of two kinds: Natural and reduced, in which natural yellow Monascus pigments (NYMPs) attract widespread attention for their bioactivities. In this study, the antioxidative and antibreast cancer effects of the water-soluble NYMPs fermented by Monascus ruber CGMCC 10910 were evaluated. Results showed that water-soluble NYMPs had a significantly improved antioxidative activities compared to the reduced yellow Monascus pigments (RYMPs) that were chemically derived from orange or red Monascus pigments. Furthermore, NYMPs exhibited a concentration-dependent inhibition activity on MCF-7 cell growth (p < 0.001). After a 48-h incubation, a 26.52% inhibition yield was determined with 32 μg/mL of NYMPs. NYMPs also significantly inhibited the migration and invasion of MCF-7 cells. Mechanisms of the activities were associated with a down-regulation of the expression of matrix metalloproteinases and vascular endothelial growth factor. Rather than being alternatively used as natural colorants or antioxidants, this work suggested that NYMPs could be selected as potential functional additives in further test of breast cancer prevention and adjuvant therapy.
Collapse
Affiliation(s)
- Hailing Tan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
- Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China.
| | - Ziyi Xing
- The Key Laboratory of Pathobiology, Ministry of Education, The College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| | - Gong Chen
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Xiaofei Tian
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
9
|
Abe H, Tango H, Kobayashi T, Ito H. Asymmetric total synthesis and revision of absolute configurations of azaphilone derivative felinone A. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Abstract
The genus Monascus was described by van Tieghem (1884) to accommodate M. ruber and M. mucoroides, two species with non-ostiolate ascomata. Species delimitation in the genus is still mainly based on phenotypic characters, and taxonomic studies that include sequence data are limited. The genus is of economic importance. Species are used in fermented Asian foods as food colourants (e.g. ‘red rice’ (ang-kak, angka)) and found as spoilage organisms, and recently Monascus was found to be essential in the lifecycle of stingless bees. In this study, a polyphasic approach was applied combining morphological characters, ITS, LSU, β-tubulin, calmodulin and RNA polymerase II second largest subunit sequences and extrolite data, to delimit species and to study phylogenetic relationships in Monascus. Furthermore, 30 Monascus isolates from honey, pollen and nests of stingless bees in Brazil were included. Based on this polyphasic approach, the genus Monascus is resolved in nine species, including three new species associated with stingless bees (M. flavipigmentosus sp. nov., M. mellicola sp. nov., M. recifensis sp. nov., M. argentinensis, M. floridanus, M. lunisporas, M. pallens, M. purpureus, M. ruber), and split in two new sections (section Floridani sect. nov., section Rubri sect. nov.). Phylogenetic analysis showed that the xerophile Monascus eremophilus does not belong in Monascus and monophyly in Monascus is restored with the transfer of M. eremophilus to Penicillium (P. eremophilum comb. nov.). A list of accepted and excluded Monascus and Basipetospora species is given, together with information on (ex-)types cultures and barcode sequence data.
Collapse
|
11
|
Yuliana A, Singgih M, Julianti E, Blanc PJ. Derivates of azaphilone Monascus pigments. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2016.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Monascus: a Reality on the Production and Application of Microbial Pigments. Appl Biochem Biotechnol 2016; 178:211-23. [PMID: 26472672 DOI: 10.1007/s12010-015-1880-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Monascus species can produce yellow, orange, and red pigments, depending on the employed cultivation conditions. They are classified as natural pigments and can be applied for coloration of meat, fishes, cheese, beer, and pates, besides their use in inks for printer and dyes for textile, cosmetic, and pharmaceutical industries. These natural pigments also present antimicrobial activity on pathogenic microorganisms and other beneficial effects to the health as antioxidant and anticholesterol activities. Depending on the substrates, the operational conditions (temperature, pH, dissolved oxygen), and fermentation mode (state solid fermentation or submerged fermentation), the production can be directed for one specific color dye. This review has a main objective to present an approach of Monascus pigments as a reality to obtaining and application of natural pigments by microorganisms, as to highlight properties that makes this pigment as promising for worldwide industrial applications.
