1
|
Ariano K, Schweiger P. Determining the functional role of the Gluconobacter oxydans GOX1969 protein as a BamB homolog. Microbiol Spectr 2024; 12:e0106024. [PMID: 38916353 PMCID: PMC11302035 DOI: 10.1128/spectrum.01060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Acetic acid bacteria are used in many industrial processes such as the production of vinegar, vitamin C, the antidiabetic drug miglitol, and various artificial flavorings. These industrially important reactions are primarily carried out by an arsenal of periplasmic-facing membrane-bound dehydrogenases that incompletely oxidize their substrates and shuttle electrons directly into the respiratory chain. Among these dehydrogenases, GOX1969 in Gluconobacter oxydans was predicted to be a pyrroloquinoline quinone-dependent dehydrogenase of unknown function. However, after multiple analysis by a number of labs, no dehydrogenase activity has been detected. Reanalysis of GOX1969 sequence and structure reveals similarities to Escherichia coli BamB, which functions as a subunit of the β-barrel assembly machinery complex that is responsible for the assembly of β-barrel outer membrane proteins in Gram-negative bacteria. To test if the physiological function of GOX1969 is similar to BamB in E. coli, we introduced the gox1969 gene into an E. coli ∆bamB mutant. Growth deficiencies in the ∆bamB mutant were restored when gox1969 was expressed on the plasmid pGox1969. Furthermore, increased membrane permeability conferred by bamB deletion was restored upon gox1969 expression, which suggests a direct link between GOX1969 and a role in maintaining outer membrane stability. Together, this evidence strongly suggests that GOX1969 is functionally acting as a BamB in G. oxydans. As such, functional information on uncharacterized genes will provide new insights that will allow for more accurate modeling of acetic acid bacterial metabolism and further efforts to design rational strains for industrial use.IMPORTANCEGluconobacter oxydans is an industrially important member of the acetic acid bacteria. Experimental characterization of putative genes is necessary to identify targets for further engineering of rational acetic acid bacteria strains that can be used in the production of vitamin C, antidiabetic compounds, artificial flavorings, or novel compounds. In this study, we have identified an undefined dehydrogenase GOX1969 with no known substrate and defined structural similarities to outer membrane biogenesis protein BamB in E. coli K12. Furthermore, we demonstrate that GOX1969 is capable of complementing bamB knockout phenotypes in E. coli K12. Taken together, these findings enhance our understanding of G. oxydans physiology and expand the list of potential targets for future industrial strain design.
Collapse
Affiliation(s)
- Ky Ariano
- Department of Microbiology, University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA
| | - Paul Schweiger
- Department of Microbiology, University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
2
|
Kataoka N. Ketogluconate production by Gluconobacter strains: enzymes and biotechnological applications. Biosci Biotechnol Biochem 2024; 88:499-508. [PMID: 38323387 DOI: 10.1093/bbb/zbae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Gluconobacter strains perform incomplete oxidation of various sugars and alcohols, employing regio- and stereoselective membrane-bound dehydrogenases oriented toward the periplasmic space. This oxidative fermentation process is utilized industrially. The ketogluconate production pathway, characteristic of these strains, begins with the conversion of d-glucose to d-gluconate, which then diverges and splits into 2 pathways producing 5-keto-d-gluconate and 2-keto-d-gluconate and subsequently 2,5-diketo-d-gluconate. These transformations are facilitated by membrane-bound d-glucose dehydrogenase, glycerol dehydrogenase, d-gluconate dehydrogenase, and 2-keto-d-gluconate dehydrogenase. The variance in end products across Gluconobacter strains stems from the diversity of enzymes and their activities. This review synthesizes biochemical and genetic knowledge with biotechnological applications, highlighting recent advances in metabolic engineering and the development of an efficient production process focusing on enzymes relevant to the ketogluconate production pathway in Gluconobacter strains.
Collapse
Affiliation(s)
- Naoya Kataoka
- Organization for Research Initiatives, Yamaguchi University, Yamaguchi, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Li F, Wang CY, Wu YC, Zhang MY, Wang YJ, Zhou XY, Zhang YX. Enhancing the biosynthesis of 2-keto-L-gulonic acid through multi-strategy metabolic engineering in Pseudomonas putida KT2440. BIORESOURCE TECHNOLOGY 2024; 392:130014. [PMID: 37956951 DOI: 10.1016/j.biortech.2023.130014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
2-KGA, a precursor for the synthesis of Vitamin C, is currently produced in China utilizing the "two-step fermentation" technique. Nevertheless, this method exhibits many inherent constraints. This study presents a comprehensive metabolic engineering strategy to establish and optimize a one-step 2-KGA fermentation process from D-sorbitol in Pseudomonas putida KT2440. In general, the endogenous promoters were screened to identify promoter P1 for subsequent heterologous gene expression in KT2440. Following the screening and confirmation of suitable heterologous gene elements such as sldh, sdh, cytc551, pqqAB, and irrE, genetic recombination was performed in KT2440. In comparison to the initial achievement of expressing only sldh and sdh in KT2440, a yield of merely 0.42 g/L was obtained. However, by implementing four metabolic engineering strategies, the recombinant strain KT20 exhibited a significant enhancement in its ability to produce 2-KGA with a remarkable yield of up to 6.5 g/L - representing an impressive 15.48-fold improvement.
Collapse
Affiliation(s)
- Fan Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying-Cai Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yi-Jin Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xun-Yong Zhou
- Sinobiotech (Shenzhen) Limited Company, Shenzhen 518001, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
4
|
Krüsemann JL, Rainaldi V, Cotton CA, Claassens NJ, Lindner SN. The cofactor challenge in synthetic methylotrophy: bioengineering and industrial applications. Curr Opin Biotechnol 2023; 82:102953. [PMID: 37320962 DOI: 10.1016/j.copbio.2023.102953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023]
Abstract
Methanol is a promising feedstock for industrial bioproduction: it can be produced renewably and has high solubility and limited microbial toxicity. One of the key challenges for its bio-industrial application is the first enzymatic oxidation step to formaldehyde. This reaction is catalysed by methanol dehydrogenases (MDH) that can use NAD+, O2 or pyrroloquinoline quinone (PQQ) as an electron acceptor. While NAD-dependent MDH are simple to express and have the highest energetic efficiency, they exhibit mediocre kinetics and poor thermodynamics at ambient temperatures. O2-dependent methanol oxidases require high oxygen concentrations, do not conserve energy and thus produce excessive heat as well as toxic H2O2. PQQ-dependent MDH provide a good compromise between energy efficiency and good kinetics that support fast growth rates without any drawbacks for process engineering. Therefore, we argue that this enzyme class represents a promising solution for industry and outline engineering strategies for the implementation of these complex systems in heterologous hosts.
Collapse
Affiliation(s)
- Jan L Krüsemann
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany; Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Vittorio Rainaldi
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steffen N Lindner
- Charité - Universitätsmedizin Berlin, Department of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
5
|
Jiang W, Dai L, Tan X, Zhou X, Xu Y. Screening of Gluconobacter oxydans in xylonic acid fermentation for tolerance of the inhibitors formed dilute acid pretreatment. Bioprocess Biosyst Eng 2023; 46:589-597. [PMID: 36670301 DOI: 10.1007/s00449-023-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Pre-hydrolysate liquor, as an inevitable by-product, contains a large amount of xylose, and is therefore an inexpensive feedstock that can be upgraded to value-added chemical xylonic acid. However, inhibitors, simultaneously formed in lignocellulose pretreatment process, are regarded as the major obstacle for effectively bio-converting xylose in pre-hydrolysate into xylonic acid. In this study, Gluconobacter oxydans, with highly selective and efficient, was employed for xylonic acid production; the impacts of five typical toxic inhibitory compounds on xylonic acid productivity and the activity of the membrane-bound dehydrogenase were evaluated. The results revealed that the inhibitors showed different degrees of influence toward xylonic acid production, and the order of inhibitory effect for acidic inhibitors was formic acid > acetic acid > levulinic acid; the inhibitory effect of aldehyde inhibitors was furfural > 5-hydroxymethyl-furfural. This study provides an important basis of metabolic modification and detoxification process for enhancing inhibitor tolerance and xylonic acid productivity.
Collapse
Affiliation(s)
- Wenfei Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Lin Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Xin Tan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 24100, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China. .,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
6
|
Low pH Stress Enhances Gluconic Acid Accumulation with Enzymatic Hydrolysate as Feedstock Using Gluconobacter oxydans. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Gluconic acid has been increasingly in demand in recent years due to the wide applications in the food, healthcare and construction industries. Plant-derived biomass is rich in biopolymers that comprise glucose as the monomeric unit, which provide abundant feedstock for gluconic acid production. Gluconobacter oxydans can rapidly and incompletely oxidize glucose to gluconic acid and it is regarded as ideal industrial microorganism. Once glucose is depleted, the gluconic acid will be further bio-oxidized to 2-ketogluconic acid by Gluconobacter oxydans. The endpoint is difficult to be controlled, especially in an industrial fermentation process. In this study, it was found that the low pH environment (2.5~3.5) could limit the further metabolism of gluconic acid and that it resulted in a yield over 95%. Therefore, the low pH stress strategy for efficiently producing gluconic acid from biomass-derived glucose was put forward and investigated with enzymatic hydrolysate. As a result, 98.8 g/L gluconic acid with a yield of 96% could be obtained from concentrated corncob enzymatic hydrolysate that initially contained 100 g/L glucose with 1.4 g/L cells loading of Gluconobacter oxydans. In addition, the low pH stress strategy could effectively control end-point and decrease the risk of microbial contamination. Overall, this strategy provides a potential for industrial gluconic acid production from lignocellulosic materials.
