1
|
Heneghan PG, Salzberg LI, Ó Cinnéide E, Dewald JA, Weinberg CE, Wolfe KH. Ancient origin and high diversity of zymocin-like killer toxins in the budding yeast subphylum. Proc Natl Acad Sci U S A 2025; 122:e2419860122. [PMID: 39928860 PMCID: PMC11848437 DOI: 10.1073/pnas.2419860122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/06/2024] [Indexed: 02/12/2025] Open
Abstract
Zymocin is a well-characterized killer toxin secreted by some strains of the yeast Kluyveromyces lactis. It acts by cleaving a specific tRNA in sensitive recipient cells. Zymocin is encoded by a killer plasmid or virus-like element (VLE), which is a linear DNA molecule located in the cytosol. We hypothesized that a tRNA-cleaving toxin similar to zymocin may have caused the three parallel changes to the nuclear genetic code that occurred during yeast evolution, in which the codon CUG became translated as Ser or Ala instead of Leu. However, zymocin-like toxins are rare - both among species, and among strains within a species -and only four toxins of this type have previously been discovered. Here, we identified 45 zymocin-like toxin genes in Saccharomycotina, the budding yeast subphylum, using a bioinformatics strategy, and verified that many of them are toxic to Saccharomyces cerevisiae when expressed. Some of the toxin genes are located on cytosolic VLEs, whereas others are on VLE-derived DNA integrated into the nuclear genome. The toxins are extraordinarily diverse in sequence and show evidence of positive selection. Toxin genes were found in five taxonomic orders of budding yeasts, including two of the three orders that reassigned CUG codons, indicating that VLEs have been parasites of yeast species for at least 300 My and that their existence predates the genetic code changes.
Collapse
Affiliation(s)
- Padraic G. Heneghan
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Letal I. Salzberg
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Eoin Ó Cinnéide
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| | - Jan A. Dewald
- Department of Life Sciences, Institute for Biochemistry, Leipzig University, Leipzig04103, Germany
| | - Christina E. Weinberg
- Department of Life Sciences, Institute for Biochemistry, Leipzig University, Leipzig04103, Germany
| | - Kenneth H. Wolfe
- Conway Institute, School of Medicine, University College Dublin, Dublin4, Ireland
| |
Collapse
|
2
|
Heneghan PG, Salzberg LI, Wolfe KH. Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi. Fungal Genet Biol 2025; 176:103957. [PMID: 39756571 DOI: 10.1016/j.fgb.2024.103957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina). Here, we show that the nuclear genomes of many filamentous fungi (Pezizomycotina) contain small clusters of genes coding for a zymocin-like ribonuclease (γ-toxin), a chitinase (toxin α/β-subunit), and in some cases an immunity protein. The γ-toxins from Fusarium oxysporum and Colletotrichum siamense abolished growth when expressed intracellularly in S. cerevisiae. Phylogenetic analysis of glycoside hydrolase 18 (GH18) domains shows that the chitinase genes in the gene clusters are members of the previously described C-II subgroup of Pezizomycotina chitinases. We propose that the Pezizomycotina gene clusters originated by integration of a yeast-like VLE into the nuclear genome, but this event must have been ancient because (1) phylogenetically, the Pezizomycotina C-II chitinases and the Saccharomycotina VLE-encoded toxin α/β subunit chitinases are sister clades with neither of them nested inside the other, and (2) many of the Pezizomycotina toxin cluster genes contain introns, whereas VLEs do not. One of the toxin gene clusters in Fusarium graminearum is a locus that has previously been shown to be under diversifying selection in North American populations of this plant pathogen. We also show that two genera of agaric mushrooms (Basidiomycota) have acquired toxin gene clusters by horizontal transfers from different Pezizomycotina donors.
Collapse
Affiliation(s)
- Padraic G Heneghan
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Letal I Salzberg
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Kenneth H Wolfe
- Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
3
|
Travers-Cook TJ, Jokela J, Buser CC. The evolutionary ecology of fungal killer phenotypes. Proc Biol Sci 2023; 290:20231108. [PMID: 37583325 PMCID: PMC10427833 DOI: 10.1098/rspb.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.