Collapse
|
13
|
Natural colorants from filamentous fungi. Appl Microbiol Biotechnol 2016; 100:2511-21. [PMID: 26780357 DOI: 10.1007/s00253-015-7274-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 02/07/2023]
Abstract
In the last years, there is a trend towards the replacement of synthetic colorants by natural ones, mainly due to the increase of consumer demand for natural products. The natural colorants are used to enhance the appearance of pharmaceutical products, food, and different materials, making them preferable or attractive. This review intends to provide and describe a comprehensive overview of the history of colorants, from prehistory to modern time, of their market and their applications, as well as of the most important aspects of the fermentation process to obtain natural colorants. Focus is given to colorants produced by filamentous fungal species, aiming to demonstrate the importance of these microorganisms and biocompounds, highlighting the production performance to get high yields and the aspects of conclusion that should be taken into consideration in future studies about natural colorants.
Collapse
|
14
|
Singh N, Goel G, Singh N, Kumar Pathak B, Kaushik D. Modeling the red pigment production by Monascus purpureus MTCC 369 by Artificial Neural Network using rice water based medium. FOOD BIOSCI 2015. [DOI: 10.1016/j.fbio.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Red pigment production by Monascus purpureus using sweet potato-based medium in submerged fermentation. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13749-015-0032-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Roles of autophagy induced by natural compounds in prostate cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:121826. [PMID: 25821782 PMCID: PMC4364006 DOI: 10.1155/2015/121826] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a homeostatic mechanism through which intracellular organelles and proteins are degraded and recycled in response to increased metabolic demand or stress. Autophagy dysfunction is often associated with many diseases, including cancer. Because of its role in tumorigenesis, autophagy can represent a new therapeutic target for cancer treatment.
Prostate cancer (PCa) is one of the most common cancers in aged men. The evidence on alterations of autophagy related genes and/or protein levels in PCa cells suggests a potential implication of autophagy in PCa onset and progression. The use of natural compounds, characterized by low toxicity to normal tissue associated with specific anticancer effects at physiological levels in vivo, is receiving increasing attention for prevention and/or treatment of PCa. Understanding the mechanism of action of these compounds could be crucial for the development of new therapeutic or chemopreventive options. In this review we focus on the current evidence showing the capacity of natural compounds to exert their action through autophagy modulation in PCa cells.
Collapse
|
17
|
Abstract
This review provides up-to-date information on the anticancer properties of Monascus-fermented products. Topics covered include clinical evidence for the anticancer potential of Monascus metabolites, bioactive Monascus components with anticancer potential, mechanisms of the anticancer effects of Monascus metabolites, and existing problems as well as future perspectives. With the advancement of related fields, the development of novel anticancer Monascus food products and/or pharmaceuticals will be possible with the ultimate goal of decreasing the incidence and mortality of malignancies in humans.
Collapse
|
18
|
Efficient gene targeting in ligase IV-deficient Monascus ruber M7 by perturbing the non-homologous end joining pathway. Fungal Biol 2014; 118:846-54. [PMID: 25209642 DOI: 10.1016/j.funbio.2014.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/06/2014] [Accepted: 07/07/2014] [Indexed: 11/21/2022]
Abstract
Inactivating the non-homologous end joining (NHEJ) pathway is a well established method to increase gene replacement frequency (GRF) in filamentous fungi because NHEJ is predominant for the repair of DNA double strand breaks (DSBs), while gene targeting is based on homologous recombination (HR). DNA ligase IV, a component of the NHEJ system, is strictly required for the NHEJ in Saccharomyces cerevisiae and Neurospora crassa. To enhance the GRF in Monascus ruber M7, we deleted the Mrlig4 gene encoding a homolog of N. crassa DNA ligase IV. The obtained mutant (MrΔlig4) showed no apparent defects in vegetative growth, colony phenotype, microscopic morphology, spore yield, and production of Monascus pigments and citrinin compared with the wild-type strain (M. ruber M7). Gene targeting of ku70 and triA genes revealed that GRF in the MrΔlig4 strain increased four-fold compared with that in the wild-type strain, reached 68 % and 85 %, respectively. Thus, the MrΔlig4 strain is a promising host for efficient genetic manipulation. In addition, the MrΔlig4 strain is more sensitive than M. ruber M7 to a DNA-damaging agent, methyl methanesulfonate.
