1
|
Gagneten M, Passot S, Cenard S, Ghorbal S, Schebor C, Fonseca F. Mechanistic study of the differences in lactic acid bacteria resistance to freeze- or spray-drying and storage. Appl Microbiol Biotechnol 2024; 108:361. [PMID: 38837050 PMCID: PMC11585501 DOI: 10.1007/s00253-024-13186-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/02/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Lactobacillus delbrueckii subsp. bulgaricus and Lactiplantibacillus plantarum are two lactic acid bacteria (LAB) widely used in the food industry. The objective of this work was to assess the resistance of these bacteria to freeze- and spray-drying and study the mechanisms involved in their loss of activity. The culturability and acidifying activity were measured to determine the specific acidifying activity, while membrane integrity was studied by flow cytometry. The glass transitions temperature and the water activity of the dried bacterial suspensions were also determined. Fourier transform infrared (FTIR) micro-spectroscopy was used to study the biochemical composition of cells in an aqueous environment. All experiments were performed after freezing, drying and storage at 4, 23 and 37 °C. The results showed that Lb. bulgaricus CFL1 was sensitive to osmotic, mechanical, and thermal stresses, while Lpb. plantarum WCFS1 tolerated better the first two types of stress but was more sensitive to thermal stress. Moreover, FTIR results suggested that the sensitivity of Lb. bulgaricus CFL1 to freeze-drying could be attributed to membrane and cell wall degradation, whereas changes in nucleic acids and proteins would be responsible of heat inactivation of both strains associated with spray-drying. According to the activation energy values (47-85 kJ/mol), the functionality loss during storage is a chemically limited reaction. Still, the physical properties of the glassy matrix played a fundamental role in the rates of loss of activity and showed that a glass transition temperature 40 °C above the storage temperature is needed to reach good preservation during storage. KEY POINTS: • Specific FTIR bands are proposed as markers of osmotic, mechanic and thermal stress • Lb. bulgaricus CFL1 was sensitive to all three stresses, Lpb. plantarum WCFS1 to thermal stress only • Activation energy revealed chemically limited reactions ruled the activity loss in storage.
Collapse
Affiliation(s)
- Maite Gagneten
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, ITAPROQ (UBA- CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Stéphanie Passot
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, F-91120, France
| | - Stéphanie Cenard
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, F-91120, France
| | - Sarrah Ghorbal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, F-91120, France
| | - Carolina Schebor
- Departamento de Industrias, Facultad de Ciencias Exactas y Naturales, ITAPROQ (UBA- CONICET), Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernanda Fonseca
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, Palaiseau, F-91120, France.
| |
Collapse
|
2
|
Lahmamsi H, Ananou S, Lahlali R, Tahiri A. Lactic acid bacteria as an eco-friendly approach in plant production: Current state and prospects. Folia Microbiol (Praha) 2024; 69:465-489. [PMID: 38393576 DOI: 10.1007/s12223-024-01146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Since the late nineteenth century, the agricultural sector has experienced a tremendous increase in chemical use in response to the growing population. Consequently, the intensive and indiscriminate use of these substances caused serious damage on several levels, including threatening human health, disrupting soil microbiota, affecting wildlife ecosystems, and causing groundwater pollution. As a solution, the application of microbial-based products presents an interesting and ecological restoration tool. The use of Plant Growth-Promoting Microbes (PGPM) affected positive production, by increasing its efficiency, reducing production costs, environmental pollution, and chemical use. Among these microbial communities, lactic acid bacteria (LAB) are considered an interesting candidate to be formulated and applied as effective microbes. Indeed, these bacteria are approved by the European Food Safety Authority (EFSA) and Food and Drug Administration (FDA) as Qualified Presumption of Safety statute and Generally Recognized as Safe for various applications. To do so, this review comes as a road map for future research, which addresses the different steps included in LAB formulation as biocontrol, bioremediation, or plant growth promoting agents from the isolation process to their field application passing by the different identification methods and their various uses. The plant application methods as well as challenges limiting their use in agriculture are also discussed.