Collapse
Affiliation(s)
- Thomas J. Travers-Cook
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jukka Jokela
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Claudia C. Buser
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
4
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
5
|
Díaz MA, Pereyra MM, Picón-Montenegro E, Meinhardt F, Dib JR. Killer Yeasts for the Biological Control of Postharvest Fungal Crop Diseases. Microorganisms 2020; 8:microorganisms8111680. [PMID: 33138117 PMCID: PMC7693540 DOI: 10.3390/microorganisms8111680] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 01/14/2023] Open
Abstract
Every year and all over the world the fungal decay of fresh fruit and vegetables frequently generates substantial economic losses. Synthetic fungicides, traditionally used to efficiently combat the putrefactive agents, emerged, however, as the cause of environmental and human health issues. Given the need to seek for alternatives, several biological approaches were followed, among which those with killer yeasts stand out. Here, after the elaboration of the complex of problems, we explain the hitherto known yeast killer mechanisms and present the implementation of yeasts displaying such phenotype in biocontrol strategies for pre- or postharvest treatments to be aimed at combating postharvest fungal decay in numerous agricultural products.
Collapse
Affiliation(s)
- Mariana Andrea Díaz
- Planta Piloto de Procesos Industriales Microbiológicos–CONICET, Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina; (M.A.D.); (M.M.P.); (E.P.-M.)
| | - Martina María Pereyra
- Planta Piloto de Procesos Industriales Microbiológicos–CONICET, Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina; (M.A.D.); (M.M.P.); (E.P.-M.)
| | - Ernesto Picón-Montenegro
- Planta Piloto de Procesos Industriales Microbiológicos–CONICET, Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina; (M.A.D.); (M.M.P.); (E.P.-M.)
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Corrensstr. 3, 48149 Münster, Germany
- Correspondence: (F.M.); (J.R.D.); Tel.: +49-251-83-39819 (F.M.); +54-381-4344888 (J.R.D.)
| | - Julián Rafael Dib
- Planta Piloto de Procesos Industriales Microbiológicos–CONICET, Av. Belgrano y Pje. Caseros, Tucumán 4000, Argentina; (M.A.D.); (M.M.P.); (E.P.-M.)
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, Tucumán 4000, Argentina
- Correspondence: (F.M.); (J.R.D.); Tel.: +49-251-83-39819 (F.M.); +54-381-4344888 (J.R.D.)
| |
Collapse
|
6
|
Boynton PJ. The ecology of killer yeasts: Interference competition in natural habitats. Yeast 2019; 36:473-485. [PMID: 31050852 DOI: 10.1002/yea.3398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Killer yeasts are ubiquitous in the environment: They have been found in diverse habitats ranging from ocean sediment to decaying cacti to insect bodies and on all continents including Antarctica. However, environmental killer yeasts are poorly studied compared with laboratory and domesticated killer yeasts. Killer yeasts secrete so-called killer toxins that inhibit nearby sensitive yeasts, and the toxins are frequently assumed to be tools for interference competition in diverse yeast communities. The diversity and ubiquity of killer yeasts imply that interference competition is crucial for shaping yeast communities. Additionally, these toxins may have ecological functions beyond use in interference competition. This review introduces readers to killer yeasts in environmental systems, with a focus on what is and is not known about their ecology and evolution. It also explores how results from experimental killer systems in laboratories can be extended to understand how competitive strategies shape yeast communities in nature. Overall, killer yeasts are likely to occur everywhere yeasts are found, and the killer phenotype has the potential to radically shape yeast diversity in nature.
