1
|
Ren H, Deng Y, Zhao D, Jin W, Xie G, Peng B, Dai H, Wang B. Structures and diversities of bacterial communities in oil-contaminated soil at shale gas well site assessed by high-throughput sequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10766-10784. [PMID: 38200199 DOI: 10.1007/s11356-023-31344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.
Collapse
Affiliation(s)
- Hongyang Ren
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, 610500, China
| | - Yuanpeng Deng
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Dan Zhao
- Exploration Division, China National Petroleum Tarim Oilfield Branch, Korla, People's Republic of China
| | - Wenhui Jin
- Sichuan Energy Investment Group Co., Ltd., Chengdu, 610041, People's Republic of China
| | - Guilin Xie
- Sichuan Changning Natural Gas Development Co., Ltd, Yibin, 644005, People's Republic of China
| | - Baoliang Peng
- Research Institute of Petroleum Exploration & Development, Beijing, 100083, China
| | - Huayan Dai
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Bing Wang
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, China.
| |
Collapse
|
2
|
Ikram M, Zahoor M, Naeem M, Islam NU, Shah AB, Shahzad B. Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Azo dyes are extremely toxic and pose significant environmental and health risks. Consequently, mineralization and conversion to simple compounds are required to avoid their hazardous effects. A variety of enzymes from the bacterial system are thought to be involved in the degradation and metabolism of azo dyes. Bioremediation, a cost effective and eco-friendly biotechnology, involving bacteria is powered by bacterial enzymes. As mentioned, several enzymes from the bacterial system serve as molecular weapons in the degradation of these dyes. Among these enzymes, azoreductase, oxidoreductase, and laccase are of great interest for the degradation and decolorization of azo dyes. Combination of the oxidative and reductive enzymes is used for the removal of azo dyes from water. The aim of this review article is to provide information on the importance of bacterial enzymes. The review also discusses the genetically modified microorganisms in the biodegradation of azo dyes in polluted water.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Naeem
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Noor Ul Islam
- Department of Chemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Plus) , Institute of Agriculture and Life Sciences, Gyeongsang National University , Jinju 52828 , Korea
| | - Babar Shahzad
- Department of Biochemistry , Institute of Basic Medical Sciences, Khyber Medical University Peshawar Khyber Pakhtunkhwa , Peshawar , Pakistan
| |
Collapse
|
3
|
Bacillus subtilis: As an Efficient Bacterial Strain for the Reclamation of Water Loaded with Textile Azo Dye, Orange II. Int J Mol Sci 2022; 23:ijms231810637. [PMID: 36142543 PMCID: PMC9505759 DOI: 10.3390/ijms231810637] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
The azo dye orange II is used extensively in the textile sector for coloring fabrics. High concentrations of it are released into aqueous environments through textile effluents. Therefore, its removal from textile wastewater and effluents is necessary. Herein, initially, we tested 11 bacterial strains for their capabilities in the degradation of orange II dye. It was revealed in the preliminary data that B. subtilis can more potently degrade the selected dye, which was thus used in the subsequent experiments. To achieve maximum decolorization, the experimental conditions were optimized whereby maximum degradation was achieved at: a 25 ppm dye concentration, pH 7, a temperature of 35 °C, a 1000 mg/L concentration of glucose, a 1000 mg/L urea concentration, a 666.66 mg/L NaCl concentration, an incubation period of 3 days, and with hydroquinone as a redox mediator at a concentration of 66.66 mg/L. The effects of the interaction of the operational factors were further confirmed using response surface methodology, which revealed that at optimum conditions of pH 6.45, a dye concentration of 17.07 mg/L, and an incubation time of 9.96 h at 45.38 °C, the maximum degradation of orange II can be obtained at a desirability coefficient of 1, estimated using the central composite design (CCD). To understand the underlying principles of degradation of the metabolites in the aliquot mixture at the optimized condition, the study steps were extracted and analyzed using GC-MS(Gas Chromatography Mass Spectrometry), FTIR(Fourier Transform Infrared Spectroscopy), 1H and carbon 13 NMR(Nuclear Magnetic Resonance Spectroscopy). The GC-MS pattern revealed that the original dye was degraded into o-xylene and naphthalene. Naphthalene was even obtained in a pure state through silica gel column isolation and confirmed using 1H and 13C NMR spectroscopic analysis. Phytotoxicity tests on Vigna radiata were also conducted and the results confirmed that the dye metabolites were less toxic than the parent dye. These results emphasize that B. subtilis should be used as a potential strain for the bioremediation of textile effluents containing orange II and other toxic azo dyes.
