1
|
Kalogiannis A, Vasiliadou IA, Tsiamis A, Galiatsatos I, Stathopoulou P, Tsiamis G, Stamatelatou K. Enhancement of Biodegradability of Chicken Manure via the Addition of Zeolite in a Two-Stage Dry Anaerobic Digestion Configuration. Molecules 2024; 29:2568. [PMID: 38893444 PMCID: PMC11173769 DOI: 10.3390/molecules29112568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Leach bed reactors (LBRs) are dry anaerobic systems that can handle feedstocks with high solid content, like chicken manure, with minimal water addition. In this study, the chicken manure was mixed with zeolite, a novel addition, and packed in the LBR to improve biogas production. The resulting leachate was then processed in a continuous stirred tank reactor (CSTR), where most of the methane was produced. The supernatant of the CSTR was returned to the LBR. The batch mode operation of the LBR led to a varying methane production rate (MPR) with a peak in the beginning of each batch cycle when the leachate was rich in organic matter. Comparing the MPR in both systems, the peaks in the zeolite system were higher and more acute than in the control system, which was under stress, as indicated by the acetate accumulation at 2328 mg L-1. Moreover, the presence of zeolite in the LBR played a crucial role, increasing the overall methane yield from 0.142 (control experiment) to 0.171 NL CH4 per g of volatile solids of chicken manure entering the system at a solid retention time of 14 d. Zeolite also improved the stability of the system. The ammonia concentration increased gradually due to the little water entering the system and reached 3220 mg L-1 (control system) and 2730 mg L-1 (zeolite system) at the end of the experiment. It seems that zeolite favored the accumulation of the ammonia at a lower rate (14.0 mg L-1 d-1) compared to the control experiment (17.3 mg L-1 d-1). The microbial analysis of the CSTR fed on the leachate from the LBR amended with zeolite showed a higher relative abundance of Methanosaeta (83.6%) compared to the control experiment (69.1%). Both CSTRs established significantly different bacterial profiles from the inoculum after 120 days of operation (p < 0.05). Regarding the archaeal communities, there were no significant statistical differences between the CSTRs and the inoculum (p > 0.05).
Collapse
Affiliation(s)
- Achilleas Kalogiannis
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, GR-67132 Xanthi, Greece; (A.K.); (I.A.V.)
| | - Ioanna A. Vasiliadou
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, GR-67132 Xanthi, Greece; (A.K.); (I.A.V.)
- Department of Chemical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece
| | - Athanasios Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece; (A.T.); (I.G.); (P.S.); (G.T.)
| | - Ioannis Galiatsatos
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece; (A.T.); (I.G.); (P.S.); (G.T.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece; (A.T.); (I.G.); (P.S.); (G.T.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece; (A.T.); (I.G.); (P.S.); (G.T.)
| | - Katerina Stamatelatou
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, GR-67132 Xanthi, Greece; (A.K.); (I.A.V.)
| |
Collapse
|
2
|
Ruiz-Bastidas RC, Ochoa-Durán C, Sanabria J, Cadavid-Rodríguez LS. Effect of Ecuadorian natural zeolite on the performance of anaerobic digestion of swine waste in semicontinuous regime. CHEMOSPHERE 2024; 352:141517. [PMID: 38387656 DOI: 10.1016/j.chemosphere.2024.141517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/24/2024]
Abstract
This study explores the potential of zeolite as an amendment to mitigate ammonium inhibition in the anaerobic digestion of swine waste. Two 50 L reactors, one with and one without zeolite amendment were operated at an OLR of 3.0 g VS L-1d-1 for 130 days, and fed with swine waste from a full-scale pig farm. Under these conditions, zeolite doses of 4 g L-1 allowed total ammonia nitrogen (TAN) concentrations to be kept below 1000 mgNH3-N L-1. The zeolite-amended reactor not only showed an average increase of 8% in methane production under stable conditions but also exhibited 34% reduction in H2S concentrations in the biogas, compared to the reactor without zeolite. The community of archaea originating from the inoculum was conserved in the reactor with zeolite amendment, particularly the acetoclastic methanogens of the genus Methanosaeta. On the other hand, in the reactor without zeolite addition, the microbial community went from being dominated by the acetoclastic methanogen Methanosaeta to having a high relative abundance of hydrogenotrophic methanogens. The zeolite addition also favoured the reactor stability, prevented foaming, and produced an enriched natural zeolite with N, P and K. However, additional studies on the potential of enriched zeolite as a fertilizer are required, which could make the use of zeolite in Anaerobic Digestion of swine waste not only energetically favourable but also economically feasible.