Collapse
Affiliation(s)
- Primrose J Boynton
- Max-Planck Institute for Evolutionary Biology, Environmental Genomics Group, Plön, Germany
| |
Collapse
|
7
|
Sýkora M, Pospíšek M, Novák J, Mrvová S, Krásný L, Vopálenský V. Transcription apparatus of the yeast virus-like elements: Architecture, function, and evolutionary origin. PLoS Pathog 2018; 14:e1007377. [PMID: 30346988 PMCID: PMC6211774 DOI: 10.1371/journal.ppat.1007377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/01/2018] [Accepted: 10/03/2018] [Indexed: 11/19/2022] Open
Abstract
Extrachromosomal hereditary elements such as organelles, viruses, and plasmids are important for the cell fitness and survival. Their transcription is dependent on host cellular RNA polymerase (RNAP) or intrinsic RNAP encoded by these elements. The yeast Kluyveromyces lactis contains linear cytoplasmic DNA virus-like elements (VLEs, also known as linear plasmids) that bear genes encoding putative non-canonical two-subunit RNAP. Here, we describe the architecture and identify the evolutionary origin of this transcription machinery. We show that the two RNAP subunits interact in vivo, and this complex interacts with another two VLE-encoded proteins, namely the mRNA capping enzyme and a putative helicase. RNAP, mRNA capping enzyme and the helicase also interact with VLE-specific DNA in vivo. Further, we identify a promoter sequence element that causes 5' mRNA polyadenylation of VLE-specific transcripts via RNAP slippage at the transcription initiation site, and structural elements that precede the termination sites. As a result, we present a first model of the yeast virus-like element transcription initiation and intrinsic termination. Finally, we demonstrate that VLE RNAP and its promoters display high similarity to poxviral RNAP and promoters of early poxviral genes, respectively, thereby pointing to their evolutionary origin.
Collapse
Affiliation(s)
- Michal Sýkora
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Pospíšek
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail: (MP); (VV)
| | - Josef Novák
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Silvia Mrvová
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Libor Krásný
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Václav Vopálenský
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail: (MP); (VV)
| |
Collapse
|
8
|
Yadav M, Rathore JS. TAome analysis of type-II toxin-antitoxin system from Xenorhabdus nematophila. Comput Biol Chem 2018; 76:293-301. [DOI: 10.1016/j.compbiolchem.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/23/2018] [Accepted: 07/07/2018] [Indexed: 12/23/2022]
|
9
|
Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nat Commun 2018; 9:1887. [PMID: 29760453 PMCID: PMC5951914 DOI: 10.1038/s41467-018-04374-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/12/2018] [Indexed: 11/08/2022] Open
Abstract
The genetic code used in nuclear genes is almost universal, but here we report that it changed three times in parallel during the evolution of budding yeasts. All three changes were reassignments of the codon CUG, which is translated as serine (in 2 yeast clades), alanine (1 clade), or the ‘universal’ leucine (2 clades). The newly discovered Ser2 clade is in the final stages of a genetic code transition. Most species in this clade have genes for both a novel tRNASer(CAG) and an ancestral tRNALeu(CAG) to read CUG, but only tRNASer(CAG) is used in standard growth conditions. The coexistence of these alloacceptor tRNA genes indicates that the genetic code transition occurred via an ambiguous translation phase. We propose that the three parallel reassignments of CUG were not driven by natural selection in favor of their effects on the proteome, but by selection to eliminate the ancestral tRNALeu(CAG). The genetic code for amino acids is nearly universal, and among eukaryotic nuclear genomes the only known reassignments are of codon CUG in yeasts. Here, the authors identify a third independent CUG transition in budding yeasts that is still ongoing with alternative tRNAs present in the genome.