Collapse
Affiliation(s)
- Haitam Lahmamsi
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco
| | - Samir Ananou
- Laboratoire de Biotechnologie Microbienne et Molécules Bioactives, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdellah, Route Immouzer BP 2202, Fez, Morocco
| | - Rachid Lahlali
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| | - Abdessalem Tahiri
- Unité de Phytopathologie, Département de Protection des Plantes, Ecole Nationale d'Agriculture, Km10, Rt Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
| |
Collapse
|
3
|
Kiepś J, Juzwa W, Dembczyński R. Imaging Flow Cytometry Demonstrates Physiological and Morphological Diversity within Treated Probiotic Bacteria Groups. Int J Mol Sci 2023; 24:ijms24076841. [PMID: 37047813 PMCID: PMC10095186 DOI: 10.3390/ijms24076841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Probiotic bacteria can be introduced to stresses during the culturing phase as an alternative to the use of protectants and coating substances during drying. Accurate enumeration of the bacterial count in a probiotic formulation can be provided using imaging flow cytometry (IFC). IFC overcomes the weak points of conventional, commonly used flow cytometry by combining its statistical power with the imaging content of microscopy in one system. Traditional flow cytometers only collect the fluorescence signal intensities, while IFC provides many more steps as it correlates the data on the measured parameters of fluorescence light with digitally processed images of the analyzed cells. As an alternative to standard methods (plate cell counts and traditional flow cytometry) IFC provides additional insight into the physiology and morphology of the cell. The use of complementary dyes (RedoxSensorTM Green and propidium iodide) allows for the designation of groups based on their metabolic activity and membrane damage. Additionally, cell sorting is incorporated to assess each group in terms of growth on different media (MRS-Agar and MRS broth). Results show that the groups with intermediate metabolic activity and some degree of cellular damage correspond with the description of viable but nonculturable cells.
Collapse
Affiliation(s)
- Jakub Kiepś
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Wojciech Juzwa
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| | - Radosław Dembczyński
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland
| |
Collapse
|
4
|
Guerrero Sanchez M, Passot S, Campoy S, Olivares M, Fonseca F. Effect of protective agents on the storage stability of freeze-dried Ligilactobacillus salivarius CECT5713. Appl Microbiol Biotechnol 2022; 106:7235-7249. [PMID: 36192613 DOI: 10.1007/s00253-022-12201-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Ligilactobacillus salivarius is a lactic acid bacterium exhibiting several health benefits but remains commercially underexploited due to its inability to survive during long-term storage in the dried state. Our objective was to study the effect of various protective molecules (maltodextrin, trehalose, antioxidants, and fructooligosaccharides), being efficient on other bacteria, on the freeze-dried stability of L. salivarius CECT5713. The culturability was evaluated after freezing, freeze-drying, and subsequent storage at 37 °C, as well as the biochemical composition of cells in an aqueous environment using Fourier transform infrared (FTIR) micro-spectroscopy. The assignment of principal absorption bands to cellular components was performed using data from the literature on bacteria. The membrane fatty acid composition was determined after freeze-drying and storage. Glass transition temperature of the liquid and freeze-dried bacterial suspensions and water activity of the freeze-dried samples were measured. The best storage stability was observed for the formulations involving maltodextrin and antioxidants. The analysis of the FTIR spectra of freeze-thawed cells and rehydrated cells after freeze-drying and storage revealed that freeze-drying induced damage to proteins, peptidoglycans of the cell wall and nucleic acids. Storage stability appeared to be dependent on the ability of the protective molecules to limit damage during freeze-drying. The inactivation rates of bacteria during storage were analyzed as a function of the temperature difference between the product temperature during sublimation or during storage and the glass transition temperature, allowing a better insight into the stabilization mechanisms of freeze-dried bacteria. Maintaining during the process a product temperature well below the glass transition temperature, especially during storage, appeared essential for L. salivarius CECT5713 storage stability. KEY POINTS: • L. salivarius CECT5713 highly resisted freezing but was sensitive to freeze-drying and storage. • Freeze-drying and storage mainly altered cell proteins, peptidoglycans, and nucleic acids. • A glassy matrix containing maltodextrin and an antioxidant ensured the highest storage stability.