Collapse
|
19
|
Shao Y, Lei M, Mao Z, Zhou Y, Chen F. Insights into Monascus biology at the genetic level. Appl Microbiol Biotechnol 2014; 98:3911-22. [PMID: 24633442 DOI: 10.1007/s00253-014-5608-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/10/2014] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
The genus of Monascus was nominated by van Tieghem in 1884, but its fermented product-red mold rice (RMR), namely red yeast rice, has been used as folk medicines, food colorants, and fermentation starters for more than thousands of years in oriental countries. Nowadays, RMR is widely developed as food supplements around the world due to its functional compounds such as monacolin K (MK, also called lovastatin) and γ-aminobutyric acid. But the usage of RMR also incurs controversy resulting from contamination of citrinin (a kind of mycotoxin) produced by some Monascus strains. In the past decade, it has made great progress to Monascus spp. at the genetic level with the application of molecular biology techniques to restrain the citrinin production and increase the yields of MK and pigment in RMR, as well as aid Monascus classification and phylogenesis. Up to now, hundreds of papers about Monascus molecular biology (MMB) have been published in the international primary journals. However, to our knowledge, there is no MMB review issued until now. In this review, current understanding of Monascus spp. from the view of molecular biology will be covered and insights into research areas that need to be further investigated will also be discussed.
Collapse
Affiliation(s)
- Yanchun Shao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Cloning and functional analysis of the Gβ gene Mgb1 and the Gγ gene Mgg1 in Monascus ruber. J Microbiol 2014; 52:35-43. [DOI: 10.1007/s12275-014-3072-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 07/18/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022]
|
21
|
Hong SS, Choi YH, Lee JA, Ahn EK, Suh JW, Oh JS. Two New Isoflavone Glycosides from the Extracts of the Fungus Monascus pilosus-Fermented Black Soybean. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.12.3863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Chiu HW, Chen MH, Fang WH, Hung CM, Chen YL, Wu MD, Yuan GF, Wu MJ, Wang YJ. Preventive effects of Monascus on androgen-related diseases: androgenetic alopecia, benign prostatic hyperplasia, and prostate cancer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4379-4386. [PMID: 23651036 DOI: 10.1021/jf400873w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Androgen-related diseases impair the well-being of many aging men. Unfortunately, the medications used to treat these diseases have many side effects. Therefore, there is a significant need for the development of novel drugs to treat androgen-related diseases. In this study, we investigated the effects of Monascus cursory extraction (M-CE) on androgen-related diseases, including androgenetic alopecia (AGA), benign prostatic hyperplasia (BPH) and prostate cancer. We found that M-CE suppressed baldness in male B6CBAF1/j mice. Furthermore, M-CE decreased PSA levels, indicating a protective effect of M-CE on testosterone-induced hyperplasia. M-CE also significantly decreased tumor volume and tumor incidence in an N-methyl-N-nitrosourea (MNU)/testosterone-induced rat prostate cancer model and markedly decreased dihydrotestosterone (DHT) but not testosterone. Additionally, PCNA expression was decreased in the prostate of rats treated with M-CE. These results suggest that M-CE could be a new potential therapeutic candidate for the treatment of androgen-related diseases.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Jin-Ming Gao
- Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, Department of Chemistry and Chemical Engineering, College of Science, Northwest A&F University, 3 Taicheng Road, Yangling 712100, Shaanxi, China.