Collapse
|
7
|
Fedina V, Lavrova D, Dyachkova T, Pasko A, Zvonarev A, Panfilov V, Ponamoreva O, Alferov S. Polymer-Based Conductive Nanocomposites for the Development of Bioanodes Using Membrane-Bound Enzyme Systems of Bacteria Gluconobacter oxydans in Biofuel Cells. Polymers (Basel) 2023; 15:1296. [PMID: 36904536 PMCID: PMC10007125 DOI: 10.3390/polym15051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The development of biofuel cells (BFCs) currently has high potential since these devices can be used as alternative energy sources. This work studies promising materials for biomaterial immobilization in bioelectrochemical devices based on a comparative analysis of the energy characteristics (generated potential, internal resistance, power) of biofuel cells. Bioanodes are formed by the immobilization of membrane-bound enzyme systems of Gluconobacter oxydans VKM V-1280 bacteria containing pyrroloquinolinquinone-dependent dehydrogenases into hydrogels of polymer-based composites with carbon nanotubes. Natural and synthetic polymers are used as matrices, and multi-walled carbon nanotubes oxidized in hydrogen peroxide vapor (MWCNTox) are used as fillers. The intensity ratio of two characteristic peaks associated with the presence of atoms C in the sp3 and sp2 hybridization for the pristine and oxidized materials is 0.933 and 0.766, respectively. This proves a reduced degree of MWCNTox defectiveness compared to the pristine nanotubes. MWCNTox in the bioanode composites significantly improve the energy characteristics of the BFCs. Chitosan hydrogel in composition with MWCNTox is the most promising material for biocatalyst immobilization for the development of bioelectrochemical systems. The maximum power density was 1.39 × 10-5 W/mm2, which is 2 times higher than the power of BFCs based on other polymer nanocomposites.
Collapse
Affiliation(s)
- Veronika Fedina
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
| | - Daria Lavrova
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Tatyana Dyachkova
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106/5, Building 2, Sovetskaya Str., 392000 Tambov, Russia
| | - Anastasia Pasko
- Department of Technology and Methods of Nanoproducts Manufacturing, Tambov State Technical University, 106/5, Building 2, Sovetskaya Str., 392000 Tambov, Russia
| | - Anton Zvonarev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Centre of Biological Research”, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Victor Panfilov
- Department of Biotechnology, Mendeleev University of Chemical Technology of Russia, Miusskaya Square 9, Moscow 125047, Russia
| | - Olga Ponamoreva
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Sergey Alferov
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| |
Collapse
|
8
|
Xu Y, Ji L, Xu S, Bilal M, Ehrenreich A, Deng Z, Cheng H. Membrane-bound sorbitol dehydrogenase is responsible for the unique oxidation of D-galactitol to L-xylo-3-hexulose and D-tagatose in Gluconobacter oxydans. Biochim Biophys Acta Gen Subj 2023; 1867:130289. [PMID: 36503080 DOI: 10.1016/j.bbagen.2022.130289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/27/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gluconobacter oxydans, is used in biotechnology because of its ability to oxidize a wide variety of carbohydrates, alcohols, and polyols in a stereo- and regio-selective manner by membrane-bound dehydrogenases located in periplasmic space. These reactions obey the well-known Bertrand-Hudson's rule. In our previous study (BBA-General Subjects, 2021, 1865:129740), we discovered that Gluconobacter species, including G. oxydans and G. cerinus strain can regio-selectively oxidize the C-3 and C-5 hydroxyl groups of D-galactitol to rare sugars D-tagatose and L-xylo-3-hexulose, which represents an exception to Bertrand Hudson's rule. The enzyme catalyzing this reaction is located in periplasmic space or membrane-bound and is PQQ (pyrroloquinoline quinine) and Ca2+-dependent; we were encouraged to determine which type of enzyme(s) catalyze this unique reaction. METHODS Enzyme was identified by complementation of multi-deletion strain of Gluconobacter oxydans 621H with all putative membrane-bound dehydrogenase genes. RESULTS AND CONCLUSIONS In this study, we identified this gene encoding the membrane-bound PQQ-dependent dehydrogenase that catalyzes the unique galactitol oxidation reaction in its 3'-OH and 5'-OH. Complement experiments in multi-deletion G. oxydans BP.9 strains established that the enzyme mSLDH (encoded by GOX0855-0854, sldB-sldA) is responsible for galactitol's unique oxidation reaction. Additionally, we demonstrated that the small subunit SldB of mSLDH was membrane-bound and served as an anchor protein by fusing it to a red fluorescent protein (mRubby), and heterologously expressed in E. coli and the yeast Yarrowia lipolytica. The SldB subunit was required to maintain the holo-enzymatic activity that catalyzes the conversion of D-galactitol to L-xylo-3-hexulose and D-tagatose. The large subunit SldA encoded by GOX0854 was also characterized, and it was discovered that its 24 amino acids signal peptide is required for the dehydrogenation activity of the mSLDH protein. GENERAL SIGNIFICANCE In this study, the main membrane-bound polyol dehydrogenase mSLDH in G. oxydans 621H was proved to catalyze the unique galactitol oxidation, which represents an exception to the Bertrand Hudson's rule, and broadens its substrate ranges of mSLDH. Further deciphering the explicit enzymatic mechanism will prove this theory.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liyun Ji
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60695 Poznan, Poland.
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Strasse, Freising, Germany.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
9
|
Fricke PM, Gries ML, Mürköster M, Höninger M, Gätgens J, Bott M, Polen T. The l-rhamnose-dependent regulator RhaS and its target promoters from Escherichia coli expand the genetic toolkit for regulatable gene expression in the acetic acid bacterium Gluconobacter oxydans. Front Microbiol 2022; 13:981767. [PMID: 36060754 PMCID: PMC9429829 DOI: 10.3389/fmicb.2022.981767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
For regulatable target gene expression in the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first plasmids became available. These systems solely enable AraC- and TetR-dependent induction. In this study we showed that the l-rhamnose-dependent regulator RhaS from Escherichia coli and its target promoters PrhaBAD, PrhaT, and PrhaSR could also be used in G. oxydans for regulatable target gene expression. Interestingly, in contrast to the responsiveness in E. coli, in G. oxydans RhaS increased the expression from PrhaBAD in the absence of l-rhamnose and repressed PrhaBAD in the presence of l-rhamnose. Inserting an additional RhaS binding site directly downstream from the −10 region generating promoter variant PrhaBAD(+RhaS-BS) almost doubled the apparent RhaS-dependent promoter strength. Plasmid-based PrhaBAD and PrhaBAD(+RhaS-BS) activity could be reduced up to 90% by RhaS and l-rhamnose, while a genomic copy of PrhaBAD(+RhaS-BS) appeared fully repressed. The RhaS-dependent repression was largely tunable by l-rhamnose concentrations between 0% and only 0.3% (w/v). The RhaS-PrhaBAD and the RhaS-PrhaBAD(+RhaS-BS) systems represent the first heterologous repressible expression systems for G. oxydans. In contrast to PrhaBAD, the E. coli promoter PrhaT was almost inactive in the absence of RhaS. In the presence of RhaS, the PrhaT activity in the absence of l-rhamnose was weak, but could be induced up to 10-fold by addition of l-rhamnose, resulting in a moderate expression level. Therefore, the RhaS-PrhaT system could be suitable for tunable low-level expression of difficult enzymes or membrane proteins in G. oxydans. The insertion of an additional RhaS binding site directly downstream from the E. coli PrhaT −10 region increased the non-induced expression strength and reversed the regulation by RhaS and l-rhamnose from inducible to repressible. The PrhaSR promoter appeared to be positively auto-regulated by RhaS and this activation was increased by l-rhamnose. In summary, the interplay of the l-rhamnose-binding RhaS transcriptional regulator from E. coli with its target promoters PrhaBAD, PrhaT, PrhaSR and variants thereof provide new opportunities for regulatable gene expression in G. oxydans and possibly also for simultaneous l-rhamnose-triggered repression and activation of target genes, which is a highly interesting possibility in metabolic engineering approaches requiring redirection of carbon fluxes.
