1
|
Cann I, Cheng Y, Alhawsawi MAB, Moran M, Li Y, Gong T, Zhu W, Mackie RI. Rumen-Targeted Mining of Enzymes for Bioenergy Production. Annu Rev Anim Biosci 2025; 13:343-369. [PMID: 39541233 DOI: 10.1146/annurev-animal-021022-030040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Second-generation biofuel production, which aims to convert lignocellulose to liquid transportation fuels, could be transformative in worldwide energy portfolios. A bottleneck impeding its large-scale deployment is conversion of the target polysaccharides in lignocellulose to their unit sugars for microbial fermentation to the desired fuels. Cellulose and hemicellulose, the two major polysaccharides in lignocellulose, are complex in nature, and their interactions with pectin and lignin further increase their recalcitrance to depolymerization. This review focuses on the intricate linkages present in the feedstocks of interest and examines the potential of the enzymes evolved by microbes, in the microbe/ruminant symbiotic relationship, to depolymerize the target polysaccharides. We further provide insights to how a rational and more efficient assembly of rumen microbial enzymes can be reconstituted for lignocellulose degradation. We conclude by expounding on how gains in this area can impact the sustainability of both animal agriculture and the energy sector.
Collapse
Affiliation(s)
- Isaac Cann
- Center for East Asian and Pacific Studies, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; ,
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China; , ,
| | - Manal A B Alhawsawi
- Clinical Nutrition Department, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
| | - Mallory Moran
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; ,
| | - Yuqi Li
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China; , ,
| | - Tian Gong
- National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Sciences, Shaanxi Normal University, Xian, Shaanxi, China
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China; , ,
| | - Roderick I Mackie
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; , ,
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; ,
| |
Collapse
|
2
|
Nakazawa Y, Kageyama M, Matsuzawa T, Liang Z, Kobayashi K, Shimizu H, Maeda K, Masuhiro M, Motouchi S, Kumano S, Tanaka N, Kuramochi K, Nakai H, Taguchi H, Nakajima M. Structure and function of a β-1,2-galactosidase from Bacteroides xylanisolvens, an intestinal bacterium. Commun Biol 2025; 8:66. [PMID: 39820076 PMCID: PMC11739564 DOI: 10.1038/s42003-025-07494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Galactosides are major carbohydrates that are found in plant cell walls and various prebiotic oligosaccharides. Studying the detailed biochemical functions of β-galactosidases in degrading these carbohydrates is important. In particular, identifying β-galactosidases with new substrate specificities could help in the production of potentially beneficial oligosaccharides. In this study, we identify a β-galactosidase with novel substrate specificity from Bacteroides xylanisolvens, an intestinal bacterium. The enzyme do not show hydrolytic activity toward natural β-galactosides during the first screening. However, when α-D-galactosyl fluoride (α-GalF) as a donor substrate and galactose or D-fucose as an acceptor substrate are incubated with a nucleophile mutant, reaction products are detected. The galactobiose produced from the α-GalF and galactose is identified as β-1,2-galactobiose using NMR. Kinetic analysis reveals that this enzyme effectively hydrolyzes β-1,2-galactobiose and β-1,2-galactotriose. In the complex structure with methyl β-galactopyranose as a ligand, the ligand is only located at subsite +1. The 2-hydroxy group and the anomeric methyl group of methyl β-galactopyranose faces in the direction of subsite -1 and the solvent, respectively. This observation is consistent with the substrate specificity of the enzyme regarding linkage position and chain length. Overall, we conclude that the enzyme is a β-galactosidase acting on β-1,2-galactooligosaccharides.