Collapse
|
10
|
Mehlgarten C, Prochaska H, Hammermeister A, Abdel-Fattah W, Wagner M, Krutyhołowa R, Jun SE, Kim GT, Glatt S, Breunig KD, Stark MJR, Schaffrath R. Use of a Yeast tRNase Killer Toxin to Diagnose Kti12 Motifs Required for tRNA Modification by Elongator. Toxins (Basel) 2017; 9:E272. [PMID: 28872616 PMCID: PMC5618205 DOI: 10.3390/toxins9090272] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 01/23/2023] Open
Abstract
Saccharomyces cerevisiae cells are killed by zymocin, a tRNase ribotoxin complex from Kluyveromyces lactis, which cleaves anticodons and inhibits protein synthesis. Zymocin's action requires specific chemical modification of uridine bases in the anticodon wobble position (U34) by the Elongator complex (Elp1-Elp6). Hence, loss of anticodon modification in mutants lacking Elongator or related KTI (K. lactis Toxin Insensitive) genes protects against tRNA cleavage and confers resistance to the toxin. Here, we show that zymocin can be used as a tool to genetically analyse KTI12, a gene previously shown to code for an Elongator partner protein. From a kti12 mutant pool of zymocin survivors, we identify motifs in Kti12 that are functionally directly coupled to Elongator activity. In addition, shared requirement of U34 modifications for nonsense and missense tRNA suppression (SUP4; SOE1) strongly suggests that Kti12 and Elongator cooperate to assure proper tRNA functioning. We show that the Kti12 motifs are conserved in plant ortholog DRL1/ELO4 from Arabidopsis thaliana and seem to be involved in binding of cofactors (e.g., nucleotides, calmodulin). Elongator interaction defects triggered by mutations in these motifs correlate with phenotypes typical for loss of U34 modification. Thus, tRNA modification by Elongator appears to require physical contact with Kti12, and our preliminary data suggest that metabolic signals may affect proper communication between them.
Collapse
Affiliation(s)
- Constance Mehlgarten
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Heike Prochaska
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Alexander Hammermeister
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Wael Abdel-Fattah
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| | - Melanie Wagner
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Rościsław Krutyhołowa
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
| | - Sang Eun Jun
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, Korea.
| | - Gyung-Tae Kim
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, Korea.
| | - Sebastian Glatt
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, 31-007 Krakow, Poland.
| | - Karin D Breunig
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
| | - Michael J R Stark
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Raffael Schaffrath
- Institut für Biologie, Martin Luther Universität Halle-Wittenberg, Weinbergweg 10, 06120 Halle/Saale, Germany.
- Institut für Biologie, FG Mikrobiologie, Universität Kassel, Heirich-Plett-Str. 40, 34132 Kassel, Germany.
| |
Collapse
|
11
|
Belda I, Ruiz J, Alonso A, Marquina D, Santos A. The Biology of Pichia membranifaciens Killer Toxins. Toxins (Basel) 2017; 9:toxins9040112. [PMID: 28333108 PMCID: PMC5408186 DOI: 10.3390/toxins9040112] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/07/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
The killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of Saccharomyces cerevisiae capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in Pichia membranifaciens for several years, during which two toxins have been described. PMKT and PMKT2 are proteins of low molecular mass that bind to primary receptors located in the cell wall structure of sensitive yeast cells, linear (1→6)-β-d-glucans and mannoproteins for PMKT and PMKT2, respectively. Cwp2p also acts as a secondary receptor for PMKT. Killing of sensitive cells by PMKT is characterized by ionic movements across plasma membrane and an acidification of the intracellular pH triggering an activation of the High Osmolarity Glycerol (HOG) pathway. On the contrary, our investigations showed a mechanism of killing in which cells are arrested at an early S-phase by high concentrations of PMKT2. However, we concluded that induced mortality at low PMKT2 doses and also PMKT is indeed of an apoptotic nature. Killer yeasts and their toxins have found potential applications in several fields: in food and beverage production, as biocontrol agents, in yeast bio-typing, and as novel antimycotic agents. Accordingly, several applications have been found for P. membranifaciens killer toxins, ranging from pre- and post-harvest biocontrol of plant pathogens to applications during wine fermentation and ageing (inhibition of Botrytis cinerea, Brettanomyces bruxellensis, etc.).