Collapse
|
10
|
Hua X, Zhang C, Han J, Xu Y. pH regulatory divergent point for the selective bio-oxidation of primary diols during resting cell catalysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:73. [PMID: 35773746 PMCID: PMC9248139 DOI: 10.1186/s13068-022-02171-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022]
Abstract
Background Hydroxyl acid is an important platform chemical that covers many industrial applications due to its dual functional modules. At present, the traditional technology for hydroxyl acid production mainly adopts the petroleum route with benzene, cyclohexane, butadiene and other non-renewable resources as raw materials which violates the development law of green chemistry. Conversely, it is well-known that biotechnology and bioengineering techniques possess several advantages over chemical methods, such as moderate reaction conditions, high chemical selectivity, and environmental-friendly. However, compared with chemical engineering, there are still some major obstacles in the industrial application of biotechnology. The critical issue of the competitiveness between bioengineering and chemical engineering is products titer and volume productivity. Therefore, based on the importance of hydroxyl acids in many fields, exploring a clean, practical and environmental-friendly preparation process of the hydroxyl acids is the core purpose of this study. Results To obtain high-purity hydroxyl acid, a microbiological regulation for its bioproduction by Gluconobacter oxydans was constructed. In the study, we found a critical point of chain length determine the end-products. Gluconobacter oxydans catalyzed diols with chain length ≤ 4, forming hydroxyl acids, and converting 1,5-pentylene glycol and 1,6-hexylene glycol to diacids. Based on this principle, we successfully synthesized 75.3 g/L glycolic acid, 83.2 g/L 3-hydroxypropionic acid, and 94.3 g/L 4-hydroxybutyric acid within 48 h. Furthermore, we directionally controlled the products of C5/C6 diols by adjusting pH, resulting in 102.3 g/L 5‑hydroxyvaleric acid and 48.8 g/L 6-hydroxycaproic acid instead of diacids. Combining pH regulation and cell-recycling technology in sealed-oxygen supply bioreactor, we prepared 271.4 g 5‑hydroxyvaleric acid and 129.4 g 6-hydroxycaproic acid in 6 rounds. Conclusions In this study, a green scheme of employing G. oxydans as biocatalyst for superior-quality hydroxyl acids (C2–C6) production is raised up. The proposed strategy commendably demonstrated a novel technology with simple pH regulation for high-value production of hydroxyl acids via green bioprocess developments. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02171-5.
Collapse
Affiliation(s)
- Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - ChenHui Zhang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China.,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037, People's Republic of China. .,Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China. .,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
11
|
Liu L, Chen Y, Yu S, Chen J, Zhou J. Enhanced production of l-sorbose by systematic engineering of dehydrogenases in Gluconobacter oxydans. Synth Syst Biotechnol 2022; 7:730-737. [PMID: 35356389 PMCID: PMC8927921 DOI: 10.1016/j.synbio.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/10/2022] Open
Abstract
l-Sorbose is an essential intermediate for the industrial production of vitamin C (l-ascorbic acid). However, the formation of fructose and some unknown by-products significantly reduces the conversion ratio of D-sorbitol to l-sorbose. This study aimed to identify the key D-sorbitol dehydrogenases in Gluconobacter oxydans WSH-003 by gene knockout. Then, a total of 38 dehydrogenases were knocked out in G. oxydans WSH-003, and 23 dehydrogenase-deficient strains could increase l-sorbose production. G. oxydans-30, wherein a pyrroloquinoline quinone-dependent glucose dehydrogenase was deleted, showed a significant reduction of a by-product with the extension of fermentation time. In addition, the highest conversion ratio of 99.60% was achieved in G. oxydans MD-16, in which 16 different types of dehydrogenases were inactivated consecutively. Finally, the gene vhb encoding hemoglobin was introduced into the strain. The titer of l-sorbose was 298.61 g/L in a 5-L bioreactor. The results showed that the systematic engineering of dehydrogenase could significantly enhance the production of l-sorbose.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yue Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
12
|
Dai L, Jiang W, Jia R, Zhou X, Xu Y. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2022; 348:126811. [PMID: 35131459 DOI: 10.1016/j.biortech.2022.126811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
An acetic acid-mediated bio-oxidation strategy with Gluconobacter oxydans was developed to produce valuable 2-ketogluconic acid from lignocellulosic biomass. Metabolically, glucose is firstly oxidized to gluconic acid and further oxidized to 2-keto-gluconic acid by Gluconobacter oxydans. As a specific inhibitor for microbial fermentation generated from pretreatment, acetic acid was validated to have a down-regulated effect on bio-oxidizing glucose to gluconic acid. Nevertheless, it significantly facilitated 2-keto-gluconic acid accumulation and improved gluconate dehydrogenase activity. In the presence of 5.0 g/L acetic acid, the yield of 2-keto-gluconic acid increased from 38.0% to 80.5% using pure glucose as feedstock with 1.5 g/L cell loading. Meanwhile, 44.6 g/L 2-keto-gluconic acid with a yield of 83.5% was also achieved from the enzymatic hydrolysate. 2-keto-gluconic acid production, found in this study, laid a theoretical foundation for the industrial production of 2-keto-gluconic acid by Gluconobacter oxydans using lignocellulosic materials.
Collapse
Affiliation(s)
- Lin Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Wenfei Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Runqian Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| |
Collapse
|
13
|
Hua X, Liu X, Han J, Xu Y. Reinforcing sorbitol bio-oxidative conversion with Gluconobacter oxydans whole-cell catalysis by acetate-assistance. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Yang H, Chen T, Wang M, Zhou J, Liebl W, Barja F, Chen F. Molecular biology: Fantastic toolkits to improve knowledge and application of acetic acid bacteria. Biotechnol Adv 2022; 58:107911. [PMID: 35033586 DOI: 10.1016/j.biotechadv.2022.107911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/27/2021] [Accepted: 01/09/2022] [Indexed: 12/24/2022]
Abstract
Acetic acid bacteria (AAB) are a group of gram-negative, obligate aerobic bacteria within the Acetobacteraceae family of the alphaproteobacteria class, which are distributed in a wide variety of different natural sources that are rich in sugar and alcohols, as well as in several traditionally fermented foods. Their capabilities are not limited to the production of acetic acid and the brewing of vinegar, as their names suggest. They can also fix nitrogen and produce various kinds of aldehydes, ketones and other organic acids by incomplete oxidation (also referred to as oxidative fermentation) of the corresponding alcohols and/or sugars, as well as pigments and exopolysaccharides (EPS). In order to gain more insight into these organisms, molecular biology techniques have been extensively applied in almost all aspects of AAB research, including their identification and classification, acid resistance mechanisms, oxidative fermentation, EPS production, thermotolerance and so on. In this review, we mainly focus on the application of molecular biological technologies in the advancement of research into AAB while presenting the progress of the latest studies using these techniques.
Collapse
Affiliation(s)
- Haoran Yang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Tao Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science &Technology, Tianjin, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
| | | | - François Barja
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Sciences III, Geneva, Switzerland
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| |
Collapse
|
15
|
Wohlers K, Wirtz A, Reiter A, Oldiges M, Baumgart M, Bott M. Metabolic engineering of Pseudomonas putida for production of the natural sweetener 5-ketofructose from fructose or sucrose by periplasmic oxidation with a heterologous fructose dehydrogenase. Microb Biotechnol 2021; 14:2592-2604. [PMID: 34437751 PMCID: PMC8601194 DOI: 10.1111/1751-7915.13913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
5-Ketofructose (5-KF) is a promising low-calorie natural sweetener with the potential to reduce health problems caused by excessive sugar consumption. It is formed by periplasmic oxidation of fructose by fructose dehydrogenase (Fdh) of Gluconobacter japonicus, a membrane-bound three-subunit enzyme containing FAD and three haemes c as prosthetic groups. This study aimed at establishing Pseudomonas putida KT2440 as a new cell factory for 5-KF production, as this host offers a number of advantages compared with the established host Gluconobacter oxydans. Genomic expression of the fdhSCL genes from G. japonicus enabled synthesis of functional Fdh in P. putida and successful oxidation of fructose to 5-KF. In a batch fermentation, 129 g l-1 5-KF were formed from 150 g l-1 fructose within 23 h, corresponding to a space-time yield of 5.6 g l-1 h-1 . Besides fructose, also sucrose could be used as substrate for 5-KF production by plasmid-based expression of the invertase gene inv1417 from G. japonicus. In a bioreactor cultivation with pulsed sucrose feeding, 144 g 5-KF were produced from 358 g sucrose within 48 h. These results demonstrate that P. putida is an attractive host for 5-KF production.
Collapse
Affiliation(s)
- Karen Wohlers
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Astrid Wirtz
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Alexander Reiter
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52062Germany
| | - Marco Oldiges
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52062Germany
| | - Meike Baumgart
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
| | - Michael Bott
- IBG‐1: BiotechnologyInstitute of Bio‐ and GeosciencesForschungszentrum JülichJülich52425Germany
- The Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülichD‐52425Germany
| |
Collapse
|
16
|
Mukhtar S, Farooq M, Baig DN, Amin I, Lazarovits G, Malik KA, Yuan ZC, Mehnaz S. Whole genome analysis of Gluconacetobacter azotocaptans DS1 and its beneficial effects on plant growth. 3 Biotech 2021; 11:450. [PMID: 34631351 DOI: 10.1007/s13205-021-02996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
Plant-associated bacteria play an important role in the enhancement of plant growth and productivity. Gluconacetobacter azotocaptans is an exceptional bacterium considering that till today it has been isolated and reported only from Mexico and Canada. It is a plant growth-promoting bacterium and can be used as biofertilizer for different crops and vegetables. The objective of the current study was to evaluate the inoculation effect of Gluconacetobacter azotocaptans DS1, Pseudomonas putida CQ179, Azosprillium zeae N7, Azosprillium brasilense N8, and Azosprillium canadense DS2, on the growth of vegetables including cucumber, sweet pepper, radish, and tomato. All strains increased the vegetables' growth; however, G. azotocaptans DS1 showed better results as compared to other inoculated and control plants and significantly increased the plant biomass of all vegetables. Therefore, the whole genome sequence of G. azotocaptans DS1 was analyzed to predict genes involved in plant growth promotion, secondary metabolism, antibiotics resistance, and bioremediation of heavy metals. Results of genome analysis revealed that G. azotocaptans DS1 has a circular chromosome with a size of 4.3 Mbp and total 3898 protein-coding sequences. Based on functional analysis, genes for nitrogen fixation, phosphate solubilization, indole acetic acid, phenazine, siderophore production, antibiotic resistance, and bioremediation of heavy metals including copper, zinc, cobalt, and cadmium were identified. Collectively, our findings indicated that G. azotocaptans DS1 can be used as a biofertilizer and biocontrol agent for growth enhancement of different crops and vegetables. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02996-1.
