1
|
Belkin S. Bioluminescent Microbial Bioreporters: A Personal Perspective. BIOSENSORS 2025; 15:111. [PMID: 39997013 PMCID: PMC11853290 DOI: 10.3390/bios15020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
This review attempts to summarize my three decades-long involvement in, and contribution to, the design, construction and testing of bioluminescent microbial sensor strains (bioreporters). With the understanding that such a document cannot be completely free of bias, the review focuses on studies from my own lab only, with almost no coverage of the parallel progress made by others in similar fields. This admittedly subjective approach by no way detracts from the achievements of countless excellent researchers who are not mentioned here, and whose contributions to the field are at least as important as that of my own. The review covers basic aspects of microbial sensor design, and then progresses to describe approaches to performance improvement of sensor strains aimed at the detection of either specific chemicals, groups of chemicals sharing similar characteristics, or global effects, such as toxicity and genotoxicity. The need for integration of live sensor cells into a compatible hardware platform is highlighted, as is the importance of long-term maintenance of the cells' viability and activity. The use of multi-member sensors' panels is presented as a means for enhancing the detection spectrum and sample "fingerprinting", along with a list of different purposes to which such sensors have been put to use.
Collapse
Affiliation(s)
- Shimshon Belkin
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Łaska G, Matejczyk M, Dauksza U. The expression of different gene constructs in Escherichia coli SM lux biosensor after exposure to drugs. Sci Rep 2024; 14:31899. [PMID: 39738597 PMCID: PMC11685396 DOI: 10.1038/s41598-024-83190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The research used bacterial biosensors containing bacterial luciferase genes to monitor changes in the environment in real-time. In this work to express four different gene constructs: recA:luxCDABE, soxS:luxCDABE, micF:luxCDABE, and rpoB:luxCDABE in Escherichia coli SM lux biosensor after exposure to three different antibiotics (nalidixic acid, ampicillin, kanamycin) and diclofenac was determined. It was found that incubation of the E. coli SM strain in various concentrations of analytes results in differentiation in gene expression at each of the tested concentrations (from 0.625 to 10 µg/mL) and during all three measurements, in "time 0", after 30 min. and after 1 h. The measurable signal is created as a result of the action of reporter genes (bacterial luciferase genes luxCDABE), present in genetically modified bacterial cells. E. coli luminescent bioreporters in the stationary phase were used. In the analysis of the induction of the promoter (regulatory proteins) to the control (0 µg/ml), the highest biosensor response was shown in the case of kanamycin concentration equal to 0.625 µg/mL after 1-h incubation. The highest increase express gene construct was found for micF:luxCDABE in E. coli SM343 lux biosensor, where the micF promoter induction relative to the control at a concentration of 0.625 µg/mL is 73.9%.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, 15-351, Białystok, Poland.
| | - Marzena Matejczyk
- Department of Chemistry, Biology and Biotechnology, of Natural Products Chemistry, Bialystok University of Technology, 15-351, Białystok, Poland
| | - Urszula Dauksza
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, 15-351, Białystok, Poland
| |
Collapse
|
3
|
Gregucci D, Nazir F, Calabretta MM, Michelini E. Illuminating Progress: The Contribution of Bioluminescence to Sustainable Development Goal 6-Clean Water and Sanitation-Of the United Nations 2030 Agenda. SENSORS (BASEL, SWITZERLAND) 2023; 23:7244. [PMID: 37631781 PMCID: PMC10458275 DOI: 10.3390/s23167244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The United Nations Agenda 2030 Sustainable Development Goal 6 (SDG 6) aims at ensuring the availability and sustainable management of water and sanitation. The routine monitoring of water contaminants requires accurate and rapid analytical techniques. Laboratory analyses and conventional methods of field sampling still require considerable labor and time with highly trained personnel and transport to a central facility with sophisticated equipment, which renders routine monitoring cumbersome, time-consuming, and costly. Moreover, these methods do not provide information about the actual toxicity of water, which is crucial for characterizing complex samples, such as urban wastewater and stormwater runoff. The unique properties of bioluminescence (BL) offer innovative approaches for developing advanced tools and technologies for holistic water monitoring. BL biosensors offer a promising solution by combining the natural BL phenomenon with cutting-edge technologies. This review provides an overview of the recent advances and significant contributions of BL to SDG 6, focusing attention on the potential use of the BL-based sensing platforms for advancing water management practices, protecting ecosystems, and ensuring the well-being of communities.