Collapse
Affiliation(s)
- Yutaka Nakazawa
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masumi Kageyama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tomohiko Matsuzawa
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan
| | - Ziqin Liang
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kaito Kobayashi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Tokyo, Koto-ku, 135-0064, Japan
| | - Hisaka Shimizu
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuki Maeda
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Miho Masuhiro
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Sei Motouchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Saika Kumano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Nobukiyo Tanaka
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Hiroyuki Nakai
- Faculty of Agriculture, Niigata University, 8050 Ikarashi 2-no-cho, Niigata, Nishi-ku, 950-2181, Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
| |
Collapse
|
3
|
Liu H, Huang M, Wei S, Wang X, Zhao Y, Han Z, Ye X, Li Z, Ji Y, Cui Z, Huang Y. Characterization of a multi-domain exo-β-1,3-galactanase from Paenibacillus xylanexedens. Int J Biol Macromol 2024; 266:131413. [PMID: 38582482 DOI: 10.1016/j.ijbiomac.2024.131413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
β-1,3-Galactanases selectively degrade β-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-β-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using β-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only β-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 β-1,3-galactanase for the degradation of arabinogalactan.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Min Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shuxin Wei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yaqin Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhengyang Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanling Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
4
|
Ghosh K, Takahashi D, Kotake T. Plant type II arabinogalactan: Structural features and modification to increase functionality. Carbohydr Res 2023; 529:108828. [PMID: 37182471 DOI: 10.1016/j.carres.2023.108828] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Type II arabinogalactans (AGs) are a highly diverse class of plant polysaccharides generally encountered as the carbohydrate moieties of certain extracellular proteoglycans, the so-called arabinogalactan-proteins (AGPs), which are found on plasma membranes and in cell walls. The basic structure of type II AG is a 1,3-β-D-galactan main chain with 1,6-β-D-galactan side chains. The side chains are further decorated with other sugars such as α-l-arabinose and β-d-glucuronic acid. In addition, AGs with 1,6-β-D-galactan as the main chain, which are designated as 'type II related AG' in this review, can also be found in several plants. Due to their diverse and heterogenous features, the determination of carbohydrate structures of type II and type II related AGs is not easy. On the other hand, these complex AGs are scientifically and commercially attractive materials whose structures can be modified by chemical and biochemical approaches for specific purposes. In the current review, what is known about the chemical structures of type II and type II related AGs from different plant sources is outlined. After that, structural analysis techniques are considered and compared. Finally, structural modifications that enhance or alter functionality are highlighted.
Collapse
Affiliation(s)
- Kanika Ghosh
- Department of Chemistry, Bidhan Chandra College, Asansol, 713304, West Bengal, India.
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan; Green Bioscience Research Center, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
5
|
Cloning, Expression, Purification and Characterization of the β-galactosidase PoβGal35A from Penicillium oxalicum. Mol Biotechnol 2022:10.1007/s12033-022-00620-y. [DOI: 10.1007/s12033-022-00620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
|
6
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
7
|
Villa-Rivera MG, Cano-Camacho H, López-Romero E, Zavala-Páramo MG. The Role of Arabinogalactan Type II Degradation in Plant-Microbe Interactions. Front Microbiol 2021; 12:730543. [PMID: 34512607 PMCID: PMC8424115 DOI: 10.3389/fmicb.2021.730543] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Arabinogalactans (AGs) are structural polysaccharides of the plant cell wall. A small proportion of the AGs are associated with hemicellulose and pectin. Furthermore, AGs are associated with proteins forming the so-called arabinogalactan proteins (AGPs), which can be found in the plant cell wall or attached through a glycosylphosphatidylinositol (GPI) anchor to the plasma membrane. AGPs are a family of highly glycosylated proteins grouped with cell wall proteins rich in hydroxyproline. These glycoproteins have important and diverse functions in plants, such as growth, cellular differentiation, signaling, and microbe-plant interactions, and several reports suggest that carbohydrate components are crucial for AGP functions. In beneficial plant-microbe interactions, AGPs attract symbiotic species of fungi or bacteria, promote the development of infectious structures and the colonization of root tips, and furthermore, these interactions can activate plant defense mechanisms. On the other hand, plants secrete and accumulate AGPs at infection sites, creating cross-links with pectin. As part of the plant cell wall degradation machinery, beneficial and pathogenic fungi and bacteria can produce the enzymes necessary for the complete depolymerization of AGs including endo-β-(1,3), β-(1,4) and β-(1,6)-galactanases, β-(1,3/1,6) galactanases, α-L-arabinofuranosidases, β-L-arabinopyranosidases, and β-D-glucuronidases. These hydrolytic enzymes are secreted during plant-pathogen interactions and could have implications for the function of AGPs. It has been proposed that AGPs could prevent infection by pathogenic microorganisms because their degradation products generated by hydrolytic enzymes of pathogens function as damage-associated molecular patterns (DAMPs) eliciting the plant defense response. In this review, we describe the structure and function of AGs and AGPs as components of the plant cell wall. Additionally, we describe the set of enzymes secreted by microorganisms to degrade AGs from AGPs and its possible implication for plant-microbe interactions.