Collapse
Affiliation(s)
- Salma Mukhtar
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Muhammad Farooq
- Division of Agricultural Biotechnology, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - Deeba Noreen Baig
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Imran Amin
- Division of Agricultural Biotechnology, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, Faisalabad, Pakistan
| | - George Lazarovits
- A & L Biologicals, Agroecology Research Services Centre, London, ON N5V 3P5 Canada
| | - Kauser Abdulla Malik
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Ze-Chun Yuan
- Agriculture and Agri Food Canada, London, ON Canada
| | - Samina Mehnaz
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
17
|
Zhang C, Chen Q, Fan F, Tang J, Zhan T, Wang H, Zhang X. Directed evolution of alditol oxidase for the production of optically pure D-glycerate from glycerol in the engineered Escherichia coli. J Ind Microbiol Biotechnol 2021; 48:6312499. [PMID: 34196357 PMCID: PMC8788829 DOI: 10.1093/jimb/kuab041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
D-glycerate is an attractive chemical for a wide variety of pharmaceutical, cosmetic, biodegradable polymers, and other applications. Now several studies have been reported about the synthesis of glycerate by different biotechnological and chemical routes from glycerol or other feedstock. Here, we present the construction of an Escherichia coli engineered strain to produce optically pure D-glycerate by oxidizing glycerol with an evolved variant of alditol oxidase (AldO) from Streptomyces coelicolor. This is achieved by starting from a previously reported variant mAldO and employing three rounds of directed evolution, as well as the combination of growth-coupled high throughput selection with colorimetric screening. The variant eAldO3-24 displays a higher substrate affinity toward glycerol with 5.23-fold than the wild-type AldO, and a 1.85-fold increase of catalytic efficiency (kcat/KM). Then we introduced an isopropyl-β-D-thiogalactopyranoside (IPTG)-inducible T7 expression system in E. coli to overexpress the variant eAldO3-24, and deleted glucosylglycerate phosphorylase encoding gene ycjM to block the consumption of D-glycerate. Finally, the resulting strain TZ-170 produced 30.1 g/l D-glycerate at 70 h with a yield of 0.376 mol/mol in 5-l fed-batch fermentation.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China.,College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Qian Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Feiyu Fan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Jinlei Tang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Tao Zhan
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| | - Honglei Wang
- College of Chemistry and Life Science, Changchun University of Technology, Jilin, Changchun 130012, China
| | - Xueli Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xiqidao, Tianjin Airport Economic Park, Tianjin 300308, China
| |
Collapse
|
18
|
Nguyen TM, Naoki K, Kataoka N, Matsutani M, Ano Y, Adachi O, Matsushita K, Yakushi T. Characterization of a cryptic, pyrroloquinoline quinone-dependent dehydrogenase of Gluconobacter sp. strain CHM43. Biosci Biotechnol Biochem 2021; 85:998-1004. [PMID: 33686415 DOI: 10.1093/bbb/zbab005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/25/2020] [Indexed: 11/13/2022]
Abstract
We characterized the pyrroloquinoline quinone (PQQ)-dependent dehydrogenase 9 (PQQ-DH9) of Gluconobacter sp. strain CHM43, which is a homolog of PQQ-dependent glycerol dehydrogenase (GLDH). We used a plasmid construct to express PQQ-DH9. The expression host was a derivative strain of CHM43, which lacked the genes for GLDH and the membrane-bound alcohol dehydrogenase and consequently had minimal ability to oxidize primary and secondary alcohols. The membranes of the transformant exhibited considerable d-arabitol dehydrogenase activity, whereas the reference strain did not, even if it had PQQ-DH9-encoding genes in the chromosome and harbored the empty vector. This suggests that PQQ-DH9 is not expressed in the genome. The activities of the membranes containing PQQ-DH9 and GLDH suggested that similar to GLDH, PQQ-DH9 oxidized a wide variety of secondary alcohols but had higher Michaelis constants than GLDH with regard to linear substrates such as glycerol. Cyclic substrates such as cis-1,2-cyclohexanediol were readily oxidized by PQQ-DH9.
Collapse
Affiliation(s)
- Thuy Minh Nguyen
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kotone Naoki
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Naoya Kataoka
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Minenosuke Matsutani
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshitaka Ano
- Graduate School of Agriculture, Ehime University, Matsuyama, Japan
| | - Osao Adachi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Kazunobu Matsushita
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
19
|
Miah R, Nina S, Murate T, Kataoka N, Matsutani M, Matsushita K, Yakushi T. Major aldehyde dehydrogenase AldFGH of Gluconacetobacter diazotrophicus is independent of pyrroloquinoline quinone but dependent on molybdopterin for acetic acid fermentation. Appl Microbiol Biotechnol 2021; 105:2341-2350. [PMID: 33591385 DOI: 10.1007/s00253-021-11144-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/26/2021] [Indexed: 11/28/2022]
Abstract
Acetic acid fermentation involves the oxidation of ethanol to acetic acid via acetaldehyde as the intermediate and is catalyzed by the membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) of acetic acid bacteria. Although ADH depends on pyrroloquinoline quinone (PQQ), the prosthetic group associated with ALDH remains a matter of debate. This study aimed to address the dependency of ALDH of Gluconacetobacter diazotrophicus strain PAL5 on PQQ and the physiological role of ALDH in acetic acid fermentation. We constructed deletion mutant strains for both the ALDH gene clusters of PAL5, aldFGH and aldSLC. In addition, the adhAB operon for ADH was eliminated, since it shows ALDH activity. The triple-deletion derivative ΔaldFGH ΔaldSLC ΔadhAB failed to show ALDH activity, which suggested that ALDH activity in PAL5 is derived from these three enzyme complexes. Since the single-gene cluster deletion derivative ΔaldFGH lost most ALDH activity, and accumulated much higher acetaldehyde than wild type under acetic acid fermentation conditions, we concluded that AldFGH functions as the major ALDH in PAL5. Furthermore, deletion of the PQQ biosynthesis gene cluster (pqqABCDE) abolished ADH activity completely, but did not affect ALDH activity. Instead, the molybdopterin biosynthesis gene deletion derivatives lost ALDH activity. Thus, we concluded that the AldFGH and AldSLC complexes of Ga. diazotrophicus PAL5 require a form of molybdopterin but not PQQ for ALDH activity. KEY POINTS: • AldFGH is the major aldehyde dehydrogenase in Gluconacetobacter diazotrophicus PAL5. • Acetaldehyde accumulated from ethanol in the absence of AldFGH. • Molybdopterin, rather than pyrroloquinoline quinone, is required for AldFGH.