Collapse
|
4
|
Santal AR, Rani R, Kumar A, Sharma JK, Singh NP. Biodegradation and detoxification of textile dyes using a novel bacterium Bacillus sp. AS2 for sustainable environmental cleanup. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2113518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Ritu Rani
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anil Kumar
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | | | - Nater Pal Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
5
|
Ikram M, Naeem M, Zahoor M, Rahim A, Hanafiah MM, Oyekanmi AA, Shah AB, Mahnashi MH, Al Ali A, Jalal NA, Bantun F, Sadiq A. Biodegradation of Azo Dye Methyl Red by Pseudomonas aeruginosa: Optimization of Process Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19169962. [PMID: 36011598 PMCID: PMC9408507 DOI: 10.3390/ijerph19169962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 06/01/2023]
Abstract
Water pollution due to textile dyes is a serious threat to every life form. Bacteria can degrade and detoxify toxic dyes present in textile effluents and wastewater. The present study aimed to evaluate the degradation potential of eleven bacterial strains for azo dye methyl red. The optimum degradation efficiency was obtained using P. aeruginosa. It was found from initial screening results that P. aeruginosa is the most potent strain with 81.49% degradation activity and hence it was subsequently used in other degradation experiments. To optimize the degradation conditions, a number of experiments were conducted where only one variable was varied at a time and where maximum degradation was observed at 20 ppm dye concentration, 1666.67 mg/L glucose concentration, 666.66 mg/L sodium chloride concentration, pH 9, temperature 40 °C, 1000 mg/L urea concentration, 3 days incubation period, and 66.66 mg/L hydroquinone (redox mediator). The interactive effect of pH, incubation time, temperature, and dye concentration in a second-order quadratic optimization of process conditions was found to further enhance the biodegradation efficiency of P. aeruginosa by 88.37%. The metabolites of the aliquot mixture of the optimized conditions were analyzed using Fourier transform infrared (FTIR), GC-MS, proton, and carbon 13 Nuclear Magnetic Resonance (NMR) spectroscopic techniques. FTIR results confirmed the reduction of the azo bond of methyl red. The Gas Chromatography-Mass Spectrometry (GC-MS) results revealed that the degraded dye contains benzoic acid and o-xylene as the predominant constituents. Even benzoic acid was isolated from the silica gel column and identified by 1H and 13C NMR spectroscopy. These results indicated that P. aeruginosa can be utilized as an efficient strain for the detoxification and remediation of industrial wastewater containing methyl red and other azo dyes.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mohammad Naeem
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand at Chakdara, Chakdara 18800, Dir Lower Khyber Pakhtunkhwa, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand at Chakdara, Chakdara 18800, Dir Lower Khyber Pakhtunkhwa, Pakistan
| | - Marlia Mohd Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Adeleke Abdulrahman Oyekanmi
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor Darul Ehsan, Malaysia
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Naif A. Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Dir Lower Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
6
|
Evaluating the efficacy of bacterial consortium for decolorization of diazo dye mixture. Arch Microbiol 2022; 204:515. [PMID: 35867172 DOI: 10.1007/s00203-022-03108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
Abstract
Textile wastewater contains dyes mixed with other contaminants in various concentrations. Bacteria-mediated decolorization and degradation of azo dyes have achieved momentum as a method of treatment attributed to their inexpensive, eco-friendly, and application to a wide range of azo dyes. However, a single species of bacteria is inefficient in decolorizing diverse groups of dyes which is one of the most significant challenges for environmental technologists working in bioremediation. In the present study, an aerobic bacterial consortium AUJ consisting of six different bacterial strains (Pseudomonas stutzeri AK1, Pseudomonas stutzeri AK2, Pseudomonas stutzeri AK3, Bacillus spp. AK4, Pseudomonas stutzeri AK5, and Pseudomonas stutzeri AK6) removed the individual azo dyes in the 24-94% range when used in more than 200 ppm concentration within 72-96 h. In addition, the consortium was able to decolorize 52.19% mixed dyes (100 ppm) and 44.55% Acid blue 113 when used at a concentration as high as 1100 ppm within 96 h. Optimization of various nutritional and environmental parameters revealed that glucose and yeast extract were the preferred carbon and nitrogen source, respectively, and analysis of treated dye products using high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), and gas chromatography-mass spectrometry (GC-MS) confirmed the breakdown of dye. In all, we present a bacterial consortium with a good ability of dye decolorization that can be used for degrading a wide variety of azo dyes.