Collapse
Affiliation(s)
- Rosa Cecilia Ruiz-Bastidas
- Universidad Nacional de Colombia - Sede Medellín, Facultad de Ciencias, Cra. 65 #59a-110, Medellín, 050034, Colombia.
| | - Camilo Ochoa-Durán
- Universidad Nacional de Colombia - Sede Palmira, Facultad de Ingeniería y Administración, Departamento de Ingeniería, Cra. 32 No 12-00, Palmira, 763533, Colombia
| | - Janeth Sanabria
- Universidad del Valle, Microbiology and Environmental Biotechnology Laboratory, Cali, 760042, Colombia
| | - Luz Stella Cadavid-Rodríguez
- Universidad Nacional de Colombia - Sede Palmira, Facultad de Ingeniería y Administración, Departamento de Ingeniería, Cra. 32 No 12-00, Palmira, 763533, Colombia.
| |
Collapse
|
3
|
Tang CC, Zhang BC, Yao XY, Sangeetha T, Zhou AJ, Liu W, Ren YX, Li Z, Wang A, He ZW. Natural zeolite enhances anaerobic digestion of waste activated sludge: Insights into the performance and the role of biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118704. [PMID: 37540982 DOI: 10.1016/j.jenvman.2023.118704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/15/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Anaerobic digestion is widely employed for the treatment of waste activated sludge (WAS) due to its advantages like simultaneous energy recovery and sludge stabilization, promoting carbon-neutral operation of wastewater treatment plants. Natural zeolite, a low-cost and eco-friendly additive, has the potential to improve methane production from anaerobic digestion. This study investigated the effects of natural zeolite on anaerobic digestion when the substrate was WAS. It was found that methane production potential in response to natural zeolite was dosage-dependent. The optimal dosage was 0.1 g zeolite/g volatile suspended solids (VSS), with a methane yield of 181.89 ± 6.75 mL/g VSS, which increased by 20.1% compared to that of the control. Although the methane yields with other dosages of natural zeolite were higher than that of control, they were lesser than that with 0.1 g zeolite/g VSS. Natural zeolite affected transfer and conversion of proteins much more than polysaccharides in liquid phase and extracellular polymeric substances. In anaerobic digestion, natural zeolite had with little effects on WAS solubilization, while it improved hydrolysis, acidification, and methanogenesis. The dosages of natural zeolite did have significant effects on bacterial communities in biofilm rather than suspension, while the archaeal communities in biofilm and suspension were all greatly related to natural zeolite dosages. The developed biofilms promoted richness and functionality of microbial communities. The syntrophic metabolism relationships between methanogens and bacteria were improved, which was proved by selective enrichment of Methanosarcina, Syntrophomonas, and Petrimonas. The findings of this work provided some new solutions for promoting methane production from WAS, and the roles of natural zeolite in anaerobic digestion.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Bao-Cai Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xing-Ye Yao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, And Industrial Sectors, National Taipei University of Technology, Taipei, 10608, Taiwan, China; Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan, China
| | - Ai-Juan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Wenzong Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yong-Xiang Ren
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhihua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| |
Collapse
|
4
|
Ruíz-Bastidas RC, Turnes G, Palacio E, Cadavid-Rodríguez LS. Natural Ecuadorian zeolite: An effective ammonia adsorbent to enhance methane production from swine waste. CHEMOSPHERE 2023:139098. [PMID: 37307928 DOI: 10.1016/j.chemosphere.2023.139098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) of swine waste allows obtaining renewable energy, biofertilizer and the reduction of environmental impacts. However, the low C:N ratio of pig manure generates high concentrations of ammonia nitrogen in the digestion process, reducing methane production. Zeolite is an effective ammonia adsorbent; thus, in this research the ammonia adsorption capacity of natural Ecuadorian zeolite was studied under different operating conditions. Subsequently, its effect on methane production from swine waste was evaluated using three doses of zeolite, 1.0, 4.0 and 8.0 g, in 1 L batch bioreactors. The results showed that the Ecuadorian natural zeolite has an adsorption capacity of around 19 mgNH3-N gZ-1 when using ammonium chloride solution and, an adsorption capacity between 37 and 65 mgNH3-N gZ-1 using swine waste. On the other hand, the addition of zeolite had a significant effect on methane production (p < 0.01). The zeolite doses that provided the highest methane production were 4.0 and 8.0 g L-1, which led to values of 0.375 and 0.365 Nm3CH4 kgVS-1, compared to the values of 0.350 and 0.343 Nm3CH4 kgVS-1 that were obtained for the treatments without addition of zeolite and using a dose of 1.0 g L-1, respectively. Addition of natural Ecuadorian zeolite meant not only a significant increase on methane production in the AD of swine waste, but also a better quality of the biogas with higher percentages of methane and lower concentrations of H2S.