Collapse
Affiliation(s)
- Denise Gregucci
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.G.); (F.N.); (M.M.C.)
- Center for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Faisal Nazir
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.G.); (F.N.); (M.M.C.)
| | - Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.G.); (F.N.); (M.M.C.)
- Center for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.G.); (F.N.); (M.M.C.)
- Center for Applied Biomedical Research (CRBA), Azienda Ospedaliero-Universitaria Policlinico S. Orsola-Malpighi, 40138 Bologna, Italy
- Health Sciences and Technologies Interdepartmental Center for Industrial Research (HSTICIR), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Huang L, Wu C, Gao H, Xu C, Dai M, Huang L, Hao H, Wang X, Cheng G. Bacterial Multidrug Efflux Pumps at the Frontline of Antimicrobial Resistance: An Overview. Antibiotics (Basel) 2022; 11:antibiotics11040520. [PMID: 35453271 PMCID: PMC9032748 DOI: 10.3390/antibiotics11040520] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Multidrug efflux pumps function at the frontline to protect bacteria against antimicrobials by decreasing the intracellular concentration of drugs. This protective barrier consists of a series of transporter proteins, which are located in the bacterial cell membrane and periplasm and remove diverse extraneous substrates, including antimicrobials, organic solvents, toxic heavy metals, etc., from bacterial cells. This review systematically and comprehensively summarizes the functions of multiple efflux pumps families and discusses their potential applications. The biological functions of efflux pumps including their promotion of multidrug resistance, biofilm formation, quorum sensing, and survival and pathogenicity of bacteria are elucidated. The potential applications of efflux pump-related genes/proteins for the detection of antibiotic residues and antimicrobial resistance are also analyzed. Last but not least, efflux pump inhibitors, especially those of plant origin, are discussed.
Collapse
|
5
|
Lu MY, Kao WC, Belkin S, Cheng JY. A Smartphone-Based Whole-Cell Array Sensor for Detection of Antibiotics in Milk. SENSORS 2019; 19:s19183882. [PMID: 31505815 PMCID: PMC6767005 DOI: 10.3390/s19183882] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/03/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
We present an integral smartphone-based whole-cell biosensor, LumiCellSense (LCS), which incorporates a 16-well biochip with an oxygen permeable coating, harboring bioluminescent Escherichia coli bioreporter cells, a macro lens, a lens barrel, a metal heater tray, and a temperature controller, enclosed in a light-impermeable case. The luminescence emitted by the bioreporter cells in response to the presence of the target chemicals is imaged by the phone’s camera, and a dedicated phone-embedded application, LCS_Logger, is employed to calculate photon emission intensity and plot it in real time on the device’s screen. An alert is automatically given when light intensity increases above the baseline, indicating the presence of the target. We demonstrate the efficacy of this system by the detection of residues of an antibiotic, ciprofloxacin (CIP), in whole milk, with a detection threshold of 7.2 ng/mL. This value is below the allowed maximum as defined by European Union regulations.
Collapse
Affiliation(s)
- Mei-Yi Lu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Wei-Chen Kao
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan.
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan.