Collapse
Affiliation(s)
- Maria Guadalupe Villa-Rivera
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| | - Horacio Cano-Camacho
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| | - Everardo López-Romero
- División de Ciencias Naturales y Exactas, Departamento de Biología, Universidad de Guanajuato, Guanajuato, Mexico
| | - María Guadalupe Zavala-Páramo
- Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Mexico
| |
Collapse
|
8
|
Sasaki Y, Horigome A, Odamaki T, Xiao JZ, Ishiwata A, Ito Y, Kitahara K, Fujita K. Novel 3- O-α-d-Galactosyl-α-l-Arabinofuranosidase for the Assimilation of Gum Arabic Arabinogalactan Protein in Bifidobacterium longum subsp. longum. Appl Environ Microbiol 2021; 87:e02690-20. [PMID: 33674431 PMCID: PMC8117759 DOI: 10.1128/aem.02690-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gum arabic arabinogalactan (AG) protein (AGP) is a unique dietary fiber that is degraded and assimilated by only specific strains of Bifidobacterium longum subsp. longum Here, we identified a novel 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052 and classified it into glycoside hydrolase family 39 (GH39). GAfase released α-d-Galp-(1→3)-l-Ara and β-l-Arap-(1→3)-l-Ara from gum arabic AGP and β-l-Arap-(1→3)-l-Ara from larch AGP, and the α-d-Galp-(1→3)-l-Ara release activity was found to be 594-fold higher than that of β-l-Arap-(1→3)-l-Ara. The GAfase gene was part of a gene cluster that included genes encoding a GH36 α-galactosidase candidate and ABC transporters for the assimilation of the released α-d-Galp-(1→3)-l-Ara in B. longum Notably, when α-d-Galp-(1→3)-l-Ara was removed from gum arabic AGP, it was assimilated by both B. longum JCM7052 and the nonassimilative B. longum JCM1217, suggesting that the removal of α-d-Galp-(1→3)-l-Ara from gum arabic AGP by GAfase permitted the cooperative action with type II AG degradative enzymes in B. longum The present study provides new insight into the mechanism of gum arabic AGP degradation in B. longumIMPORTANCE Bifidobacteria harbor numerous carbohydrate-active enzymes that degrade several dietary fibers in the gastrointestinal tract. B. longum JCM7052 is known to exhibit the ability to assimilate gum arabic AGP, but the key enzyme involved in the degradation of gum arabic AGP remains unidentified. Here, we cloned and characterized a GH39 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052. The enzyme was responsible for the release of α-d-Galp-(1→3)-l-Ara and β-l-Arap-(1→3)-l-Ara from gum arabic AGP. The presence of a gene cluster including the GAfase gene is specifically observed in gum arabic AGP assimilative strains. However, GAfase carrier strains may affect GAfase noncarrier strains that express other type II AG degradative enzymes. These findings provide insights into the bifidogenic effect of gum arabic AGP.