Collapse
Affiliation(s)
| | - Gemma Turnes
- Department of Chemistry, University of the Balearic Islands, Cra.Valldemossa km 7.5, 07122, Palma de Mallorca, Spain
| | - Edwin Palacio
- Department of Chemistry, University of the Balearic Islands, Cra.Valldemossa km 7.5, 07122, Palma de Mallorca, Spain.
| | - Luz Stella Cadavid-Rodríguez
- Department of Engineering, Faculty of Engineering and Administration, Universidad Nacional de Colombia - Sede Palmira, Cra. 32 No 12-00, Palmira, Colombia.
| |
Collapse
|
5
|
Gao W, Zhi S, Chang CC, Zou S, Zhang K. Different rapid startups for high-solid anaerobic digestion treating pig manure: Metagenomic insights into antibiotic resistance genes fate and microbial metabolic pathway. ENVIRONMENTAL RESEARCH 2023; 231:116038. [PMID: 37146932 DOI: 10.1016/j.envres.2023.116038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
High-solid anaerobic digestion (HSAD), as an emerging disposal technology for swine manure, was commonly hampered by the long lag phase and slow startup, resulting in poor performance. Rapid startups by different leachate reflux forms can solve the problem, but related study was scarcely reported. Therefore, metagenomic analysis was used to exploit the effects of different rapid startups on the biogas performance, antibiotic resistance genes (ARGs) removal and microbial metabolic pathway during HSAD. Compared anaerobic digestion with natural start (T1), three different rapid startups were set, including with autologous leachate reflux (T2), with water reflux (T3) and with exogenous leachate reflux (T4). The results showed that rapid startups (T2-T4) enhanced biogas yield and the cumulative methane yield was increased by 3.7-7.3 times compared with the control. Totally, 922 ARGs were found, most of which belonged to multidrug and MLS ARGs. About 56% of these ARGs could be reduced in T4, while just 32% of ARGs were reduced in T1. Antibiotic efflux pump is the main mechanism of microbial action, which could be decreased largely by these treatments. Moreover, all the rapid startups (T2-T4) made Methanosarcina content (9.59%-75.91%) higher than that in the natural startup of T1 (4.54%-40.27%). This is why these fast-startups helped methane production fast. Network analysis showed that microbial community and environmental factors (pH and VFAs) both contributed to the spread of ARGs. The reconstructed methane metabolic pathway by different identified genes showed that all methanogenesis pathways existed but acetate metabolic pathway was dominant. And the rapid startups made the abundance of acetate metabolic (M00357) higher than the natural startup.
Collapse
Affiliation(s)
- Wenxuan Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Suli Zhi
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Chein-Chi Chang
- Washington D.C. Water and Sewer Authority, 689 Cragsmoor Road Ellicott City, 21042, USA; Chang Tech International, Inc, 3685 Cragsmoor Road, Ellicott City, MD 21042, USA
| | - Shaolan Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Keqiang Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
6
|
Yadav M, Joshi C, Paritosh K, Thakur J, Pareek N, Masakapalli SK, Vivekanand V. Reprint of:Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2022; 71:62-76. [DOI: 10.1016/j.ymben.2022.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022]
|
7
|
Organic waste conversion through anaerobic digestion: A critical insight into the metabolic pathways and microbial interactions. Metab Eng 2021; 69:323-337. [PMID: 34864213 DOI: 10.1016/j.ymben.2021.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/23/2022]
Abstract
Anaerobic digestion is a promising method for energy recovery through conversion of organic waste to biogas and other industrial valuables. However, to tap the full potential of anaerobic digestion, deciphering the microbial metabolic pathway activities and their underlying bioenergetics is required. In addition, the behavior of organisms in consortia along with the analytical abilities to kinetically measure their metabolic interactions will allow rational optimization of the process. This review aims to explore the metabolic bottlenecks of the microbial communities adopting latest advances of profiling and 13C tracer-based analysis using state of the art analytical platforms (GC, GC-MS, LC-MS, NMR). The review summarizes the phases of anaerobic digestion, the role of microbial communities, key process parameters of significance, syntrophic microbial interactions and the bottlenecks that are critical for optimal bioenergetics and enhanced production of valuables. Considerations into the designing of efficient synthetic microbial communities as well as the latest advances in capturing their metabolic cross talk will be highlighted. The review further explores how the presence of additives and inhibiting factors affect the metabolic pathways. The critical insight into the reaction mechanism covered in this review may be helpful to optimize and upgrade the anaerobic digestion system.