- College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
6
|
Parthasarathy R, Monette CE, Bracero S, S Saha M. Methods for field measurement of antibiotic concentrations: limitations and outlook. FEMS Microbiol Ecol 2019; 94:5033401. [PMID: 29931290 DOI: 10.1093/femsec/fiy105] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 11/13/2022] Open
Abstract
The growing prevalence of antibiotic resistance poses an increasingly serious threat to human health. Although an important driver of antibiotic resistance is the continuous exposure of bacteria to sublethal concentrations of antibiotics in natural environments, antibiotic pollutants are not currently tracked globally or systematically. This limits the international capacity to address the rise of antibiotic resistance at its source. To address this lack of data, the development of methods to measure antibiotic concentrations on-site is essential. These methods, ideally, must be sensitive to sublethal concentrations of antibiotics and require minimal technical expertise. Furthermore, factors such as cost, selectivity, biosafety and the ability to multiplex must be evaluated in the context of field use. Based on these criteria, we provide a critical review of current methods in antibiotic detection and evaluate their adaptability for use on-site. We categorize these methods into microbiological assays, physical and chemical assays, immunoassays, aptasensors and whole-cell biosensors. We recommend continued development of a dipstick or microfluidics approach with a bacterial promoter-based mechanism and colorimetric output. This technique would incorporate the advantageous aspects of existing methods, maximize shelf-life and ease-of-use, and require minimal resources to implement in the field.
Collapse
Affiliation(s)
- Ranjani Parthasarathy
- Department of Biology, Integrated Science Center, College of William and Mary, 540 Landrum Dr., Williamsburg, Virginia, 23187-8795, USA
| | - Callan E Monette
- Department of Biology, Integrated Science Center, College of William and Mary, 540 Landrum Dr., Williamsburg, Virginia, 23187-8795, USA
| | - Sabrina Bracero
- Department of Biology, Integrated Science Center, College of William and Mary, 540 Landrum Dr., Williamsburg, Virginia, 23187-8795, USA
| | - Margaret S Saha
- Department of Biology, Integrated Science Center, College of William and Mary, 540 Landrum Dr., Williamsburg, Virginia, 23187-8795, USA
| |
Collapse
|
7
|
Kao WC, Belkin S, Cheng JY. Microbial biosensing of ciprofloxacin residues in food by a portable lens-free CCD-based analyzer. Anal Bioanal Chem 2017; 410:1257-1263. [PMID: 29256081 DOI: 10.1007/s00216-017-0792-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
We present a rapid and simple approach for sensitive detection of antibiotic residues in food samples based on luminescence induction by live bacterial sensor strains integrated into a CCD-based lens-free optical analyzer (LumiSense). Using ciprofloxacin as a model antibiotic, we demonstrate response times of between 20 and 80 min, and detection thresholds of 8 ng/mL for milk, egg white, and chicken essence, and 64 ng/mL for egg yolk. These values are below the minimal allowed values as defined by European Union regulations. Although not intended to replace traditional analytical equipment and regulation-approved methods, LumiSense and similar systems, sample preparation for which involves only simple mixing, dilution, and homogenization, may nevertheless provide a simple means for high-throughput food sample screening. Graphical abstract Detection of bioluminescence from genetically modified bacteria offers a simple and effective way for monitoring an antibiotic, ciprofloxacin, in milk without prior sample preparation.
Collapse
Affiliation(s)
- Wei-Chen Kao
- Research Center for Applied Sciences, Academia Sinica, 128 Section 2, Academia Road, Taipei, 11529, Taiwan
| | - Shimshon Belkin
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, 91904, Jerusalem, Givat Ram, Israel
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, 128 Section 2, Academia Road, Taipei, 11529, Taiwan. .,Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, No.2 Pei-Ning Road, Keelung, 20224, Taiwan. .,Institute of Biophotonics, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan. .,College of Engineering, Chang Gung Engineering, 259 Wen-Hwa 1st Road, Guishan District, Taoyuan, 33302, Taiwan.
| |
Collapse
|
8
|
Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays. BIOMED RESEARCH INTERNATIONAL 2015; 2015:182107. [PMID: 26436087 PMCID: PMC4576000 DOI: 10.1155/2015/182107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/26/2015] [Indexed: 11/21/2022]
Abstract
Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, technologies for patterning live cells on solid surfaces, cellular immobilization in different polymers, and studies on their application in environmental monitoring, disease diagnostics, and other related fields. On the basis of these results, we discuss current challenges and future prospects for novel microbial cell arrays, which show promise for use as potent tools for unraveling complex biological processes.
Collapse
|