Collapse
Affiliation(s)
- Roni Miah
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Shun Nina
- Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Takeru Murate
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Naoya Kataoka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Minenosuke Matsutani
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Kazunobu Matsushita
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan.,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Toshiharu Yakushi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan. .,Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
20
|
Fricke PM, Link T, Gätgens J, Sonntag C, Otto M, Bott M, Polen T. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans. Appl Microbiol Biotechnol 2020; 104:9267-9282. [PMID: 32974745 PMCID: PMC7567684 DOI: 10.1007/s00253-020-10905-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023]
Abstract
Abstract The acetic acid bacterium (AAB) Gluconobacter oxydans incompletely oxidizes a wide variety of carbohydrates and is therefore used industrially for oxidative biotransformations. For G. oxydans, no system was available that allows regulatable plasmid-based expression. We found that the l-arabinose-inducible PBAD promoter and the transcriptional regulator AraC from Escherichia coli MC4100 performed very well in G. oxydans. The respective pBBR1-based plasmids showed very low basal expression of the reporters β-glucuronidase and mNeonGreen, up to 480-fold induction with 1% l-arabinose, and tunability from 0.1 to 1% l-arabinose. In G. oxydans 621H, l-arabinose was oxidized by the membrane-bound glucose dehydrogenase, which is absent in the multi-deletion strain BP.6. Nevertheless, AraC-PBAD performed similar in both strains in the exponential phase, indicating that a gene knockout is not required for application of AraC-PBAD in wild-type G. oxydans strains. However, the oxidation product arabinonic acid strongly contributed to the acidification of the growth medium in 621H cultures during the stationary phase, which resulted in drastically decreased reporter activities in 621H (pH 3.3) but not in BP.6 cultures (pH 4.4). These activities could be strongly increased quickly solely by incubating stationary cells in d-mannitol-free medium adjusted to pH 6, indicating that the reporters were hardly degraded yet rather became inactive. In a pH-controlled bioreactor, these reporter activities remained high in the stationary phase (pH 6). Finally, we created a multiple cloning vector with araC-PBAD based on pBBR1MCS-5. Together, we demonstrated superior functionality and good tunability of an AraC-PBAD system in G. oxydans that could possibly also be used in other AAB. Key points • We found the AraC-PBADsystem from E. coli MC4100 was well tunable in G. oxydans. • In the absence of AraC orl-arabinose, expression from PBADwas extremely low. • This araC-PBADsystem could also be fully functional in other acetic acid bacteria. Electronic supplementary material The online version of this article (10.1007/s00253-020-10905-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tobias Link
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jochem Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christiane Sonntag
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Maike Otto
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
21
|
Xu Y, Chi P, Lv J, Bilal M, Cheng H. L-Xylo-3-hexulose, a new rare sugar produced by the action of acetic acid bacteria on galactitol, an exception to Bertrand Hudson's rule. Biochim Biophys Acta Gen Subj 2020; 1865:129740. [PMID: 32956752 DOI: 10.1016/j.bbagen.2020.129740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND In acetic acid bacteria such as Gluconobacter oxydans or Gluconobacter cerinus, pyrroloquinoline quinone (PQQ) in the periplasm serves as the redox cofactor for several membrane-bound dehydrogenases that oxidize polyhydric alcohols to rare sugars, which can be used as a healthy alternative for traditional sugars and sweeteners. These oxidation reactions obey the generally accepted Bertrand Hudson's rule, in which only the polyhydric alcohols that possess cis d-erythro hydroxyl groups can be oxidized to 2-ketoses using PQQ as a cofactor, while the polyhydric alcohols excluding cis d-erythro hydroxyl groups ruled out oxidation by PQQ-dependent membrane-bound dehydrogenases. METHODS Membrane fractions of G. oxydans were prepared and used as a cell-free catalyst to oxidize galactitol, with or without PQQ as a cofactor. RESULTS In this study, we reported an interesting oxidation reaction that the polyhydric alcohols galactitol (dulcitol), which do not possess cis d-erythro hydroxyl groups, can be oxidized by PQQ-dependent membrane-bound dehydrogenase(s) of acetic acid bacteria at the C-3 and C-5 hydroxyl groups to produce rare sugars l-xylo-3-hexulose and d-tagatose. CONCLUSIONS This reaction may represent an exception to Bertrand Hudson's rule. GENERAL SIGNIFICANCE Bertrand Hudson's rule is a well-known theory in polyhydric alcohols oxidation by PQQ-dependent membrane-bound dehydrogenase in acetic acid bacteria. In this study, galactitol oxidation by a PQQ-dependent membrane-bound dehydrogenase represents an exception to the Bertrand Hudson's rule. Further identification of the associated enzymes and deciphering the explicit enzymatic mechanism will prove this theory.
Collapse
Affiliation(s)
- Yirong Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Chi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiyang Lv
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Jiangsu, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Liu D, Ke X, Hu ZC, Zheng YG. Combinational expression of D-sorbitol dehydrogenase and pyrroloquinoline quinone increases 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production by Gluconobacter oxydans through cofactor manipulation. Enzyme Microb Technol 2020; 141:109670. [PMID: 33051020 DOI: 10.1016/j.enzmictec.2020.109670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
Abstract
6-(N-hydroxyethyl)-amino-6-deoxy-l-sorbofuranose (6NSL), a key precursor in the synthesis of miglitol, is produced from N-2-hydroxyethyl-glucamine (NHEG) by the regioselective oxidation of Gluconobacter oxydans. The limitation of PQQ biosynthesis became a bottleneck for improvement of PQQ-dependent D-sorbitol dehydrogenase (mSLDH) activity. Five expression plasmids were constructed for the co-expression of the pqqABCDE gene cluster and the tldD gene on the basis of pBBR1-gHp0169-sldAB in G. oxydans to increase the biosynthesis of PQQ. The G. oxydans/pGA004, in which pqqABCDE and tldD were expressed as a cluster under the control of gHp0169 promoter, showed the optimal performance. The intracellular PQQ concentration and specific activity of mSLDH in cells increased by 79.3 % and 53.7 %, respectively, compared to that in G. oxydans/pBBR-sldAB. Then, the repeated batch biotransformation of NHEG to 6NSL by G. oxydans/pGA004 was carried out. Up to 75.0 ± 3.0 g/L of 6NSL production with 94.5 ± 3.6 % of average conversion rate of NHEG to 6NSL was achieved after four cycles of run. These results indicated that G. oxydans/pGA004 with high productivity had great potential for 6NSL production in industrial bioprocess.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| |
Collapse
|
23
|
Breeding of Gluconobacter oxydans with high PQQ-dependent D-sorbitol dehydrogenase for improvement of 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose production. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Kiryu T, Kiso T, Sato H, Murakami H. Oxidation of isomaltose, gentiobiose, and melibiose by membrane-bound quinoprotein glucose dehydrogenase from acetic acid bacteria. Biosci Biotechnol Biochem 2019; 84:507-517. [PMID: 31718466 DOI: 10.1080/09168451.2019.1689095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Membrane-bound quinoprotein glucose dehydrogenase from acetic acid bacteria produces lactobionic acid by the oxidation of lactose. Its enzymatic activity on lactose and maltose is much lower than that on D-glucose. For that reason, the activity of the enzyme on disaccharides has been considered low. In this study, we show that the isomaltose-oxidizing activity of acetic acid bacteria is much higher than their lactose-oxidizing activity. In addition to isomaltose, the enzyme oxidized gentiobiose and melibiose to the same extent. According to the characteristics of the isomaltose-oxidizing activity and investigations using dehydrogenase-deficient mutant bacteria, we identified the responsible enzyme as membrane-bound quinoprotein glucose dehydrogenase.Abbreviations: AAB: acetic acid bacteria; m-GDH: membrane-bound quinoprotein glucose dehydrogenase; DCIP: 2,6-dichlorophenolindophenol; DP: degree of polymerization; HPAEC-PAD: high-performance anion-exchange chromatography with pulsed amperometric detection; NMR: nuclear magnetic resonance; TLC: thin layer chromatography; COSY: correlation spectroscopy.
Collapse
Affiliation(s)
- Takaaki Kiryu
- Osaka Research Institute of Industrial Science and Technology, Biomaterials and Commodity Chemicals Research Division, Osaka, Japan
| | - Taro Kiso
- Osaka Research Institute of Industrial Science and Technology, Biomaterials and Commodity Chemicals Research Division, Osaka, Japan
| | - Hirofumi Sato
- Osaka Research Institute of Industrial Science and Technology, Biomaterials and Commodity Chemicals Research Division, Osaka, Japan
| | - Hiromi Murakami
- Osaka Research Institute of Industrial Science and Technology, Biomaterials and Commodity Chemicals Research Division, Osaka, Japan
| |
Collapse
|
25
|
Liu L, Zeng W, Du G, Chen J, Zhou J. Identification of NAD-Dependent Xylitol Dehydrogenase from Gluconobacter oxydans WSH-003. ACS OMEGA 2019; 4:15074-15080. [PMID: 31552350 PMCID: PMC6751703 DOI: 10.1021/acsomega.9b01867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/20/2019] [Indexed: 05/08/2023]
Abstract
Gluconobacter oxydans plays an important role in the conversion of d-sorbitol to l-sorbose, which is an essential intermediate for the industrial-scale production of vitamin C. In the fermentation process, some d-sorbitol could be converted to d-fructose and other byproducts by uncertain dehydrogenases. Genome sequencing has revealed the presence of diverse genes encoding dehydrogenases in G. oxydans. However, the characteristics of most of these dehydrogenases remain unclear. Therefore, the analyses of these unknown dehydrogenases could be useful for identifying those related to the production of d-fructose and other byproducts. Accordingly, dehydrogenases in G. oxydans WSH-003, an industrial strain used for vitamin C production, were examined. A nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase, which was annotated as xylitol dehydrogenase 2, was identified, codon-optimized, and expressed in Escherichia coli BL21 (DE3) cells. The enzyme exhibited a high preference for NAD+ as the cofactor, while no activity with nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide, or pyrroloquinoline quinone was noted. Although this enzyme presented high similarity with NAD-dependent xylitol dehydrogenase, it showed high activity to catalyze d-sorbitol to d-fructose. Unlike the optimum temperature and pH for most of the known NAD-dependent xylitol dehydrogenases (30-40 °C and about 6-8, respectively), those for the identified enzyme were 57 °C and 12, respectively. The values of K m and V max of the identified dehydrogenase toward l-sorbitol were 4.92 μM and 196.08 μM/min, respectively. Thus, xylitol dehydrogenase 2 can be useful for the cofactor-reduced nicotinamide adenine dinucleotide regeneration under alkaline conditions, or its knockout can improve the conversion ratio of d-sorbitol to l-sorbose.