Collapse
Affiliation(s)
- Ignacio Belda
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Javier Ruiz
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Alejandro Alonso
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Domingo Marquina
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Antonio Santos
- Department of Microbiology, Biology Faculty, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
13
|
Cross-Talk between Dnmt2-Dependent tRNA Methylation and Queuosine Modification. Biomolecules 2017; 7:biom7010014. [PMID: 28208632 PMCID: PMC5372726 DOI: 10.3390/biom7010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Enzymes of the Dnmt2 family of methyltransferases have yielded a number of unexpected discoveries. The first surprise came more than ten years ago when it was realized that, rather than being DNA methyltransferases, Dnmt2 enzymes actually are transfer RNA (tRNA) methyltransferases for cytosine-5 methylation, foremost C38 (m5C38) of tRNAAsp. The second unanticipated finding was our recent discovery of a nutritional regulation of Dnmt2 in the fission yeast Schizosaccharomyces pombe. Significantly, the presence of the nucleotide queuosine in tRNAAsp strongly stimulates Dnmt2 activity both in vivo and in vitro in S. pombe. Queuine, the respective base, is a hypermodified guanine analog that is synthesized from guanosine-5’-triphosphate (GTP) by bacteria. Interestingly, most eukaryotes have queuosine in their tRNA. However, they cannot synthesize it themselves, but rather salvage it from food or from gut microbes. The queuine obtained from these sources comes from the breakdown of tRNAs, where the queuine ultimately was synthesized by bacteria. Queuine thus has been termed a micronutrient. This review summarizes the current knowledge of Dnmt2 methylation and queuosine modification with respect to translation as well as the organismal consequences of the absence of these modifications. Models for the functional cooperation between these modifications and its wider implications are discussed.
Collapse
|
14
|
Wemhoff S, Klassen R, Beetz A, Meinhardt F. DNA Damage Responses Are Induced by tRNA Anticodon Nucleases and Hygromycin B. PLoS One 2016; 11:e0157611. [PMID: 27472060 PMCID: PMC4966947 DOI: 10.1371/journal.pone.0157611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/01/2016] [Indexed: 12/26/2022] Open
Abstract
Previous studies revealed DNA damage to occur during the toxic action of PaT, a fungal anticodon ribonuclease (ACNase) targeting the translation machinery via tRNA cleavage. Here, we demonstrate that other translational stressors induce DNA damage-like responses in yeast as well: not only zymocin, another ACNase from the dairy yeast Kluyveromyces lactis, but also translational antibiotics, most pronouncedly hygromycin B (HygB). Specifically, DNA repair mechanisms BER (base excision repair), HR (homologous recombination) and PRR (post replication repair) provided protection, whereas NHEJ (non-homologous end-joining) aggravated toxicity of all translational inhibitors. Analysis of specific BER mutants disclosed a strong HygB, zymocin and PaT protective effect of the endonucleases acting on apurinic sites. In cells defective in AP endonucleases, inactivation of the DNA glycosylase Ung1 increased tolerance to ACNases and HygB. In addition, Mag1 specifically contributes to the repair of DNA lesions caused by HygB. Consistent with DNA damage provoked by translation inhibitors, mutation frequencies were elevated upon exposure to both fungal ACNases and HygB. Since polymerase ζ contributed to toxicity in all instances, error-prone lesion-bypass probably accounts for the mutagenic effects. The finding that differently acting inhibitors of protein biosynthesis induce alike cellular responses in DNA repair mutants is novel and suggests the dependency of genome stability on translational fidelity.
Collapse
Affiliation(s)
- Sabrina Wemhoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Roland Klassen
- Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | - Anja Beetz
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- * E-mail:
| |
Collapse
|
15
|
Abstract
Toxin-antitoxin (TA) systems are small genetic modules formed by a stable toxin and an unstable antitoxin that are widely present in plasmids and in chromosomes of Bacteria and Archaea. Toxins can interfere with cell growth or viability, targeting a variety of key processes. Antitoxin inhibits expression of the toxin, interacts with it, and neutralizes its effect. In a plasmid context, toxins are kept silent by the continuous synthesis of the unstable antitoxins; in plasmid-free cells (segregants), toxins can be activated owing to the faster decay of the antitoxin, and this results in the elimination of these cells from the population (postsegregational killing [PSK]) and in an increase of plasmid-containing cells in a growing culture. Chromosomal TA systems can also be activated in particular circumstances, and the interference with cell growth and viability that ensues contributes in different ways to the physiology of the cell. In this article, we review the conditional activation of TAs in selected plasmidic and chromosomal TA pairs and the implications of this activation. On the whole, the analysis underscores TA interactions involved in PSK and points to the effective contribution of TA systems to the physiology of the cell.