Collapse
|
8
|
Abstract
Processing of the produced primary and secondary sludge during sewage treatment is demanding and requires considerable resources. Most common practices suggest the cotreatment of primary and secondary sludge starting with thickening and anaerobic digestion. The aim of this study is to investigate the anaerobic digestion of the primary sludge only and estimate its impact on sludge treatment and energy recovery. Within this context, the performance of the anaerobic digestion of primary sludge is explored and focused on practices to further enhance the methane production by using additives, e.g., a cationic polyelectrolyte and attapulgite. The results showed that the overall yield in methane production during anaerobic digestion of primary sludge alone was higher than that obtained by the anaerobic digestion of mixed primary and secondary sludge (up to 40%), while the addition of both organic polyelectrolyte and attapulgite enhanced further the production of methane (up to 170%). Attapulgite increased the hydrolysis rate of biosolids and produced relatively stabilized digestate, though of lower dewaterability. Moreover, the results suggest that single digestion of primary sludge may accomplish higher methane production capacities at lower digestors’ volume increasing their overall efficiency and productivity, while the produced digestates are of adequate quality for further utilization mainly in agricultural or energy sectors.
Collapse
|
9
|
Yuan X, Ou J, Zhang P, Xu W, Jiang B, Tang K. PEG-modified lipase immobilized onto NH2-MIL-53 MOF for efficient resolution of 4-fluoromandelic acid enantiomers. Int J Biol Macromol 2020; 165:1793-1802. [DOI: 10.1016/j.ijbiomac.2020.10.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/27/2022]
|
10
|
Ciezkowska M, Bajda T, Decewicz P, Dziewit L, Drewniak L. Effect of Clinoptilolite and Halloysite Addition on Biogas Production and Microbial Community Structure during Anaerobic Digestion. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4127. [PMID: 32957462 PMCID: PMC7560405 DOI: 10.3390/ma13184127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023]
Abstract
The study presents a comparison of the influence of a clinoptilolite-rich rock-zeolite (commonly used for improving anaerobic digestion processes)-and a highly porous clay mineral, halloysite (mainly used for gas purification), on the biogas production process. Batch experiments showed that the addition of each mineral increased the efficiency of mesophilic anaerobic digestion of both sewage sludge and maize silage. However, halloysite generated 15% higher biogas production during maize silage transformation. Halloysite also contributed to a much higher reduction of chemical oxygen demand for both substrates (by ~8% for maize silage and ~14% for sewage sludge) and a higher reduction of volatile solids and total ammonia for maize silage (by ~8% and ~4%, respectively). Metagenomic analysis of the microbial community structure showed that the addition of both mineral sorbents influenced the presence of key members of archaea and bacteria occurring in a well-operated biogas reactor. The significant difference between zeolite and halloysite is that the latter promoted the immobilization of key methanogenic archaea Methanolinea (belong to Methanomicrobia class). Based on this result, we postulate that halloysite could be useful not only as a sorbent for (bio)gas treatment methodologies but also as an agent for improving biogas production.
Collapse
Affiliation(s)
- Martyna Ciezkowska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Tomasz Bajda
- Department of Mineralogy, Petrography and Geochemistry, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland;
| | - Przemyslaw Decewicz
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| | - Lukasz Drewniak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.C.); (P.D.); (L.D.)
| |
Collapse
|
11
|
Lu T, Zhang J, Li P, Shen P, Wei Y. Enhancement of methane production and antibiotic resistance genes reduction by ferrous chloride during anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2020; 298:122519. [PMID: 31855663 DOI: 10.1016/j.biortech.2019.122519] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
In this study, effects of ferrous chloride (FeCl2) addition on methane production and antibiotic resistance genes (ARGs) reduction were investigated during anaerobic digestion (AD) of swine manure. FeCl2 could both improve the accumulative methane production and reduce the abundance of total ARGs, i.e., the maximum increase of CH4 production of 21.5% at FC5, and the maximum ARGs reduction of 33.3% at FC25. The reduction of pathogenic bacteria and metal resistance genes (MRGs) was enhanced. Acetate and propionate utilization were intensified by enhancing H2 utilization and direct interspecies electron transfer (DIET), where DIET was further enhanced by the reaction of the FeCl2 and acetic acid. The bacterial community played important role in the evolution of ARGs (68.26%), which were also affected by MRGs, mobile genetic elements (MGEs), and environmental factors. Therefore, FeCl2-based AD is a feasible and attractive way to improve methane production and ARG reduction.