| | | | | |
Collapse
|
24
|
He Y, Liu Q, Shao Y, Chen F. Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7. Appl Microbiol Biotechnol 2013; 97:4965-76. [PMID: 23546425 DOI: 10.1007/s00253-013-4851-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 03/10/2013] [Accepted: 03/11/2013] [Indexed: 01/25/2023]
Abstract
Normally, gene targeting by homologous recombination occurs rarely during a transformation process since non-homologous recombination is predominant in filamentous fungi. In our previous researches, the average gene replacement frequency (GRF) in Monascus ruber M7 was as low as 15 %. To develop a highly efficient gene targeting system for M. ruber M7, two M. ruber M7 null mutants of ku70 (MrΔku70) and ku80 (MrΔku80) were constructed which had no apparent defects in the development including vegetative growth, colony phenotype, microscopic morphology and spore yield compared with M. ruber M7. In addition, the production of some significant secondary metabolites such as pigments and citrinin had no differences between the two disruptants and the wild-type strain. Further results revealed that the GRFs of triA (encoding a putative acetyltransferase) were 42.2 % and 61.5 % in the MrΔku70 and MrΔku80 strains, respectively, while it was only about 20 % in M. ruber M7. Furthermore, GRFs of these two disruptants at other loci (the pigE, fmdS genes in MrΔku70 and the ku70 gene in MrΔku80) were investigated, and the results indicated that GRFs in the MrΔku70 strain and the MrΔku80 strain were doubled and tripled compared with that in M. ruber M7, respectively. Therefore, the ku70 and ku80 null mutants of M. ruber M7, especially the ku80-deleted strain, will be excellent hosts for efficient gene targeting.
Collapse
Affiliation(s)
- Yi He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei Province, People's Republic of China
| | | | | | | |
Collapse
|
25
|
Feng Y, Shao Y, Chen F. Monascus pigments. Appl Microbiol Biotechnol 2012; 96:1421-40. [PMID: 23104643 DOI: 10.1007/s00253-012-4504-3] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/06/2012] [Accepted: 10/08/2012] [Indexed: 01/08/2023]
Abstract
Monascus pigments (MPs) as natural food colorants have been widely utilized in food industries in the world, especially in China and Japan. Moreover, MPs possess a range of biological activities, such as anti-mutagenic and anticancer properties, antimicrobial activities, potential anti-obesity activities, and so on. So, in the past two decades, more and more attention has been paid to MPs. Up to now, more than 50 MPs have been identified and studied. However, there have been some reviews about red fermented rice and the secondary metabolites produced by Monascus, but no monograph or review of MPs has been published. This review covers the categories and structures, biosynthetic pathway, production, properties, detection methods, functions, and molecular biology of MPs.
Collapse
Affiliation(s)
- Yanli Feng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | | | | |
Collapse
|
26
|
Monascuspiloin enhances the radiation sensitivity of human prostate cancer cells by stimulating endoplasmic reticulum stress and inducing autophagy. PLoS One 2012; 7:e40462. [PMID: 22802963 PMCID: PMC3389026 DOI: 10.1371/journal.pone.0040462] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/18/2012] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer is a very common cancer among males. Traditional treatments for prostate cancer have limited efficacy; therefore, new therapeutic strategies and/or new adjuvant drugs must be explored. Red yeast rice (RYR) is a traditional food spice made in Asia by fermenting white rice with Monascus purpureus Went yeast. Accumulating evidence indicates that RYR has antitumor activity. In this study, PC-3 cells (human prostate cancer cells) were used to investigate the anti-cancer effects of ionizing radiation (IR) combined with monascuspiloin (MP, a yellow pigment isolated from Monascus pilosus M93-fermented rice) and to determine the underlying mechanisms of these effects in vitro and in vivo. We found that IR combined with MP showed increased therapeutic efficacy when compared with either treatment alone in PC-3 cells. In addition, the combined treatment enhanced DNA damage and endoplasmic reticulum (ER) stress. The combined treatment induced primarily autophagy in PC-3 cells, and the cell death that was induced by the combined treatment was chiefly the result of inhibition of the Akt/mTOR signaling pathways. In an in vivo study, the combination treatment showed greater anti-tumor growth effects. These novel findings suggest that the combined treatment could be a potential therapeutic strategy for prostate cancer.
Collapse
|