Collapse
|
16
|
Wemhoff S, Klassen R, Meinhardt F. DNA damage induced by the anticodon nuclease from a Pichia acaciae killer strain is linked to ribonucleotide reductase depletion. Cell Microbiol 2015; 18:211-22. [PMID: 26247322 DOI: 10.1111/cmi.12496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 11/30/2022]
Abstract
Virus like element (VLE) encoded killer toxins of Pichia acaciae and Kluyveromyces lactis kill target cells through anticodon nuclease (ACNase) activity directed against tRNA(Gln) and tRNA(Glu) respectively. Not only does tRNA cleavage disable translation, it also affects DNA integrity as well. Consistent with DNA damage, which is involved in toxicity, target cells' mutation frequencies are elevated upon ACNase exposure, suggesting a link between translational integrity and genome surveillance. Here, we analysed whether ACNase action impedes the periodically and highly expressed S-phase specific ribonucleotide reductase (RNR) and proved that RNR expression is severely affected by PaT. Because RNR catalyses the rate-limiting step in dNTP synthesis, mutants affected in dNTP synthesis were scrutinized with respect to ACNase action. Mutations elevating cellular dNTPs antagonized the action of both the above ACNases, whereas mutations lowering dNTPs aggravated toxicity. Consistently, prevention of tRNA cleavage in elp3 or trm9 mutants, which both affect the wobble uridine modification of the target tRNA, suppressed the toxin hypersensitivity of a dNTP synthesis mutant. Moreover, dNTP synthesis defects exacerbated the PaT ACNase sensitivity of cells defective in homologous recombination, proving that dNTP depletion is responsible for subsequent DNA damage.
Collapse
Affiliation(s)
- Sabrina Wemhoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Roland Klassen
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| |
Collapse
|
17
|
Dib JR, Wagenknecht M, Farías ME, Meinhardt F. Strategies and approaches in plasmidome studies-uncovering plasmid diversity disregarding of linear elements? Front Microbiol 2015; 6:463. [PMID: 26074886 PMCID: PMC4443254 DOI: 10.3389/fmicb.2015.00463] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
The term plasmid was originally coined for circular, extrachromosomal genetic elements. Today, plasmids are widely recognized not only as important factors facilitating genome restructuring but also as vehicles for the dissemination of beneficial characters within bacterial communities. Plasmid diversity has been uncovered by means of culture-dependent or -independent approaches, such as endogenous or exogenous plasmid isolation as well as PCR-based detection or transposon-aided capture, respectively. High-throughput-sequencing made possible to cover total plasmid populations in a given environment, i.e., the plasmidome, and allowed to address the quality and significance of self-replicating genetic elements. Since such efforts were and still are rather restricted to circular molecules, here we put equal emphasis on the linear plasmids which—despite their frequent occurrence in a large number of bacteria—are largely neglected in prevalent plasmidome conceptions.