Collapse
Affiliation(s)
- Li Liu
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weizhu Zeng
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Guocheng Du
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jian Chen
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- E-mail: . Tel/Fax: +86-510-85914317
| |
Collapse
|
26
|
Efficient biosynthesis of 2-keto-D-gluconic acid by fed-batch culture of metabolically engineered Gluconobacter japonicus. Synth Syst Biotechnol 2019; 4:134-141. [PMID: 31384676 PMCID: PMC6661466 DOI: 10.1016/j.synbio.2019.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/25/2022] Open
Abstract
2-keto-d-gluconic acid (2-KGA) is a key precursor for synthesising vitamin C and isovitamin C. However, phage contamination is as constant problem in industrial production of 2-KGA using Pseudomonas fluorescens. Gluconobacter holds promise for producing 2-KGA due to impressive resistance to hypertonicity and acids, and high utilisation of glucose. In this study, the 2-KGA synthesis pathway was regulated to enhance production of 2-KGA and reduce accumulation of the by-products 5-keto-d-gluconic acid (5-KGA) and d-gluconic acid (D-GA) in the 2-KGA producer Gluconobacter japonicus CGMCC 1.49. Knocking out the ga5dh-1 gene from a competitive pathway and overexpressing the ga2dh-A gene from the 2-KGA synthesis pathway via homologous recombination increased the titre of 2-KGA by 63.81% in shake flasks. Additionally, accumulation of 5-KGA was decreased by 63.52% with the resulting G. japonicas-Δga5dh-1-ga2dh-A strain. Using an intermittent fed-batch mode in a 3 L fermenter, 2-KGA reached 235.3 g L−1 with a 91.1% glucose conversion rate. Scaling up in a 15 L fermenter led to stable 2-KGA titre with productivity of 2.99 g L−1 h−1, 11.99% higher than in the 3 L fermenter, and D-GA and 5-KGA by-products were completely converted to 2-KGA.
Collapse
|
27
|
Zhou P, Yao R, Zhang H, Bao J. Unique glucose oxidation catalysis of
Gluconobacter oxydans
constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Biotechnol Bioeng 2019; 116:2191-2199. [DOI: 10.1002/bit.27020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/14/2019] [Accepted: 05/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Pingping Zhou
- School of BioengineeringState Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai China
| | - Ruimiao Yao
- School of BioengineeringState Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai China
| | - Hongsen Zhang
- School of BioengineeringState Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai China
- Key Laboratory of Enzyme Engineering of Agricultural MicrobiologyMinistry of AgricultureCollege of Life ScienceHenan Agricultural UniversityZhengzhou China
| | - Jie Bao
- School of BioengineeringState Key Laboratory of Bioreactor Engineering, East China University of Science and TechnologyShanghai China
| |
Collapse
|
28
|
L-Erythrulose production with a multideletion strain of Gluconobacter oxydans. Appl Microbiol Biotechnol 2019; 103:4393-4404. [DOI: 10.1007/s00253-019-09824-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
|
29
|
Valorization of Waste Glycerol to Dihydroxyacetone with Biocatalysts Obtained from Gluconobacter oxydans. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Waste glycerol is the main by-product generated during biodiesel production, in an amount reaching up to 10% of the produced biofuel. Is there any method which allows changing this waste into industrial valuable compounds? This manuscript describes a method for valorization of crude glycerol via microbial bioconversion. It has been shown that the use of free and immobilized biocatalysts obtained from Gluconobacter oxydans can enable beneficial valorization of crude glycerol to industrially valuable dihydroxyacetone. The highest concentration of this compound, reaching over 20 g·L−1, was obtained after 72 h of biotransformation with free G. oxydans cells, in a medium containing 30 or 50 g·L−1 of waste glycerol. Using a free cell extract resulted in higher concentrations of dihydroxyacetone and a higher valorization efficiency (up to 98%) compared to the reaction with an immobilized cell extract. Increasing waste glycerol concentration to 50 g·L−1 causes neither a faster nor higher increase in product yield and reaction efficiency compared to its initial concentration of 30 g·L−1. The proposed method could be an alternative for utilization of a petrochemical waste into industry applicated chemicals.
Collapse
|
30
|
Yan J, Xu J, Cao M, Li Z, Xu C, Wang X, Yang C, Xu P, Gao C, Ma C. Engineering of glycerol utilization in Gluconobacter oxydans 621H for biocatalyst preparation in a low-cost way. Microb Cell Fact 2018; 17:158. [PMID: 30296949 PMCID: PMC6174558 DOI: 10.1186/s12934-018-1001-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Background Whole cells of Gluconobacter oxydans are widely used in various biocatalytic processes. Sorbitol at high concentrations is commonly used in complex media to prepare biocatalysts. Exploiting an alternative process for preparation of biocatalysts with low cost substrates is of importance for industrial applications. Results G. oxydans 621H was confirmed to have the ability to grow in mineral salts medium with glycerol, an inevitable waste generated from industry of biofuels, as the sole carbon source. Based on the glycerol utilization mechanism elucidated in this study, the major polyol dehydrogenase (GOX0854) and the membrane-bound alcohol dehydrogenase (GOX1068) can competitively utilize glycerol but play no obvious roles in the biocatalyst preparation. Thus, the genes related to these two enzymes were deleted. Whole cells of G. oxydans ∆GOX1068∆GOX0854 can be prepared from glycerol with a 2.4-fold higher biomass yield than that of G. oxydans 621H. Using whole cells of G. oxydans ∆GOX1068∆GOX0854 as the biocatalyst, 61.6 g L−1 xylonate was produced from 58.4 g L−1 xylose at a yield of 1.05 g g−1. Conclusion This process is an example of efficient preparation of whole cells of G. oxydans with reduced cost. Besides xylonate production from xylose, other biocatalytic processes might also be developed using whole cells of metabolic engineered G. oxydans prepared from glycerol. Electronic supplementary material The online version of this article (10.1186/s12934-018-1001-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinxin Yan
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China.,Dong Ying Oceanic and Fishery Bureau, 206 Yellow River Road, Dongying, 257091, People's Republic of China
| | - Menghao Cao
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Zhong Li
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Chengpeng Xu
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Xinyu Wang
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology & Shenzhen Research Institute, Shandong University, 27 Shanda South Road, Jinan, 250100, People's Republic of China.
| |
Collapse
|
31
|
Pyrroloquinoline quinone-dependent dehydrogenases of acetic acid bacteria. Appl Microbiol Biotechnol 2018; 102:9531-9540. [PMID: 30218379 DOI: 10.1007/s00253-018-9360-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 10/28/2022]
Abstract
Pyrroloquinoline quinone (PQQ)-dependent dehydrogenases (quinoproteins) of acetic acid bacteria (AAB), such as the membrane-bound alcohol dehydrogenase (ADH) and the membrane-bound glucose dehydrogenase, contain PQQ as the prosthetic group. Most of them are located on the periplasmic surface of the cytoplasmic membrane, and function as primary dehydrogenases in cognate substance-oxidizing respiratory chains. Here, we have provided an overview on the function and molecular architecture of AAB quinoproteins, which can be categorized into six groups according to the primary amino acid sequences. Based on the genomic data, we discuss the types of quinoproteins found in AAB genome and how they are distributed. Our analyses indicate that a significant number of uncharacterized orphan quinoproteins are present in AAB. By reviewing recent experimental developments, we discuss how to characterize the as-yet-unknown enzymes. Moreover, our bioinformatics studies also provide insights on how quinoproteins have developed into intricate enzymes. ADH comprises at least two subunits: the quinoprotein dehydrogenase subunit encoded by adhA and the cytochrome subunit encoded by adhB, and the genes are located in a polycistronic transcriptional unit. Findings on stand-alone derivatives of adhA encourage us to speculate on a possible route for ADH development in the evolutional history of AAB. A combination of bioinformatics studies on big genome sequencing data and wet studies assisted with genetic engineering would unravel biochemical functions and physiological role of uncharacterized quinoproteins in AAB, or even in unculturable metagenome.
Collapse
|
32
|
Wehrmann M, Klebensberger J. Engineering thermal stability and solvent tolerance of the soluble quinoprotein PedE from Pseudomonas putida KT2440 with a heterologous whole-cell screening approach. Microb Biotechnol 2018; 11:399-408. [PMID: 29239114 PMCID: PMC5812247 DOI: 10.1111/1751-7915.13036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/18/2017] [Accepted: 11/12/2017] [Indexed: 12/16/2022] Open
Abstract
Due to their ability for direct electron transfer to electrodes, the utilization of rare earth metals as cofactor, and their periplasmic localization, pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ-ADHs) represent an interesting class of biocatalysts for various biotechnological applications. For most biocatalysts protein stability is crucial, either to increase the performance of the protein under a given process condition or to maximize robustness of the protein towards mutational manipulations, which are often needed to enhance or introduce a functionality of interest. In this study, we describe a whole-cell screening assay, suitable for probing PQQ-ADH activities in Escherichia coli BL21(DE3) cells, and use this assay to screen smart mutant libraries for increased thermal stability of the PQQ-ADH PedE (PP_2674) from Pseudomonas putida KT2440. Upon three consecutive rounds of screening, we identified three different amino acid positions, which significantly improve enzyme stability. The subsequent combination of the beneficial mutations finally results in the triple mutant R91D/E408P/N410K, which not only exhibits a 7°C increase in thermal stability but also a twofold increase in residual activity upon incubation with up to 50% dimethyl sulfoxide (DMSO), while showing no significant difference in enzymatic efficiency (kcat /KM ).