Collapse
Affiliation(s)
- Tiedong Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ping Li
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China; Institute of Energy, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
12
|
Lu T, Zhang J, Wei Y, Shen P. Effects of ferric oxide on the microbial community and functioning during anaerobic digestion of swine manure. BIORESOURCE TECHNOLOGY 2019; 287:121393. [PMID: 31100564 DOI: 10.1016/j.biortech.2019.121393] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 05/16/2023]
Abstract
Iron-based materials have been suggested as environmentally-friendly additives that can enhance methane production during anaerobic digestion (AD). In this study, the effects of ferric oxide (Fe2O3) addition on methane production were investigated during swine manure AD. In addition, the effects of Fe2O3 addition on the AD ternary pH buffer system and microbial community were evaluated. Fe2O3 could improve the accumulative methane production by maximum 11.06% when adding 75 mmol of Fe2O3. Higher methane production could be attributed to the enhancement of direct interspecies electron transfer (DIET) and the formation of Fe-S precipitates, but not the addition of Fe2O3 as a nutrient. Furthermore, Fe2O3 addition enhanced methanogenesis rather than acetogenesis, as evinced by analysis of functional genes. Nevertheless, high-throughput sequence analysis of microbial community composition revealed the lack of a significant influence by Fe2O3 addition, and Fe2O3 addition did not significantly affect the ternary pH buffer system.
Collapse
Affiliation(s)
- Tiedong Lu
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China
| | - Junya Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Water Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Peihong Shen
- College of Life Science and Technology, Guangxi University, Nanning 530005, Guangxi, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530005, Guangxi, China.
| |
Collapse
|
13
|
Li R, Liu D, Zhang Y, Zhou J, Tsang YF, Liu Z, Duan N, Zhang Y. Improved methane production and energy recovery of post-hydrothermal liquefaction waste water via integration of zeolite adsorption and anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:61-69. [PMID: 30227293 DOI: 10.1016/j.scitotenv.2018.09.175] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
Hydrothermal liquefaction (HTL) is a promising technology for converting organic wastes into bio-crude oil, with organic-rich post-hydrothermal liquefaction wastewater (PHWW) as by-product. In this study, zeolite adsorption and anaerobic digestion (AD) were integrated to improve the methane production and energy recovery of PHWW from Chlorella 1067. A statistical design for maximum toxicants removal by zeolite was applied before AD process. Zeolite could mitigate the inhibition associated to compounds such as ammonia, N-heterocyclic compounds, etc. in PHWW and thereby shortening the lag phase and increasing methane production by 32-117% compared with that without zeolite adsorption. Zeolite adsorption also increased energy recovery efficiency (up to 70.5%) for this integrated system. Integration of HTL and AD brought higher energetic return from feedstock via oil and biomethane production, which may offer insight into industrial application of microalgae biomass in the circular economy. In addition, carbon and nitrogen flow for the integrated process was determined.
Collapse
Affiliation(s)
- Ruirui Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Dianlei Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Jialiang Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong, China
| | - Zhidan Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Na Duan
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuanhui Zhang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
14
|
Enhancing Anaerobic Digestion: The Effect of Carbon Conductive Materials. C — JOURNAL OF CARBON RESEARCH 2018. [DOI: 10.3390/c4040059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anaerobic digestion is a well-known technology which has been extensively studied to improve its performance and yield biogas from substrates. The application of different types of pre-treatments has led to an increase in biogas production but also in global energy demand. However, in recent years the use of carbon conductive materials as supplement for this process has been studied resulting in an interesting way for improving the performance of anaerobic digestion without greatly affecting its energy demand. This review offers an introduction to this interesting approach and covers the different experiences performed on the use of carbon conductive materials proposing it as a feasible alternative for the production of energy from biomass, considering also the integration of anaerobic digestion and thermal valorisation.