Collapse
Affiliation(s)
- Yuki Sasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Ayako Horigome
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | | | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kanefumi Kitahara
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kiyotaka Fujita
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
9
|
Kelly SM, Munoz-Munoz J, van Sinderen D. Plant Glycan Metabolism by Bifidobacteria. Front Microbiol 2021; 12:609418. [PMID: 33613480 PMCID: PMC7889515 DOI: 10.3389/fmicb.2021.609418] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the genus Bifidobacterium, of which the majority have been isolated as gut commensals, are Gram-positive, non-motile, saccharolytic, non-sporulating, anaerobic bacteria. Many bifidobacterial strains are considered probiotic and therefore are thought to bestow health benefits upon their host. Bifidobacteria are highly abundant among the gut microbiota of healthy, full term, breast-fed infants, yet the relative average abundance of bifidobacteria tends to decrease as the human host ages. Because of the inverse correlation between bifidobacterial abundance/prevalence and health, there has been an increasing interest in maintaining, increasing or restoring bifidobacterial populations in the infant, adult and elderly gut. In order to colonize and persist in the gastrointestinal environment, bifidobacteria must be able to metabolise complex dietary and/or host-derived carbohydrates, and be resistant to various environmental challenges of the gut. This is not only important for the autochthonous bifidobacterial species colonising the gut, but also for allochthonous bifidobacteria provided as probiotic supplements in functional foods. For example, Bifidobacterium longum subsp. longum is a taxon associated with the metabolism of plant-derived poly/oligosaccharides in the adult diet, being capable of metabolising hemicellulose and various pectin-associated glycans. Many of these plant glycans are believed to stimulate the metabolism and growth of specific bifidobacterial species and are for this reason classified as prebiotics. In this review, bifidobacterial carbohydrate metabolism, with a focus on plant poly-/oligosaccharide degradation and uptake, as well as its associated regulation, will be discussed.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
Kondo T, Nishimura Y, Matsuyama K, Ishimaru M, Nakazawa M, Ueda M, Sakamoto T. Characterization of three GH35 β-galactosidases, enzymes able to shave galactosyl residues linked to rhamnogalacturonan in pectin, from Penicillium chrysogenum 31B. Appl Microbiol Biotechnol 2019; 104:1135-1148. [DOI: 10.1007/s00253-019-10299-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/24/2019] [Accepted: 12/03/2019] [Indexed: 11/29/2022]
|
11
|
Fujita K, Sasaki Y, Kitahara K. Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved. Appl Microbiol Biotechnol 2019; 103:7451-7457. [PMID: 31384991 DOI: 10.1007/s00253-019-10049-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Arabinogalactan proteins (AGPs) are complex plant proteoglycans that function as dietary fiber utilized by human intestinal bacteria such as Bifidobacterium and Bacteroides species. However, the degradative mechanism is unknown because of the complexity of sugar chains of AGPs as well as variation among plant species and organs. Recently, AGP degradative enzymes have been characterized in Bifidobacterium and Bacteroides species. In this review, we summarize the characteristics and functions of AGP degradative enzymes in human intestinal bacteria.
Collapse
Affiliation(s)
- Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| | - Yuki Sasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| |
Collapse
|
12
|
Kalomoiri P, Holck J, Coulomb L, Boos I, Enemark-Rasmussen K, Spodsberg N, Monrad RN, Clausen MH. Substrate specificity of novel GH16 endo-β-(1→3)-galactanases acting on linear and branched β-(1→3)-galactooligosaccharides. J Biotechnol 2018; 290:44-52. [PMID: 30576682 DOI: 10.1016/j.jbiotec.2018.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/20/2018] [Accepted: 12/04/2018] [Indexed: 10/27/2022]
Abstract
Arabinogalactan proteins are proteoglycans located in the plant cell wall. Most arabinogalactan proteins are composed of carbohydrate moieties of β-(1→3)-galactan main chains with β-(1→6)-galactan side chains terminated by other glycans. In this study, three novel endo-β-(1→3)-galactanases were identified and the substrate specificity was further studied using well-defined galactan oligomers. Linear and branched β-(1→3)-linked galactans, which resemble the carbohydrate core of the arabinogalactan protein, were used for the characterization of endo-β-(1→3)-galactanases. The identified enzymes required at least three consecutive galactose residues for activity. Non-substituted regions were preferred, but substituents in the -2 and +2 and in some cases also -1 and +1 subsites were tolerated to some extent, depending on the branching pattern, however at a significantly lower rate/frequency.