Collapse
|
7
|
Biological Degradation of the Azo Dye Basic Orange 2 by Escherichia coli: A Sustainable and Ecofriendly Approach for the Treatment of Textile Wastewater. WATER 2022. [DOI: 10.3390/w14132063] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, initially 11 different bacterial strains were tested for the degradation capabilities against Basic Orange 2 dye. In initial screening with 78.90% degradation activity, Escherichia coli emerged as the most promising strain to degrade the selected dye, and was then employed in subsequent experiments. For further enhancing the degradation capability of selected bacteria, the effects of various physicochemical parameters were also evaluated. Among the tested parameters, 20 ppm dye concentration, 1666 mg/L glucose concentration, a temperature of 40 °C, 666 mg/L sodium chloride concentration, pH 7, 1000 mg/L urea concentration, a 3-day incubation period and the use of sodium benzoate as a redox mediator (666 mg/L) were found to be ideal conditions to get the highest decolorization/degradation activities. Finally, all the mentioned parameters were combined in a single set of experiments, and the decolorization capacity of the bacteria was enhanced to 89.88%. The effect of pH, dye concentration, incubation time and temperature were found to be responsible for the optimum degradation of dye (p < 0.05), as predicted from the ANOVA (analysis of variance) of the response surface methodology. The metabolites were collected after completion of the process and characterized through Fourier transform irradiation (FTIR) and gas chromatography mass spectrometry (GC-MS). From the data obtained, a proposed mechanism was deduced where it was assumed that the azo bond of the dye was broken by the azoreductase enzyme of the bacteria, resulting in the formation of aniline and 3, 4-diaminobezeminium chloride. The aniline was then further converted to benzene by deamination by the action of the bacterial deaminase enzyme. The benzene ring, after subsequent methylation, was transformed into o-xylene, while 3, 4-diaminobezeminium chloride was converted to p-xylene by enzymatic action. These findings suggest that Escherichia coli is a capable strain to be used in the bioremediation of textile effluents containing azo dyes. However, the selected bacterial strain may need to be further investigated for other dyes as well.
Collapse
|
8
|
Dhruv Patel D, Bhatt S. Environmental pollution, toxicity profile, and physico-chemical and biotechnological approaches for treatment of textile wastewater. Biotechnol Genet Eng Rev 2022; 38:33-86. [PMID: 35297320 DOI: 10.1080/02648725.2022.2048434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Textile industries discharges a huge quantity of unused synthetic dyes in wastewater leading to increased environmental pollution and pose a great risk to human health. Thus, a significant improvement in effluent quality is required before it is discharged into the environment. Although, several physicochemical methods have been practiced for the efficient color and dyes removal from textile effluents, these approaches have some drawbacks of greater use of expensive chemicals, low sensitivity, formation of excess sludge which also have secondary disposal problem. Thus, there is still a need for energy efficient, affordable, effective, and environmentally friendly treatment technologies. Bioremediation has been considered as a promising an upcoming active field of research for the treatment of unwanted color and target compounds from the contaminated environment. In order to efficient treatment of textile effluent, the main objective of the present study was to isolate and characterize the indigenous microbial isolates from textile industry effluents and sludge samples and investigate their dye removal and decolorization ability along with the influence of various process parameters on effluents decolorization that draining into the open environment.
Collapse
Affiliation(s)
- Dhara Dhruv Patel
- Department of Life Science, Hemchandracharya North Gujarat University, Patan, India
| | - Shreyas Bhatt
- Department of Life Science, Hemchandracharya North Gujarat University, Patan, India
| |
Collapse
|
9
|
Afrin S, Shuvo HR, Sultana B, Islam F, Rus'd AA, Begum S, Hossain MN. The degradation of textile industry dyes using the effective bacterial consortium. Heliyon 2021; 7:e08102. [PMID: 34646956 PMCID: PMC8495109 DOI: 10.1016/j.heliyon.2021.e08102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/23/2021] [Accepted: 09/28/2021] [Indexed: 10/29/2022] Open
Abstract
The effluents from textile industries without proper treatment contains a remarkable amount of synthetic dyes which are harmful to the environment and a big challenge globally to degrade it with a eco-friendly way. Conventional methods are extremely energy-consuming, non-effective and generate a toxic sludge impacting the environment. Several microorganisms can be utilized to treat these effluents. The research deals with five bacteria isolated from textile effluent and their consortium for the biodegradation ability of Novacron dyes. The isolates were identified through the Biolog™ identification system and molecular technique. Biodegradation was confirmed by measuring optical density (OD) optimizing conditions (pH 7.0, temperature 37 °C, 10 % inoculums and 100 mg/L dye) under static condition. The isolates started decolourization at 24 h whereas, the consortium started decolourization at 18 h and exhibited a maximum after 72 h. The presence of low molecular weight protein as metabolite supported the biodegradation and non hazardous to environment. This study revealed that these bacteria might have degradation potentials, and research results will help to set up dye removal eco-friendly methods to expose the dye effulents to environment in future.