Collapse
|
15
|
Jia H, Liu W, Wang J, Ngo HH, Guo W, Zhang H. Optimization of sensing performance in an integrated dual sensors system combining microbial fuel cells and upflow anaerobic sludge bed reactor. CHEMOSPHERE 2018; 210:931-940. [PMID: 30208553 DOI: 10.1016/j.chemosphere.2018.07.119] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Two bio-cathode microbial fuel cells (MFCs) with Upflow anaerobic sludge blanket (UASB) are integrated to construct a UASB-MFC dual sensors system, developed to solve the problems of low accuracy and less information about the single sensor system. The bio-cathode MFC is developed as the biosensor for UASB operation performance and online monitoring. Owing to the biosorption of anaerobic microbes, the MFC in the suspended layer is more suitable for effluent chemical oxygen demand (COD) real-time monitoring, and the MFC in the sludge layer is more suitable for total volatile fatty acid (TVFA) real-time monitoring. Electrochemical analysis discovers that the lower electron transfer resistance determines the higher sensitivity of MFC in the suspended layer. The difference in species abundance indicates that TVFA has a stronger inhibitory effect on MFC in the sludge layer. The novel UASB-MFC dual sensors system shows promising potential for COD and TVFA simultaneous online monitoring, which can enhance the reliability of anaerobic reaction.
Collapse
Affiliation(s)
- Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Wenbin Liu
- State Key Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Huu-Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Process, Tianjin Polytechnic University, Tianjin 300387, China; School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
16
|
Wijesinghe DTN, Dassanayake KB, Scales P, Chen D. Developing an anaerobic digester with external Zeolite filled column for enhancing methane production from swine manure - A feasibility study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:751-760. [PMID: 29995574 DOI: 10.1080/03601234.2018.1480164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/28/2018] [Indexed: 06/08/2023]
Abstract
Development of digesters with an external zeolite column facilitates the convenient removal of the zeolite with TAN, without disturbing the continuous anaerobic digestion process. A digester with an inside zeolite bed (In-Zeo) and digester without adding zeolite (No-Zeo) were employed to compare the process performance with digester with external zeolite column (EX-Zeo). The cumulative, CH4 yields were 5% and 15% greater in the EX-Zeo, and the In-Zeo digesters respectively compared to the No-Zeo digesters. Also, the % VS reduction was 49%, 55% and 41%, respectively in the Ex-Zeo, In-Zeo and No-Zeo digesters. The results indicated that treatment with 7% zeolite during anaerobic digestion has the potential to improve biodegradation of swine manure. The addition of zeolite appeared to reduce TAN from the digestate, thereby enhancing the CH4 yield. Zeolite could be used either internally or externally to enhance CH4 production through anaerobic digestion of swine manure.
Collapse
Affiliation(s)
- D Thushari N Wijesinghe
- a Faculty of Veterinary & Agricultural Sciences , University of Melbourne, Melbourne , Victoria , Australia
| | | | - Peter Scales
- b School of Engineering , University of Melbourne , Melbourne , Victoria , Australia
| | - Deli Chen
- a Faculty of Veterinary & Agricultural Sciences , University of Melbourne, Melbourne , Victoria , Australia
| |
Collapse
|
17
|
Meng X, Yu D, Wei Y, Zhang Y, Zhang Q, Wang Z, Liu J, Wang Y. Endogenous ternary pH buffer system with ammonia-carbonates-VFAs in high solid anaerobic digestion of swine manure: An alternative for alleviating ammonia inhibition? Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Pérez-Pérez T, Pereda-Reyes I, Pozzi E, Oliva-Merencio D, Zaiat M. Performance and stability of an expanded granular sludge bed reactor modified with zeolite addition subjected to step increases of organic loading rate (OLR) and to organic shock load (OSL). WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 77:39-50. [PMID: 29339602 DOI: 10.2166/wst.2017.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper shows the effect of organic shock loads (OSLs) on the anaerobic digestion (AD) of synthetic swine wastewater using an expanded granular sludge bed (EGSB) reactor modified with zeolite. Two reactors (R1 and R2), each with an effective volume of 3.04 L, were operated for 180 days at a controlled temperature of 30 °C and hydraulic retention time of 12 h. In the case of R2, 120 g of zeolite was added. The reactors were operated with an up-flow velocity of 6 m/h. The evolution of pH, total Kjeldahl nitrogen, chemical oxygen demand (COD) and volatile fatty acids (VFAs) was monitored during the AD process with OSL and increases in the organic loading rate (OLR). In addition, the microbial composition and changes in the structure of the bacterial and archaeal communities were assessed. The principal results demonstrate that the presence of zeolite in an EGSB reactor provides a more stable process at higher OLRs and after applying OSL, based on both COD and VFA accumulation, which presented with significant differences compared to the control. Denaturing gradient gel electrophoresis band profiles indicated differences in the populations of Bacteria and Archaea between the R1 and R2 reactors, attributed to the presence of zeolite.