Collapse
Affiliation(s)
- Panagiota Kalomoiri
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | - Jesper Holck
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark; Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Laure Coulomb
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Irene Boos
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | - Kasper Enemark-Rasmussen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark
| | | | | | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
13
|
l-Arabinose induces d-galactose catabolism via the Leloir pathway in Aspergillus nidulans. Fungal Genet Biol 2018; 123:53-59. [PMID: 30496805 DOI: 10.1016/j.fgb.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/03/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
l-Arabinose and d-galactose are the principal constituents of l-arabinogalactan, and also co-occur in other hemicelluloses and pectins. In this work we hypothesized that similar to the induction of relevant glycoside hydrolases by monomers liberated from these plant heteropolymers, their respective catabolisms in saprophytic and phytopathogenic fungi may respond to the presence of the other sugar to promote synergistic use of the complex growth substrate. We showed that these two sugars are indeed consumed simultaneously by Aspergillus nidulans, while l-arabinose is utilised faster in the presence than in the absence of d-galactose. Furthermore, the first two genes of the Leloir pathway for d-galactose catabolism - encoding d-galactose 1-epimerase and galactokinase - are induced more rapidly by l-arabinose than by d-galactose eventhough deletion mutants thereof grow as well as a wild type strain on the pentose. d-Galactose 1-epimerase is hyperinduced by l-arabinose, d-xylose and l-arabitol but not by xylitol. The results suggest that in A. nidulans, l-arabinose and d-xylose - both requiring NADPH for their catabolisation - actively promote the enzyme infrastructure necessary to convert β-d-galactopyranose via the Leloir pathway with its α-anomer specific enzymes, into β-d-glucose-6-phosphate (the starting substrate of the oxidative part of the pentose phosphate pathway) even in the absence of d-galactose.
Collapse
|
14
|
Leathers TD, Price NP, Vaughn SF, Nunnally MS. Reduced-molecular-weight derivatives of frost grape polysaccharide. Int J Biol Macromol 2017; 105:1166-1170. [DOI: 10.1016/j.ijbiomac.2017.07.143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/30/2017] [Accepted: 07/23/2017] [Indexed: 11/26/2022]
|
15
|
Pfrengle F. Synthetic plant glycans. Curr Opin Chem Biol 2017; 40:145-151. [PMID: 29024888 DOI: 10.1016/j.cbpa.2017.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/22/2017] [Accepted: 09/12/2017] [Indexed: 11/30/2022]
Abstract
For more than a century the primary carbon source for the production of fuels, chemicals and many materials has been fossil resources. Recently, plant polysaccharides from non-food biomass have emerged as a promising renewable alternative that may displace a significant fraction of petroleum-derived products. As a food source, plant polysaccharides can provide beneficial effects on the human immune system in the form of dietary fiber. Despite the strong impact of plant glycans on society and human health, their chemical synthesis remains largely unexplored compared to the synthesis of mammalian and bacterial glycans. Synthetic glycans such as described in this review provide an important toolbox for studying the role of carbohydrates in plant biology and their interaction with human health.
Collapse
Affiliation(s)
- Fabian Pfrengle
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, Arnimallee 22, 14195 Berlin, Germany.
| |
Collapse
|
16
|
Kinnaert C, Daugaard M, Nami F, Clausen MH. Chemical Synthesis of Oligosaccharides Related to the Cell Walls of Plants and Algae. Chem Rev 2017; 117:11337-11405. [DOI: 10.1021/acs.chemrev.7b00162] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Christine Kinnaert
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mathilde Daugaard
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet, Building 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
17
|
Abstract
We describe an integrated and straightforward new analytical protocol that identifies plant gums from various sample sources including cultural heritage. Our approach is based on the identification of saccharidic fingerprints using mass spectrometry following controlled enzymatic hydrolysis. We developed an enzyme cocktail suitable for plant gums of unknown composition. Distinctive MS profiles of gums such as arabic, cherry and locust-bean gums were successfully identified. A wide range of oligosaccharidic combinations of pentose, hexose, deoxyhexose and hexuronic acid were accurately identified in gum arabic whereas cherry and locust bean gums showed respectively PentxHexy and Hexn profiles. Optimized for low sample quantities, the analytical protocol was successfully applied to contemporary and historic samples including ‘Colour Box Charles Roberson & Co’ dating 1870s and drawings from the American painter Arthur Dove (1880–1946). This is the first time that a gum is accurately identified in a cultural heritage sample using structural information. Furthermore, this methodology is applicable to other domains (food, cosmetic, pharmaceutical, biomedical).