Collapse
Affiliation(s)
- Sadia Afrin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | | | - Banjir Sultana
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Faridul Islam
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| | - Ahmed Abu Rus'd
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka, Bangladesh
| | - Md Nur Hossain
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, 1205, Bangladesh
| |
Collapse
|
10
|
Vijayalakshmi D, Sivaprasad BV, Veera Brahmma Chari P, Reddy MK, Prasad DVR. Microbial Consortia for Effective Degradation and Decolorization of Textile Effluents. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Guo G, Tian F, Zhang L, Ding K, Yang F, Hu Z, Liu C, Sun Y, Wang S. Effect of salinity on removal performance in hydrolysis acidification reactors treating textile wastewater. BIORESOURCE TECHNOLOGY 2020; 313:123652. [PMID: 32554152 DOI: 10.1016/j.biortech.2020.123652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 05/12/2023]
Abstract
Hydrolysis acidification (HA) is a classical method for synthetic textile wastewater treatment. However, the salinity effect on the functional mechanism of the microorganisms carrying out HA has rarely been researched. In the present study, the salinity effect on the dye removal efficiency was investigated, and the soluble microbial products (SMP), extracellular polymeric substances (EPS), and microbial community were analyzed at different salinities. The dye and COD removal rates in the HA reactor decreased with increasing salinity. Volatile fatty acids (VFAs) accumulated. The remarkable increases in SMP and EPS were found at high salinity, mainly because more polysaccharides were synthesized than protein. In addition, sequencing analysis showed that high salinity altered the microbial community structure, and Lactococcus, Raoultella and Enterococcus were the decolorizing bacteria at high salinity. This work will improve the understanding of the influence of salinity on the removal efficiency and microbial community during HA.
Collapse
Affiliation(s)
- Guang Guo
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Fang Tian
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Liping Zhang
- University of Science and Technology Beijing, School of Energy and Environmental Engineering, 100083, China
| | - Keqiang Ding
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Feng Yang
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Zhixin Hu
- College of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China
| | - Chong Liu
- Chinese Academy of Agricultural Sciences, Institute of Environment and Sustainable Development in Agriculture, Beijing 100081, China
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China.
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, ShaanXi 710069, China
| |
Collapse
|
12
|
Zheng X, Xie X, Yu C, Zhang Q, Wang Y, Cong J, Liu N, He Z, Yang B, Liu J. Unveiling the activating mechanism of tea residue for boosting the biological decolorization performance of refractory dye. CHEMOSPHERE 2019; 233:110-119. [PMID: 31173951 DOI: 10.1016/j.chemosphere.2019.05.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/06/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Conventional microbial treatments are challenged by new synthetic refractory dyes. In this work, tea residue was found serving as an effective activator to boost the decolorization performance of anthraquinone dye (reactive blue 19, RB19) by a new bacterial flora DDMY2. The unfermented West Lake Longjing tea residue showed the best enhancement performance. Seventeen main kinds of components in tea residue had been selected to take separate and orthogonal experiments on decolorization of RB19 by DDMY2. Results suggested epigallocatechin gallate (EGCG) in tea residue played important roles in boosting the treatment performance. Illumina MiSeq sequencing results confirmed that EGCG and tea residue pose similar impact on the change of DDMY2 community structure. Some functional bacterial genera unclassified_o_Pseudomonadales, Stenotrophomonas and Bordetella were enriched during the treatment of RB19 by EGCG and tea residue. These evidences suggested EGCG might be the key active component in tea residue that responsible for the enhancement effect on decolorization performance. These results revealed the activating mechanism of tea residue from the perspective of composition.
Collapse
Affiliation(s)
- Xiulin Zheng
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xuehui Xie
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Chengzhi Yu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Qingyun Zhang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Yiqin Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Junhao Cong
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Na Liu
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, Anhui, 234000, China.
| | - Zhenjiang He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China.