Collapse
Affiliation(s)
- T Pérez-Pérez
- Institute of Animal Science (ICA), San José de las Lajas, Mayabeque, Cuba; Process Engineering Centre, Universidad Tecnológica de La Habana 'José Antonio Echeverría' (Cujae), 11901, 114 Street, Marianao, Havana, Cuba E-mail:
| | - I Pereda-Reyes
- Process Engineering Centre, Universidad Tecnológica de La Habana 'José Antonio Echeverría' (Cujae), 11901, 114 Street, Marianao, Havana, Cuba E-mail:
| | - E Pozzi
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - D Oliva-Merencio
- Study Centre of Renewable Energy Technologies, Universidad Tecnológica de La Habana 'José Antonio Echeverría' (Cujae), 11901, 114 Street, Marianao, Havana, Cuba
| | - M Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| |
Collapse
|
19
|
Wosman A, Lu Y, Sun S, Liu X, Wan C, Zhang Y, Lee DJ, Tay J. Effect of operational strategies on activated sludge's acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:221-228. [PMID: 27281169 DOI: 10.1016/j.jhazmat.2016.05.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/27/2016] [Accepted: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Aerobic granules, a relative novel form of microbial aggregate, are capable of degrading many toxic organic pollutants. Appropriate strategy is needed to acclimate seed sludge to the toxic compounds for successful granulation. In this study, two distinct strategies, i.e. mixed or single carbon sources, were experimented to obtain phenol-acclimated sludge. Their effects on reactor performance, biomass characteristics, microbial population and the granulation process were analyzed. Sludge fed with phenol alone exhibited faster acclimation and earlier appearance of granules, but possibly lower microbial diversity and reactor stability. Using a mixture of acetate and phenol in the acclimation stage, on the other hand, led to a reactor with slower phenol degradation and granulation, but eventual formation of strong and stable aerobic granules. In addition, the content of intracellular polyhydoxyakanoates (PHA) was also monitored, and significant accumulation was observed during the pre-granulation stage, where PHA >50% of dry weight was observed in both reactors.
Collapse
Affiliation(s)
- Afrida Wosman
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Yuhao Lu
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Supu Sun
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China.
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, 220 Handan Road, Yangpu District, Shanghai, 200433, China.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - JooHwa Tay
- Department of Civil Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
20
|
Cai W, Huang W, Li H, Sun B, Xiao H, Zhang Z, Lei Z. Acetate favors more phosphorus accumulation into aerobic granular sludge than propionate during the treatment of synthetic fermentation liquor. BIORESOURCE TECHNOLOGY 2016; 214:596-603. [PMID: 27183235 DOI: 10.1016/j.biortech.2016.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 06/05/2023]
Abstract
Anaerobic digestion (AD) is an efficient biotechnology widely applied for energy and resource recovery from organic waste and wastewater treatment. The effluent from AD or fermentation liquor containing organic substances like volatile fatty acids (VFAs) and mineral nutrients (such as N and P), however, will trigger serious environmental issues if not properly dealt with. In this study two identical sequencing batch reactors (SBRs), namely Ra and Rp were used to cultivate aerobic granules for P recovery from synthetic fermentation liquor, respectively using acetate and propionate as additional carbon source. Larger and more stable granules were achieved in Ra with higher P removal capability (9.4mgP/g-VSS·d) and higher anaerobic P release (6.9mgP/g-VSS·h). In addition to much higher P content (78mgP/g-SS), bioavailable P in Ra-granules increased to 45mgP/g-SS, approximately 2-times those of seed sludge and Rp-granules. Microbial community analysis indicated that more GAOs were accumulated in Rp-granules.