Collapse
Affiliation(s)
- Julián R Dib
- Planta Piloto de Procesos Industriales Microbiológicos-Consejo Nacional de Investigaciones Científicas y Técnicas , Tucumán, Argentina ; Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany ; Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán , Tucumán, Argentina
| | - Martin Wagenknecht
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany ; Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster , Münster, Germany
| | - María E Farías
- Planta Piloto de Procesos Industriales Microbiológicos-Consejo Nacional de Investigaciones Científicas y Técnicas , Tucumán, Argentina
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster , Münster, Germany
| |
Collapse
|
18
|
Kast A, Voges R, Schroth M, Schaffrath R, Klassen R, Meinhardt F. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression. PLoS Genet 2015; 11:e1005005. [PMID: 25973601 PMCID: PMC4431711 DOI: 10.1371/journal.pgen.1005005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/14/2015] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle. The rather wide-spread and extremely A/T rich yeast virus like elements (VLEs, also termed linear plasmids) which encode toxic anticodon nucleases (ACNases) ensure autoselection in the cytoplasm by preventing functional nuclear capture of the cognate immunity genes, but how? When expressed in the nucleus, the mRNA of the VLE immunity genes is split into fragments to which poly(A) tails are added. Consistently, lowering the A/T content by gene synthesis prevented transcript cleavage and permitted functional nuclear expression providing full immunity against the respective ACNase toxin. Thus, internal poly(A) cleavage is likely to prevent functional nuclear immunity gene expression.
Collapse
Affiliation(s)
- Alene Kast
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Raphael Voges
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Michael Schroth
- Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
| | | | - Roland Klassen
- Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany
- * E-mail: (RK); (FM)
| | - Friedhelm Meinhardt
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- * E-mail: (RK); (FM)
| |
Collapse
|
19
|
Site-directed mutagenesis of the heterotrimeric killer toxin zymocin identifies residues required for early steps in toxin action. Appl Environ Microbiol 2014; 80:6549-59. [PMID: 25128337 DOI: 10.1128/aem.02197-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zymocin is a Kluyveromyces lactis protein toxin composed of αβγ subunits encoded by the cytoplasmic virus-like element k1 and functions by αβ-assisted delivery of the anticodon nuclease (ACNase) γ into target cells. The toxin binds to cells' chitin and exhibits chitinase activity in vitro that might be important during γ import. Saccharomyces cerevisiae strains carrying k1-derived hybrid elements deficient in either αβ (k1ORF2) or γ (k1ORF4) were generated. Loss of either gene abrogates toxicity, and unexpectedly, Orf2 secretion depends on Orf4 cosecretion. Functional zymocin assembly can be restored by nuclear expression of k1ORF2 or k1ORF4, providing an opportunity to conduct site-directed mutagenesis of holozymocin. Complementation required active site residues of α's chitinase domain and the sole cysteine residue of β (Cys250). Since βγ are reportedly disulfide linked, the requirement for the conserved γ C231 was probed. Toxicity of intracellularly expressed γ C231A indicated no major defect in ACNase activity, while complementation of k1ΔORF4 by γ C231A was lost, consistent with a role of β C250 and γ C231 in zymocin assembly. To test the capability of αβ to carry alternative cargos, the heterologous ACNase from Pichia acaciae (P. acaciae Orf2 [PaOrf2]) was expressed, along with its immunity gene, in k1ΔORF4. While efficient secretion of PaOrf2 was detected, suppression of the k1ΔORF4-derived k1Orf2 secretion defect was not observed. Thus, the dependency of k1Orf2 on k1Orf4 cosecretion needs to be overcome prior to studying αβ's capability to deliver other cargo proteins into target cells.
Collapse
|
20
|
Structure, mechanism, and specificity of a eukaryal tRNA restriction enzyme involved in self-nonself discrimination. Cell Rep 2014; 7:339-347. [PMID: 24726365 DOI: 10.1016/j.celrep.2014.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 11/22/2022] Open
Abstract
tRNA restriction by anticodon nucleases underlies cellular stress responses and self-nonself discrimination in a wide range of taxa. Anticodon breakage inhibits protein synthesis, which, in turn, results in growth arrest or cell death. The eukaryal ribotoxin PaT secreted by Pichia acaciae inhibits growth of Saccharomyces cerevisiae via cleavage of tRNA(Gln(UUG)). We find that recombinant PaT incises a synthetic tRNA(Gln(UUG)) stem-loop RNA by transesterification at a single site 3' of the wobble uridine, yielding 2',3'-cyclic phosphate and 5'-OH ends. Incision is suppressed by replacement of the wobble nucleobase with adenine or guanine. The crystal structure of PaT reveals a distinctive fold and active site, essential components of which are demonstrated by mutagenesis. Pichia acaciae evades self-toxicity via a distinctive intracellular immunity protein, ImmPaT, which binds PaT and blocks nuclease activity. Our results highlight the evolutionary diversity of tRNA restriction and immunity systems.