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Jianshe Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
13
|
Agrawal K, Verma P. Biodegradation of synthetic dye Alizarin Cyanine Green by yellow laccase producing strain Stropharia sp. ITCC-8422. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101291] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Masarbo RS, Niranjana SR, Monisha TR, Nayak AS, Karegoudar TB. Efficient decolorization and detoxification of sulphonated azo dye Ponceau 4R by using single and mixed bacterial consortia. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1568414] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ramesh S. Masarbo
- Department of Biochemistry, Gulbarga University, Kalaburagi, Karnataka, India
| | - S. R. Niranjana
- Department of Biotechnology, University of Mysore, Mysuru, Karnataka, India
| | - T. R. Monisha
- Department of Biochemistry, Gulbarga University, Kalaburagi, Karnataka, India
| | - Anand S. Nayak
- Department of Biochemistry, Gulbarga University, Kalaburagi, Karnataka, India
| | - T. B. Karegoudar
- Department of Biochemistry, Gulbarga University, Kalaburagi, Karnataka, India
| |
Collapse
|
15
|
Sreedharan V, Bhaskara Rao KV. Biodegradation of Textile Azo Dyes. NANOSCIENCE AND BIOTECHNOLOGY FOR ENVIRONMENTAL APPLICATIONS 2019. [DOI: 10.1007/978-3-319-97922-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Yaseen DA, Scholz M. Treatment of synthetic textile wastewater containing dye mixtures with microcosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1980-1997. [PMID: 29110231 PMCID: PMC5766706 DOI: 10.1007/s11356-017-0633-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/26/2017] [Indexed: 06/01/2023]
Abstract
The aim was to assess the ability of microcosms (laboratory-scale shallow ponds) as a post polishing stage for the remediation of artificial textile wastewater comprising two commercial dyes (basic red 46 (BR46) and reactive blue 198 (RB198)) as a mixture. The objectives were to evaluate the impact of Lemna minor L. (common duckweed) on the water quality outflows; the elimination of dye mixtures, organic matter, and nutrients; and the impact of synthetic textile wastewater comprising dye mixtures on the L. minor plant growth. Three mixtures were prepared providing a total dye concentration of 10 mg/l. Findings showed that the planted simulated ponds possess a significant (p < 0.05) potential for improving the outflow characteristics and eliminate dyes, ammonium-nitrogen (NH4-N), and nitrate-nitrogen (NO3-N) in all mixtures compared with the corresponding unplanted ponds. The removal of mixed dyes in planted ponds was mainly due to phyto-transformation and adsorption of BR46 with complete aromatic amine mineralisation. For ponds containing 2 mg/l of RB198 and 8 mg/l of BR46, removals were around 53%, which was significantly higher than those for other mixtures: 5 mg/l of RB198 and 5 mg/l of BR46 and 8 mg/l of RB198 and 2 mg/l of BR46 achieved only 41 and 26% removals, respectively. Dye mixtures stopped the growth of L. minor, and the presence of artificial wastewater reduced their development.
Collapse
Affiliation(s)
- Dina A Yaseen
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Greater Manchester, M5 4WT, UK
| | - Miklas Scholz
- Civil Engineering Research Group, School of Computing, Science and Engineering, The University of Salford, Newton Building, Greater Manchester, M5 4WT, UK.
- Division of Water Resources Engineering, Department of Building and Environmental Technology, Faculty of Engineering, Lund University, P.O. Box 118, 22100, Lund, Sweden.
- Department of Civil Engineering Science, School of Civil Engineering and the Built Environment, University of Johannesburg, Kingsway Campus, PO Box 524, Aukland Park Johannesburg, 2006, South Africa.