Collapse
|
18
|
Seifbarghi S, Borhan MH, Wei Y, Coutu C, Robinson SJ, Hegedus DD. Changes in the Sclerotinia sclerotiorum transcriptome during infection of Brassica napus. BMC Genomics 2017; 18:266. [PMID: 28356071 PMCID: PMC5372324 DOI: 10.1186/s12864-017-3642-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 03/18/2017] [Indexed: 11/17/2022] Open
Abstract
Background Sclerotinia sclerotiorum causes stem rot in Brassica napus, which leads to lodging and severe yield losses. Although recent studies have explored significant progress in the characterization of individual S. sclerotiorum pathogenicity factors, a gap exists in profiling gene expression throughout the course of S. sclerotiorum infection on a host plant. In this study, RNA-Seq analysis was performed with focus on the events occurring through the early (1 h) to the middle (48 h) stages of infection. Results Transcript analysis revealed the temporal pattern and amplitude of the deployment of genes associated with aspects of pathogenicity or virulence during the course of S. sclerotiorum infection on Brassica napus. These genes were categorized into eight functional groups: hydrolytic enzymes, secondary metabolites, detoxification, signaling, development, secreted effectors, oxalic acid and reactive oxygen species production. The induction patterns of nearly all of these genes agreed with their predicted functions. Principal component analysis delineated gene expression patterns that signified transitions between pathogenic phases, namely host penetration, ramification and necrotic stages, and provided evidence for the occurrence of a brief biotrophic phase soon after host penetration. Conclusions The current observations support the notion that S. sclerotiorum deploys an array of factors and complex strategies to facilitate host colonization and mitigate host defenses. This investigation provides a broad overview of the sequential expression of virulence/pathogenicity-associated genes during infection of B. napus by S. sclerotiorum and provides information for further characterization of genes involved in the S. sclerotiorum-host plant interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3642-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shirin Seifbarghi
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.,Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - M Hossein Borhan
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Stephen J Robinson
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada. .,Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
19
|
Bartetzko MP, Schuhmacher F, Seeberger PH, Pfrengle F. Determining Substrate Specificities of β1,4-Endogalactanases Using Plant Arabinogalactan Oligosaccharides Synthesized by Automated Glycan Assembly. J Org Chem 2017; 82:1842-1850. [PMID: 28075586 DOI: 10.1021/acs.joc.6b02745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pectin is a structurally complex plant polysaccharide with many industrial applications in food products. The structural elucidation of pectin is aided by digestion assays with glycosyl hydrolases. We report the automated glycan assembly of oligosaccharides related to the arabinogalactan side chains of pectin as novel biochemical tools to determine the substrate specificities of endogalactanases. Analysis of the digestion products revealed different requirements for the lengths and arabinose substitution pattern of the oligosaccharides to be recognized and hydrolyzed by the galactanases.
Collapse
Affiliation(s)
- Max P Bartetzko
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Frank Schuhmacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
20
|
Penicillium purpurogenum produces a highly stable endo-β-(1,4)-galactanase. Appl Biochem Biotechnol 2016; 180:1313-1327. [PMID: 27339187 DOI: 10.1007/s12010-016-2169-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
The polysaccharides of galactose present in the pectin of the plant cell wall are degraded by endo-β-1,4-galactanases. The filamentous fungus Penicillium purpurogenum, which grows on a number of natural carbon sources, among them sugar beet pulp which contains pectin, has a gene (ppgal1) coding an endo-β-1,4-galactanase (PpGAL1). This enzyme was expressed heterologously in Pichia pastoris. It has a molecular mass of 38 kDa, a pH optimum of 4-4.5, and an optimal temperature of 60 °C. It is 100 % stable for up to 24 h at pH 4-4.5 and 40 °C. These stability properties, which exceed those from other endo-β-1,4-galactanases reported to date, make it particularly suitable for industrial processes requiring acidic conditions and temperatures up to 40 °C. PpGAL1 is, therefore, a potentially effective tool in the food industry and in other biotechnological applications.
Collapse
|
21
|
de Lima EA, Machado CB, Zanphorlin LM, Ward RJ, Sato HH, Ruller R. GH53 Endo-Beta-1,4-Galactanase from a Newly Isolated Bacillus licheniformis CBMAI 1609 as an Enzymatic Cocktail Supplement for Biomass Saccharification. Appl Biochem Biotechnol 2016; 179:415-26. [DOI: 10.1007/s12010-016-2003-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
|
22
|
Bonnin E, Garnier C, Ralet MC. Pectin-modifying enzymes and pectin-derived materials: applications and impacts. Appl Microbiol Biotechnol 2013; 98:519-32. [DOI: 10.1007/s00253-013-5388-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 11/30/2022]
|