Collapse
|
21
|
Immunity factors for two related tRNAGln targeting killer toxins distinguish cognate and non-cognate toxic subunits. Curr Genet 2014; 60:213-22. [DOI: 10.1007/s00294-014-0426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
|
22
|
Kast A, Klassen R, Meinhardt F. rRNA fragmentation induced by a yeast killer toxin. Mol Microbiol 2014; 91:606-17. [PMID: 24308908 DOI: 10.1111/mmi.12481] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 11/27/2022]
Abstract
Virus like dsDNA elements (VLE) in yeast were previously shown to encode the killer toxins PaT and zymocin, which target distinct tRNA species via specific anticodon nuclease (ACNase) activities. Here, we characterize a third member of the VLE-encoded toxins, PiT from Pichia inositovora, and identify PiOrf4 as the cytotoxic subunit by conditional expression in Saccharomyces cerevisiae. In contrast to the tRNA targeting toxins, however, neither a change of the wobble uridine modification status by introduction of elp3 or trm9 mutations nor tRNA overexpression rescued from PiOrf4 toxicity. Consistent with a distinct RNA target, expression of PiOrf4 causes specific fragmentation of the 25S and 18S rRNA. A stable cleavage product comprising the first ∼ 130 nucleotides of the 18S rRNA was purified and characterized by linker ligation and subsequent reverse transcription; 3'-termini were mapped to nucleotide 131 and 132 of the 18S rRNA sequence, a region showing some similarity to the anticodon loop of tRNA(Glu)(UUC), the zymocin target. PiOrf4 residues Glu9 and His214, corresponding to catalytic sites Glu9 and His209 in the ACNase subunit of zymocin are essential for in vivo toxicity and rRNA fragmentation, raising the possibility of functionally conserved RNase modules in both proteins.
Collapse
Affiliation(s)
- Alene Kast
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstr. 3, D-48149, Münster, Germany
| | | | | |
Collapse
|
23
|
Schuster CF, Bertram R. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol Lett 2013; 340:73-85. [DOI: 10.1111/1574-6968.12074] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 12/24/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022] Open
Affiliation(s)
- Christopher F. Schuster
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Lehrbereich Mikrobielle Genetik; Eberhard Karls Universität Tübingen; Waldhäuser Str. 70/8; Tübingen; Germany
| | - Ralph Bertram
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin; Lehrbereich Mikrobielle Genetik; Eberhard Karls Universität Tübingen; Waldhäuser Str. 70/8; Tübingen; Germany
| |
Collapse
|
24
|
Muccilli S, Wemhoff S, Restuccia C, Meinhardt F. Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Yeast 2012; 30:33-43. [PMID: 23148020 DOI: 10.1002/yea.2935] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 10/08/2012] [Indexed: 11/08/2022] Open
Abstract
Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains.
Collapse
Affiliation(s)
- Serena Muccilli
- DISPA, Sezione di Tecnologia e Microbiologia degli Alimenti, University of Catania, Italy
| | | | | | | |
Collapse
|
25
|
Dib JR, Liebl W, Wagenknecht M, Farías ME, Meinhardt F. Extrachromosomal genetic elements in Micrococcus. Appl Microbiol Biotechnol 2012; 97:63-75. [PMID: 23138713 DOI: 10.1007/s00253-012-4539-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/22/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.
Collapse
Affiliation(s)
- Julián Rafael Dib
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Av. Belgrano y Pje. Caseros, 4000, Tucumán, Argentina
| | | | | | | | | |
Collapse
|