Collapse
Affiliation(s)
- Wei Cai
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Wenli Huang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Huifang Li
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Beina Sun
- Shanghai Biotechnology Corporation, 151 Libing Road, Shanghai 201203, China
| | - Huasheng Xiao
- Shanghai Biotechnology Corporation, 151 Libing Road, Shanghai 201203, China
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
21
|
Microorganisms meet solid minerals: interactions and biotechnological applications. Appl Microbiol Biotechnol 2016; 100:6935-46. [DOI: 10.1007/s00253-016-7678-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/08/2016] [Accepted: 06/11/2016] [Indexed: 10/21/2022]
|
22
|
Weiß S, Somitsch W, Klymiuk I, Trajanoski S, Guebitz GM. Comparison of biogas sludge and raw crop material as source of hydrolytic cultures for anaerobic digestion. BIORESOURCE TECHNOLOGY 2016; 207:244-251. [PMID: 26894564 DOI: 10.1016/j.biortech.2016.01.137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Mixed fermentative/hydrolytic bacteria were enriched on lignocellulose substrates in minimal medium under semi-anaerobic mesophilic conditions in the presence or absence of natural zeolite as growth supporter to ultimately bioaugment non-adapted sludge and thereby enhance the overall anaerobic digestion (AD) of recalcitrant plant material. Desired enzyme activities, i.e. xylanases and cellulase were monitored during subsequent cultivation cycles. Furthermore, enriched microbial communities were characterized by 16S rRNA-based 454-Pyrosequencing, revealing Firmicutes, Bacteriodetes, Proteobacteria and Spirochaetes to be the predominant bacterial groups in cultures derived from anaerobic sludge and raw crop material, i.e. maple green cut and wheat straw as well. Enriched populations relevant for biopolymer hydrolysis were then compared in biological methane potential tests to demonstrate positive effects on the biogasification of renewable plant substrate material. A significant impact on methane productivity was observed with adapted mixed cultures when used in combination with clinoptilolite to augment and supplement non-adapted bioreactor sludge.
Collapse
Affiliation(s)
- Stefan Weiß
- Austrian Centre of Industrial Biotechnology, Petersgasse 14/5, A-8010 Graz, Austria.
| | - Walter Somitsch
- Engineering Consultant, Wiedner Hauptstrasse 90/2/19, A-1050 Vienna, Austria; IPUS Mineral- und Umwelttechnologie GmbH, Werksgasse 281, A-8786 Rottenmann, Austria
| | - Ingeborg Klymiuk
- Medical University of Graz, Centre for Medical Research, Core Facility Molecular Biology, Stiftingtalstraße 24, A-8010 Graz, Austria
| | - Slave Trajanoski
- Medical University of Graz, Centre for Medical Research, Core Facility Computational Bioanalytics, Bioinformatics, Stiftingtalstraße 24, A-8010 Graz, Austria
| | - Georg M Guebitz
- Austrian Centre of Industrial Biotechnology, Petersgasse 14/5, A-8010 Graz, Austria; University of Natural Resources and Life Sciences, Institute of Environmental Biotechnology, Konrad Lorenz Strasse 20, A-3430 Tulln, Austria
| |
Collapse
|
23
|
Linville JL, Shen Y, Urgun-Demirtas M, Snyder SW. Effect of particle size and doses of olivine addition on carbon dioxide sequestration during anaerobic digestion of sewage sludge at ambient and mesophilic temperatures. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Huang H, He L, Lei Z, Zhang Z. Contribution of precipitates formed in fermentation liquor to the enhanced biogasification of ammonia-rich swine manure by wheat-rice-stone addition. BIORESOURCE TECHNOLOGY 2015; 175:486-493. [PMID: 25459859 DOI: 10.1016/j.biortech.2014.10.142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
This study investigated the effect of wheat-rice-stone (WRS) addition on mesophilic anaerobic fermentation for methane production from swine manure under high ammonia nitrogen level (5145mg-N/L) in addition to exploring its possible mechanisms involved. Results show that addition of WRS could not only effectively increase methane production by 72% from 82.8 (control) to 142.7ml/g-VS but also remarkably shorten the effective biogasification period from 40 (control) to 20days. In addition, WRS addition could promote the degradation of n-HBu and slow down the accumulation of other volatile fatty acids (VFAs) species, achieving much faster VFAs utilization rate and better pH maintaining capability. More specifically, the existing and released ions especially Ca(2+), Mg(2+), and Fe(3+/2+) were supposed to form precipitates (like struvite and Fe-precipitates) with NH4(+) and PO4(3-) rich in the fermentation liquor, probably contributing a lot to the decreased ammonia concentration and enhanced biogasification under WRS addition.
Collapse
Affiliation(s)
- He Huang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Leilei He
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
25
|
Montalvo S, Martin JS, Huiliñir C, Guerrero L, Borja R. Assessment of a UASB reactor with high ammonia concentrations: Effect of zeolite addition on process performance. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|