| |
Collapse
|
17
|
Wang Y, Li P, Jiang Z, Sinkkonen A, Wang S, Tu J, Wei D, Dong H, Wang Y. Microbial Community of High Arsenic Groundwater in Agricultural Irrigation Area of Hetao Plain, Inner Mongolia. Front Microbiol 2016; 7:1917. [PMID: 27999565 PMCID: PMC5138239 DOI: 10.3389/fmicb.2016.01917] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 11/15/2016] [Indexed: 11/16/2022] Open
Abstract
Microbial communities can play important role in arsenic release in groundwater aquifers. To investigate the microbial communities in high arsenic groundwater aquifers in agricultural irrigation area, 17 groundwater samples with different arsenic concentrations were collected along the agricultural drainage channels of Hangjinhouqi County, Inner Mongolia and examined by illumina MiSeq sequencing approach targeting the V4 region of the 16S rRNA genes. Both principal component analysis and hierarchical clustering results indicated that these samples were divided into two groups (high and low arsenic groups) according to the variation of geochemical characteristics. Arsenic concentrations showed strongly positive correlations with NH4+ and total organic carbon (TOC). Sequencing results revealed that a total of 329–2823 operational taxonomic units (OTUs) were observed at the 97% OTU level. Microbial richness and diversity of high arsenic groundwater samples along the drainage channels were lower than those of low arsenic groundwater samples but higher than those of high arsenic groundwaters from strongly reducing areas. The microbial community structure in groundwater along the drainage channels was different from those in strongly reducing arsenic-rich aquifers of Hetao Plain and other high arsenic groundwater aquifers including Bangladesh, West Bengal, and Vietnam. Acinetobacter and Pseudomonas dominated with high percentages in both high and low arsenic groundwaters. Alishewanella, Psychrobacter, Methylotenera, and Crenothrix showed relatively high abundances in high arsenic groundwater, while Rheinheimera and the unidentified OP3 were predominant populations in low arsenic groundwater. Archaeal populations displayed a low occurrence and mainly dominated by methanogens such as Methanocorpusculum and Methanospirillum. Microbial community compositions were different between high and low arsenic groundwater samples based on the results of principal coordinate analysis and co-inertia analysis. Other geochemical variables including TOC, NH4+, oxidation-reduction potential, and Fe might also affect the microbial composition.
Collapse
Affiliation(s)
- Yanhong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Zhou Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China; School of Environmental Studies, China University of GeosciencesWuhan, China
| | - Aki Sinkkonen
- Department of Environmental Sciences, University of HelsinkiLahti, Finland; Lawrence Berkeley National Laboratory, BerkeleyCA, USA
| | - Shi Wang
- Lawrence Berkeley National Laboratory, Berkeley CA, USA
| | - Jin Tu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Dazhun Wei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences Wuhan, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China; Department of Geology and Environmental Earth Science, Miami University, OxfordOH, USA
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of GeosciencesWuhan, China; School of Environmental Studies, China University of GeosciencesWuhan, China
| |
Collapse
|
18
|
Kumari L, Tiwary D, Mishra PK. Biodegradation of C.I. Acid Red 1 by indigenous bacteria Stenotrophomonas sp. BHUSSp X2 isolated from dye contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4054-4062. [PMID: 25813637 DOI: 10.1007/s11356-015-4351-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
A significant proportion of xenobiotic recalcitrant azo dyes are being released in environment during carpet dyeing. The bacterial strain Stenotrophomonas sp. BHUSSp X2 was isolated from dye contaminated soil of carpet industry, Bhadohi, India. The isolated bacterial strain was identified morphologically, biochemically, and on the basis of 16S rRNA gene sequence. The isolate decolorized 97 % of C.I. Acid Red 1 (Acid RED G) at the concentration of 200 mg/l within 6 h under optimum static conditions (temperature -35 °C, pH 8, and initial cell concentration 7 × 10(7) cell/ml). Drastic reduction in dye degradation rate was observed beyond initial dye concentration from 500 mg/l (90 %), and it reaches to 25 % at 1000 mg/l under same set of conditions. The analysis related to decolorization and degradation was done using UV-Vis spectrophotometer, HPLC, and FTIR, whereas the GC-MS technique was utilized for the identification of degradation products. Phytotoxicity analysis revealed that degradation products are less toxic as compared to the original dye.
Collapse
Affiliation(s)
- Lata Kumari
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Dhanesh Tiwary
- Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India
| | - Pradeep Kumar Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Haghshenas H, Kay M, Dehghanian F, Tavakol H. Molecular dynamics study of biodegradation of azo dyes via their interactions with AzrC azoreductase. J Biomol Struct Dyn 2015; 34:453-62. [PMID: 26325128 DOI: 10.1080/07391102.2015.1039585] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Azo dyes are one of the most important class of dyes, which have been widely used in industries. Because of the environmental pollution of azo dyes, many studies have been performed to study their biodegradation using bacterial systems. In present work, the AzrC of mesophilic gram-positive Bacillus sp. B29 has been considered to study its interaction with five common azo dyes (orange G, acid red 88, Sudan I, orange I, and methyl red). The molecular dynamics simulations have been employed to study the interaction between AzrC and azo dyes. The trajectory was confirmed using root mean square deviation and the root mean square fluctuation analyses. Then, the hydrogen bond and alanine scanning analyses were performed to reveal active site residues. Phe105 (A), Phe125 (B), Phe172 (B), and Pro132 (B) have been found as the most important hydrophobic residues whereas Asn104 (A), Tyr127 (B), and Asn187 (A) have key role in making hydrogen bond. The results of molecular mechanics Poisson-Boltzmann surface area and molecular mechanics generalized Born surface area calculations proved that the hydrophobic azo dyes like Acid red 88 binds more tightly to the AzrC protein. The calculated data suggested MR A 121 (B) I as a potential candidate for improving the AzrC-MR interactions.