Collapse
Affiliation(s)
- Matthias Wehrmann
- Institute of Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | | |
Collapse
|
33
|
Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Appl Microbiol Biotechnol 2018; 102:3159-3171. [PMID: 29468297 DOI: 10.1007/s00253-018-8848-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/22/2018] [Accepted: 02/08/2018] [Indexed: 01/14/2023]
Abstract
Membrane-bound, pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase (GLDH, or polyol dehydrogenase) of Gluconobacter sp. oxidizes various secondary alcohols to produce the corresponding ketones, such as oxidation of D-sorbitol to L-sorbose in vitamin C production. Substrate specificity of GLDH is considered limited to secondary alcohols in the D-erythro configuration at the next to the last carbon. Here, we suggest that L-ribose, D- and L-lyxoses, and L-tagatose are also substrates of GLDH, but these sugars do not meet the substrate specificity rule of GLDH. The oxygen consumption activity of wild-type Gluconobacter frateurii cell membranes depends on several kinds of sugars as compared with that of the membranes of a GLDH-negative variant. Biotransformation of those sugars with the membranes was examined to determine the reaction products. A time course measuring the pH in the reaction mixture and the increase or decrease in substrates and products on TLC suggested that oxidation products of L-lyxose and L-tagatose were ketones with unknown structures, but those of L-ribose and D-lyxose were acids. The oxidation product of L-ribose was purified and revealed to be L-ribonate by HRMS and NMR analysis. Biotransformation of L-ribose with the membranes and also with the whole cells produced L-ribonate in nearly stoichiometric amounts, indicating that the specific oxidation site in L-ribose is recognized by GLDH. Since purified GLDH produced L-ribonate without any intermediate-like compounds, we propose here a reaction model where the first carbon in the pyranose form of L-ribose is oxidized by GLDH to L-ribonolactone, which is further hydrolyzed spontaneously to produce L-ribonate.
Collapse
|
34
|
Zhou X, Zhou X, Zhang H, Cao R, Xu Y. Improving the performance of cell biocatalysis and the productivity of acetoin from 2,3-butanediol using a compressed oxygen supply. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Zou X, Wu G, Stagge S, Chen L, Jönsson LJ, Hong FF. Comparison of tolerance of four bacterial nanocellulose-producing strains to lignocellulose-derived inhibitors. Microb Cell Fact 2017; 16:229. [PMID: 29268745 PMCID: PMC5738851 DOI: 10.1186/s12934-017-0846-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
Background Through pretreatment and enzymatic saccharification lignocellulosic biomass has great potential as a low-cost feedstock for production of bacterial nanocellulose (BNC), a high value-added microbial product, but inhibitors formed during pretreatment remain challenging. In this study, the tolerance to lignocellulose-derived inhibitors of three new BNC-producing strains were compared to that of Komagataeibacter xylinus ATCC 23770. Inhibitors studied included furan aldehydes (furfural and 5-hydroxymethylfurfural) and phenolic compounds (coniferyl aldehyde and vanillin). The performance of the four strains in the presence and absence of the inhibitors was assessed using static cultures, and their capability to convert inhibitors by oxidation and reduction was analyzed. Results Although two of the new strains were more sensitive than ATCC 23770 to furan aldehydes, one of the new strains showed superior resistance to both furan aldehydes and phenols, and also displayed high volumetric BNC yield (up to 14.78 ± 0.43 g/L) and high BNC yield on consumed sugar (0.59 ± 0.02 g/g). The inhibitors were oxidized and/or reduced by the strains to be less toxic. The four strains exhibited strong similarities with regard to predominant bioconversion products from the inhibitors, but displayed different capacity to convert the inhibitors, which may be related to the differences in inhibitor tolerance. Conclusions This investigation provides information on different performance of four BNC-producing strains in the presence of lignocellulose-derived inhibitors. The results will be of benefit to the selection of more suitable strains for utilization of lignocellulosics in the process of BNC-production.
Collapse
Affiliation(s)
- Xiaozhou Zou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.,China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Guochao Wu
- China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, 901 87, Umeå, Sweden
| | - Stefan Stagge
- China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, 901 87, Umeå, Sweden
| | - Lin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China.,China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Leif J Jönsson
- China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.,Department of Chemistry, KBC Chemical-Biological Centre, Umeå University, 901 87, Umeå, Sweden
| | - Feng F Hong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, 201620, China. .,China-Sweden Associated Research Laboratory in Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China. .,Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
36
|
Peters B, Mientus M, Kostner D, Daniel R, Liebl W, Ehrenreich A. Expression of membrane-bound dehydrogenases from a mother of vinegar metagenome in Gluconobacter oxydans. Appl Microbiol Biotechnol 2017; 101:7901-7912. [PMID: 28916850 DOI: 10.1007/s00253-017-8479-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
Abstract
Acetic acid bacteria are well-known for their membrane-bound dehydrogenases rapidly oxidizing a variety of substrates in the periplasm. Since many acetic acid bacteria have not been successfully cultured in the laboratory yet, studying membrane-bound dehydrogenases directly from a metagenome of vinegar microbiota seems to be a promising way to identify novel variants of these enzymes. To this end, DNA from a mother of vinegar was isolated, sequenced, and screened for membrane-bound dehydrogenases using an in silico approach. Six metagenomic dehydrogenases were successfully expressed using an expression vector with native promoters in the acetic acid bacterium strain Gluconobacter oxydans BP.9, which is devoid of its major native membrane-bound dehydrogenases. Determining the substrates converted by these enzymes, using a whole-cell DCPIP assay, revealed one glucose dehydrogenase with an enlarged substrate spectrum additionally oxidizing aldoheptoses, D-ribose and aldotetroses, one polyol dehydrogenase with an extreme diminished spectrum but distinguishing cis and trans-1,2-cyclohexandiol and a completely new secondary alcohol dehydrogenase, which oxidizes secondary alcohols with a hydroxyl group at position 2, as long as no primary hydroxyl group is present. Three further dehydrogenases were found with substrate spectra similar to known dehydrogenases of G. oxydans 621H.
Collapse
Affiliation(s)
- Björn Peters
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - Markus Mientus
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - David Kostner
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - Rolf Daniel
- Institut für Mikrobiologie und Genetik, Genomische und Angewandte Mikrobiologie, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Wolfgang Liebl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany.
| |
Collapse
|
37
|
Stasiak-Różańska L, Błażejak S, Gientka I, Bzducha-Wróbel A, Lipińska E. Utilization of a waste glycerol fraction using and reusing immobilized Gluconobacter oxydans ATCC 621 cell extract. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2017.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Mientus M, Kostner D, Peters B, Liebl W, Ehrenreich A. Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression. Appl Microbiol Biotechnol 2017; 101:3189-3200. [PMID: 28064365 DOI: 10.1007/s00253-016-8069-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Acetic acid bacteria are used in biotechnology due to their ability to incompletely oxidize a great variety of carbohydrates, alcohols, and related compounds in a regio- and stereo-selective manner. These reactions are catalyzed by membrane-bound dehydrogenases (mDHs), often with a broad substrate spectrum. In this study, the promoters of six mDHs of Gluconobacter oxydans 621H were characterized. The constitutive promoter of the alcohol dehydrogenase and the glucose-repressed promoter of the inositol dehydrogenase were used to construct a shuttle vector system for the fully functional expression of mDHs in the multi-deletion strain G. oxydans BP.9 that lacks its mDHs. This system was used to express each mDH of G. oxydans 621H, in order to individually characterize the substrates, they oxidize. From 55 tested compounds, the alcohol dehydrogenase oxidized 30 substrates and the polyol dehydrogenase 25. The substrate spectrum of alcohol dehydrogenase overlapped largely with the aldehyde dehydrogenase and partially with polyol dehydrogenase. Thus, we were able to resolve the overlapping substrate spectra of the main mDHs of G. oxydans 621H. The described approach could also be used for the expression and detailed characterization of substrates used by mDHs from other acetic acid bacteria or a metagenome.
Collapse
Affiliation(s)
- Markus Mientus
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - David Kostner
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Björn Peters
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Wolfgang Liebl
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
39
|
Gluconic acid: Properties, production methods and applications—An excellent opportunity for agro-industrial by-products and waste bio-valorization. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.08.028] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003. J Biotechnol 2016; 237:18-24. [DOI: 10.1016/j.jbiotec.2016.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 11/23/2022]
|
41
|
Illeghems K, Pelicaen R, De Vuyst L, Weckx S. Assessment of the contribution of cocoa-derived strains of Acetobacter ghanensis and Acetobacter senegalensis to the cocoa bean fermentation process through a genomic approach. Food Microbiol 2016; 58:68-78. [PMID: 27217361 DOI: 10.1016/j.fm.2016.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 01/02/2023]
Abstract
Acetobacter ghanensis LMG 23848(T) and Acetobacter senegalensis 108B are acetic acid bacteria that originate from a spontaneous cocoa bean heap fermentation process and that have been characterised as strains with interesting functionalities through metabolic and kinetic studies. As there is currently little genetic information available for these species, whole-genome sequencing of A. ghanensis LMG 23848(T) and A. senegalensis 108B and subsequent data analysis was performed. This approach not only revealed characteristics such as the metabolic potential and genomic architecture, but also allowed to indicate the genetic adaptations related to the cocoa bean fermentation process. Indeed, evidence was found that both species possessed the genetic ability to be involved in citrate assimilation and displayed adaptations in their respiratory chain that might improve their competitiveness during the cocoa bean fermentation process. In contrast, other properties such as the dependence on glycerol or mannitol and lactate as energy sources or a less efficient acid stress response may explain their low competitiveness. The presence of a gene coding for a proton-translocating transhydrogenase in A. ghanensis LMG 23848(T) and the genes involved in two aromatic compound degradation pathways in A. senegalensis 108B indicate that these strains have an extended functionality compared to Acetobacter species isolated from other ecosystems.