Collapse
Affiliation(s)
- Hamed Haghshenas
- a Division of Biochemistry, Faculty of Sciences, Department of Biology , Shahrekord University , Shahrekord , Iran
| | - Maryam Kay
- b Faculty of Biological Sciences, Department of Molecular Genetics , Tarbiat Modares University , Tehran , Iran
| | - Fariba Dehghanian
- c Division of Genetics, Faculty of Sciences, Department of Biology , University of Isfahan , Isfahan , Iran
| | - Hossein Tavakol
- d Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| |
Collapse
|
20
|
Charles CJ, Rout SP, Garratt EJ, Patel K, Laws AP, Humphreys PN. The enrichment of an alkaliphilic biofilm consortia capable of the anaerobic degradation of isosaccharinic acid from cellulosic materials incubated within an anthropogenic, hyperalkaline environment. FEMS Microbiol Ecol 2015. [PMID: 26195600 PMCID: PMC4629871 DOI: 10.1093/femsec/fiv085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Anthropogenic hyperalkaline sites provide an environment that is analogous to proposed cementitious geological disposal facilities (GDF) for radioactive waste. Under anoxic, alkaline conditions cellulosic wastes will hydrolyze to a range of cellulose degradation products (CDP) dominated by isosaccharinic acids (ISA). In order to investigate the potential for microbial activity in a cementitious GDF, cellulose samples were incubated in the alkaline (∼pH 12), anaerobic zone of a lime kiln waste site. Following retrieval, these samples had undergone partial alkaline hydrolysis and were colonized by a Clostridia-dominated biofilm community, where hydrogenotrophic, alkaliphilic methanogens were also present. When these samples were used to establish an alkaline CDP fed microcosm, the community shifted away from Clostridia, methanogens became undetectable and a flocculate community dominated by Alishewanella sp. established. These flocs were composed of bacteria embedded in polysaccharides and proteins stabilized by extracellular DNA. This community was able to degrade all forms of ISA with >60% of the carbon flow being channelled into extracellular polymeric substance (EPS) production. This study demonstrated that alkaliphilic microbial communities can degrade the CDP associated with some radioactive waste disposal concepts at pH 11. These communities divert significant amounts of degradable carbon to EPS formation, suggesting that EPS has a central role in the protection of these communities from hyperalkaline conditions.
Collapse
Affiliation(s)
- C J Charles
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - S P Rout
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - E J Garratt
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - K Patel
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - A P Laws
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - P N Humphreys
- Department of Biological Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| |
Collapse
|
21
|
Dehghanian F, Kay M, Kahrizi D. A novel recombinant AzrC protein proposed by molecular docking and in silico analyses to improve azo dye's binding affinity. Gene 2015; 569:233-8. [PMID: 26026905 DOI: 10.1016/j.gene.2015.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
Azo dyes are broadly used in different industries through their chemical stability and ease of synthesis. These dyes are usually identified as critical environmental pollutants and many attentions were performed to degradation of azo dyes using biological systems. In this study, the interactions of an azoreductase from mesophilic gram-positive Bacillus sp. B29, AzrC, with four common azo dyes (orange I, orange II, orange G and acid red 88) were investigated. Fifteen points, double, triple and quadruple mutant forms of AzrC were made using Molegro Virtual Docker 6.0 in order to improve the binding affinity of azo dyes to AzrC. The impact of 15 different mutations on azo dye affinity potency of AzrC was computationally analyzed using AzrC-azo dye molecular docking, and each interaction was scored based on AutoDock 4.2 free binding energy. Our results have indicated that Asn 104 (A), Asn 187 (B), and Tyr 151 (A) make stable hydrogen bond between AzrC and azo dyes. The hydrophobic amino acids like Phe105 (A), Phe 125 (B), and Phe 172 (B) in wild type form make hydrophobic interactions. In addition, the presence of more hydrophobic residues F60 (B), I119 (B), I121 (B) and F132 (B) in mutant forms made more powerful hydrophobic pocket in the active site. In conclusion, recombinant AzrC with quadruple mutations was suggested in order to increase the biodegradation capacity of AzrC through improving its affinity to four studied azo dyes. This study would be promising for future experimental analyses in order to produce recombinant form of AzrC.
Collapse
Affiliation(s)
- Fariba Dehghanian
- Division of Genetics, Biology Department, Faculty of Sciences, University of Isfahan, Isfahan, Iran.
| | - Maryam Kay
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Danial Kahrizi
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
San Keskin NO, Celebioglu A, Sarioglu OF, Ozkan AD, Uyar T, Tekinay T. Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Adv 2015. [DOI: 10.1039/c5ra15601g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bacteria have been immobilized onto a polysulfone nanofibrous web and used for the removal of reactive dye and heavy metal.
Collapse
Affiliation(s)
- Nalan Oya San Keskin
- Polatlı Science and Literature Faculty
- Biology Department
- Gazi University
- Ankara 06900
- Turkey
| | - Aslı Celebioglu
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara 06800
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Omer Faruk Sarioglu
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara 06800
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Alper Devrim Ozkan
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara 06800
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Tamer Uyar
- UNAM-National Nanotechnology Research Center
- Bilkent University
- Ankara 06800
- Turkey
- Institute of Materials Science and Nanotechnology
| | - Turgay Tekinay
- Life Sciences Application and Research Center
- Gazi University
- Ankara 06830
- Turkey
- Faculty of Medicine
| |
Collapse
|
23
|
Chaudhari AU, Tapase SR, Markad VL, Kodam KM. Simultaneous decolorization of reactive Orange M2R dye and reduction of chromate by Lysinibacillus sp. KMK-A. JOURNAL OF HAZARDOUS MATERIALS 2013; 262:580-8. [PMID: 24095998 DOI: 10.1016/j.jhazmat.2013.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/12/2013] [Accepted: 09/05/2013] [Indexed: 05/21/2023]
Abstract
Azo dyes constitute the largest and diverse group of dyes, widely used in number of industries that are contributing toward organic and inorganic load of effluent treatment. In the present study, Lysinibacillus sp. KMK-A was able to effectively decolorize Orange M2R dye up to 2000 mg l(-1) (Vmax of 19.6 mg l(-1) h(-1) and Km of 439 mg l(-1)) and reduce Cr(VI) up to 250 mg l(-1) (Vmax of 3.6 mg l(-1) h(-1) and Km 28.3 mg l(-1)). It also has an ability of simultaneous decolorization of Orange M2R dye (200-1000 mg l(-1)) with reduction of Cr(VI) (50-200 mg l(-1)). Significant reduction in total organic carbon content, chemical and biological oxygen demand along with spectroscopic and chromatographic analysis confirmed the biotransformation of Orange M2R. Involvement of enzymes namely azoreductase and chromate reductase was observed during biotransformation. The phyto and geno toxicity studies demonstrated that metabolites of dye degradation were non-toxic. Higher tolerance with simultaneous decolorization and detoxification of azo dyes in presence of Cr(VI) makes Lysinibacillus sp. KMK-A, a potential candidate for eco-friendly remediation of metal contaminated dye effluents.
Collapse
Affiliation(s)
- Ashvini U Chaudhari
- Biochemistry Division, Department of Chemistry, University of Pune, Pune 411007, India
| | | | | | | |
Collapse
|
24
|
Ottoni C, Lima L, Santos C, Lima N. Effect of different carbon sources on decolourisation of an industrial textile dye under alkaline-saline conditions. Curr Microbiol 2013; 68:53-8. [PMID: 23982200 DOI: 10.1007/s00284-013-0441-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 11/28/2022]
Abstract
White-rot fungal strains of Trametes versicolor and Phanerochaete chrysosporium were selected to study the decolourisation of the textile dye, Reactive Black 5, under alkaline-saline conditions. Free and immobilised T. versicolor cells showed 100 % decolourisation in the growth medium supplemented with 15 g l(-1) NaCl, pH 9.5 at 30 °C in liquid batch culture. Continuous culture experiments were performed in a fixed-bed reactor using free and immobilised T. versicolor cells and allowed 85-100 % dye decolourisation. The immobilisation conditions for the biomass and the additional supply of carbon sources improved the decolourisation performance during a long-term trial of 40 days. Lignin peroxidase, laccase and glyoxal oxidase activities were detected during the experiments. The laccase activity varied depending on carbon source utilized and glycerol-enhanced laccase activity compared to sucrose during extended growth.
Collapse
Affiliation(s)
- Cristiane Ottoni
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | | | | | | |
Collapse
|
25
|
Decolorization of azo dyes by marine Shewanella strains under saline conditions. Appl Microbiol Biotechnol 2012; 97:4187-97. [DOI: 10.1007/s00253-012-4216-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 10/28/2022]
|