Collapse
Affiliation(s)
- Koen Illeghems
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Rudy Pelicaen
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
42
|
Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans. Appl Environ Microbiol 2015; 81:4098-110. [PMID: 25862219 DOI: 10.1128/aem.00527-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 04/02/2015] [Indexed: 11/20/2022] Open
Abstract
d-Lactate was identified as one of the few available organic acids that supported the growth of Gluconobacter oxydans 621H in this study. Interestingly, the strain used d-lactate as an energy source but not as a carbon source, unlike other lactate-utilizing bacteria. The enzymatic basis for the growth of G. oxydans 621H on d-lactate was therefore investigated. Although two putative NAD-independent d-lactate dehydrogenases, GOX1253 and GOX2071, were capable of oxidizing d-lactate, GOX1253 was the only enzyme able to support the d-lactate-driven growth of the strain. GOX1253 was characterized as a membrane-bound dehydrogenase with high activity toward d-lactate, while GOX2071 was characterized as a soluble oxidase with broad substrate specificity toward d-2-hydroxy acids. The latter used molecular oxygen as a direct electron acceptor, a feature that has not been reported previously in d-lactate-oxidizing enzymes. This study not only clarifies the mechanism for the growth of G. oxydans on d-lactate, but also provides new insights for applications of the important industrial microbe and the novel d-lactate oxidase.
Collapse
|
43
|
Kostner D, Luchterhand B, Junker A, Volland S, Daniel R, Büchs J, Liebl W, Ehrenreich A. The consequence of an additional NADH dehydrogenase paralog on the growth of Gluconobacter oxydans DSM3504. Appl Microbiol Biotechnol 2014; 99:375-86. [PMID: 25267158 DOI: 10.1007/s00253-014-6069-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 11/25/2022]
Abstract
Acetic acid bacteria such as Gluconobacter oxydans are used in several biotechnological processes due to their ability to perform rapid incomplete regio- and stereo-selective oxidations of a great variety of carbohydrates, alcohols, and related compounds by their membrane-bound dehydrogenases. In order to understand the growth physiology of industrial strains such as G. oxydans ATCC 621H that has high substrate oxidation rates but poor growth yields, we compared its genome sequence to the genome sequence of strain DSM 3504 that reaches an almost three times higher optical density. Although the genome sequences are very similar, DSM 3504 has additional copies of genes that are absent from ATCC 621H. Most importantly, strain DSM 3504 contains an additional type II NADH dehydrogenase (ndh) gene and an additional triosephosphate isomerase (tpi) gene. We deleted these additional paralogs from DSM 3504, overexpressed NADH dehydrogenase in ATCC 621H, and monitored biomass and the concentration of the representative cell components as well as O2 and CO2 transfer rates in growth experiments on mannitol. The data revealed a clear competition of membrane-bound dehydrogenases and NADH dehydrogenase for channeling electrons in the electron transport chain of Gluconobacter and an important role of the additional NADH dehydrogenase for increased growth yields. The less active the NADH dehydrogenase is, the more active is the membrane-bound polyol dehydrogenase. These results were confirmed by introducing additional ndh genes via plasmid pAJ78 in strain ATCC 621H, which leads to a marked increase of the growth rate.
Collapse
Affiliation(s)
- D Kostner
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann Str. 4, 85354, Freising, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T, Classen T, Pietruszka J, Ehrenreich A, Streit WR, Jaeger KE. Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 2014; 98:8099-109. [PMID: 25091044 DOI: 10.1007/s00253-014-5961-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/14/2014] [Accepted: 07/15/2014] [Indexed: 11/25/2022]
Abstract
Microorganisms are ubiquitous on earth, often forming complex microbial communities in numerous different habitats. Most of these organisms cannot be readily cultivated in the laboratory using standard media and growth conditions. However, it is possible to gain access to the vast genetic, enzymatic, and metabolic diversity present in these microbial communities using cultivation-independent approaches such as sequence- or function-based metagenomics. Function-based analysis is dependent on heterologous expression of metagenomic libraries in a genetically amenable cloning and expression host. To date, Escherichia coli is used in most cases; however, this has the drawback that many genes from heterologous genomes and complex metagenomes are expressed in E. coli either at very low levels or not at all. This review emphasizes the importance of establishing alternative microbial expression systems consisting of different genera and species as well as customized strains and vectors optimized for heterologous expression of membrane proteins, multigene clusters encoding protein complexes or entire metabolic pathways. The use of alternative host-vector systems will complement current metagenomic screening efforts and expand the yield of novel biocatalysts, metabolic pathways, and useful metabolites to be identified from environmental samples.
Collapse
Affiliation(s)
- Wolfgang Liebl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Str. 4, 85654, Freising, Germany,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Effect of glycerol and dihydroxyacetone concentrations in the culture medium on the growth of acetic acid bacteria Gluconobacter oxydans ATCC 621. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2238-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Zhang J, Chen W, Ke W, Chen H. Screening of a glucoside 3-dehydrogenase-producing strain, Sphingobacterium faecium, based on a high-throughput screening method and optimization of the culture conditions for enzyme production. Appl Biochem Biotechnol 2014; 172:3448-60. [PMID: 24532484 DOI: 10.1007/s12010-014-0773-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 02/03/2014] [Indexed: 11/30/2022]
Abstract
The objective of this study was to screen glucoside 3-dehydrogenase (G3DH)-producing strain based on a high-throughput G3DH screening method. Optimization of culture conditions of the isolated strain was also applied in this study. This screening method employed electron transfer reaction in 96-well microtiter plates, α-methyl-D-glucoside, galactose, 2-deoxy-D-glucose, and 3-O-methyl-D-glucose were used as substrates. Using this screening method, one out of 78 strains isolated from different soil samples was obtained with high G3DH activity. The accuracy of the screening method was proved by alkaline treatment analysis of 3-keto sugars. The isolated strain was identified as Sphingobacterium faecium ZJF-D6 by phenotypic characterization and 16S rDNA sequence analysis. The culture conditions of S. faecium for G3DH production were optimized. Sucrose was found as the most suitable carbon source for the G3DH production. The highest G3DH production and cell growth were achieved using the medium at the initial pH of 7.0 at 25 °C for 36 h with activity of 8.03 × 10(-2) U/mL culture. This strain appears promising for potential application in the industry to produce 3-keto sugars. To our knowledge, this is the first report on S. faecium for G3DH production. The method described herein represents a useful tool for the high-throughput isolation of G3DH.
Collapse
Affiliation(s)
- Jianfen Zhang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China,
| | | | | | | |
Collapse
|
47
|
Matsutani M, Suzuki H, Yakushi T, Matsushita K. Draft genome sequence of Gluconobacter thailandicus NBRC 3257. Stand Genomic Sci 2014; 9:614-23. [PMID: 25197448 PMCID: PMC4149004 DOI: 10.4056/sigs.4778605] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gluconobacter thailandicus strain NBRC 3257, isolated from downy cherry (Prunus tomentosa), is a strict aerobic rod-shaped Gram-negative bacterium. Here, we report the features of this organism, together with the draft genome sequence and annotation. The draft genome sequence is composed of 107 contigs for 3,446,046 bp with 56.17% G+C content and contains 3,360 protein-coding genes and 54 RNA genes.
Collapse
Affiliation(s)
- Minenosuke Matsutani
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Haruo Suzuki
- Department of Environmental Science and Engineering, Graduate School of Science and Engineering, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, Japan
| | - Toshiharu Yakushi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
48
|
Wang X, Lv M, Zhang L, Li K, Gao C, Ma C, Xu P. Efficient bioconversion of 2,3-butanediol into acetoin using Gluconobacter oxydans DSM 2003. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:155. [PMID: 24176113 PMCID: PMC4177140 DOI: 10.1186/1754-6834-6-155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND 2,3-Butanediol is a platform and fuel biochemical that can be efficiently produced from biomass. However, a value-added process for this chemical has not yet been developed. To expand the utilization of 2,3-butanediol produced from biomass, an improved derivative process of 2,3-butanediol is desirable. RESULTS In this study, a Gluconobacter oxydans strain DSM 2003 was found to have the ability to transform 2,3-butanediol into acetoin, a high value feedstock that can be widely used in dairy and cosmetic products, and chemical synthesis. All three stereoisomers, meso-2,3-butanediol, (2R,3R)-2,3-butanediol, and (2S,3S)-2,3-butanediol, could be transformed into acetoin by the strain. After optimization of the bioconversion conditions, the optimum growth temperature for acetoin production by strain DSM 2003 was found to be 30°C and the medium pH was 6.0. With an initial 2,3-butanediol concentration of 40 g/L, acetoin at a high concentration of 89.2 g/L was obtained from 2,3-butanediol by fed-batch bioconversion with a high productivity (1.24 g/L · h) and high yield (0.912 mol/mol). CONCLUSIONS G. oxydans DSM 2003 is the first strain that can be used in the direct production of acetoin from 2,3-butanediol. The product concentration and yield of the novel process are both new records for acetoin production. The results demonstrate that the method developed in this study could provide a promising process for efficient acetoin production and industrially produced 2,3-butanediol utilization.
Collapse
Affiliation(s)
- Xiuqing Wang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Min Lv
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Lijie Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Kun Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|