Collapse
Affiliation(s)
| | - Stéphanie Passot
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 91120, Palaiseau, France
| | - Sonia Campoy
- R&D Department, Biosearch S.A.U (a Kerry® Company), 18004, Granada, Spain
| | - Monica Olivares
- R&D Department, Biosearch S.A.U (a Kerry® Company), 18004, Granada, Spain
| | - Fernanda Fonseca
- UMR SayFood, Université Paris-Saclay, INRAE, AgroParisTech, 91120, Palaiseau, France.
| |
Collapse
|
5
|
Antimicrobial activity against Staphylococcus aureus and genome features of Lactiplantibacillus plantarum LR-14 from Sichuan pickles. Arch Microbiol 2022; 204:637. [PMID: 36127470 DOI: 10.1007/s00203-022-03232-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
The persistence of Staphylococcus aureus within biofilm can lead to contamination of medical devices and life-threatening infections. Luckily, lactic acid bacteria (LAB) have an inhibitory effect on the growth of these bacteria. This study aims to select LAB strains from fermented vegetables, and analyze their potential inhibition activities against S. aureus. In total, 45 isolates of LAB were successfully isolated from Sichuan pickles, and the CFS of Lactiplantibacillus plantarum LR-14 exerted the strongest inhibitory effect against S. aureus. Moreover, S. aureus cells in planktonic and biofilm states both wrinkled and damaged when treated with the CFS of L. plantarum LR-14. In addition, whole genome sequencing analysis indicates that L. plantarum LR-14 contains various functional genes, including predicted extracellular polysaccharides (EPS) biosynthesis genes, and genes participating in the synthesis and metabolism of fatty acid, implying that L. plantarum LR-14 has the potential to be used as a probiotic with multiple functions.
Collapse
|
6
|
Kiepś J, Dembczyński R. Current Trends in the Production of Probiotic Formulations. Foods 2022; 11:foods11152330. [PMID: 35954096 PMCID: PMC9368262 DOI: 10.3390/foods11152330] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/01/2023] Open
Abstract
Preparations containing probiotic strains of bacteria have a beneficial effect on human and animal health. The benefits of probiotics translate into an increased interest in techniques for the preservation of microorganisms. This review compares different drying methods and their improvements, with specific reference to processing conditions, microorganisms, and protective substances. It also highlights some factors that may influence the quality and stability of the final probiotic preparations, including thermal, osmotic, oxidative, and acidic stresses, as well as dehydration and shear forces. Processing and storage result in the loss of viability and stability in probiotic formulations. Herein, the addition of protective substances, the optimization of process parameters, and the adaptation of cells to stress factors before drying are described as countermeasures to these challenges. The latest trends and developments in the fields of drying technologies and probiotic production are also discussed. These developments include novel application methods, controlled release, the use of food matrices, and the use of analytical methods to determine the viability of probiotic bacteria.
Collapse
|
7
|
Qian Y, Li Y, Xu T, Zhao H, Zeng M, Liu Z. Dissecting of the AI-2/LuxS Mediated Growth Characteristics and Bacteriostatic Ability of Lactiplantibacillus plantarum SS-128 by Integration of Transcriptomics and Metabolomics. Foods 2022; 11:638. [PMID: 35267271 PMCID: PMC8909743 DOI: 10.3390/foods11050638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Lactiplantibacillus plantarum could regulate certain physiological functions through the AI-2/LuxS-mediated quorum sensing (QS) system. To explore the regulation mechanism on the growth characteristics and bacteriostatic ability of L. plantarum SS-128, a luxS mutant was constructed by a two-step homologous recombination. Compared with ΔluxS/SS-128, the metabolites of SS-128 had stronger bacteriostatic ability. The combined analysis of transcriptomics and metabolomics data showed that SS-128 exhibited higher pyruvate metabolic efficiency and energy input, followed by higher LDH level and metabolite overflow compared to ΔluxS/SS-128, resulting in stronger bacteriostatic ability. The absence of luxS induces a regulatory pathway that burdens the cysteine cycle by quantitatively drawing off central metabolic intermediaries. To accommodate this mutations, ΔluxS/SS-128 exhibited lower metabolite overflow and abnormal proliferation. These results demonstrate that the growth characteristic and metabolism of L. plantarum SS-128 are mediated by the AI-2/LuxS QS system, which is a positive regulator involved in food safety. It would be helpful to investigate more bio-preservation control potential of L. plantarum, especially when applied in food industrial biotechnology.
Collapse
Affiliation(s)
| | | | | | | | | | - Zunying Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; (Y.Q.); (Y.L.); (T.X.); (H.Z.); (M.Z.)
| |
Collapse
|
8
|
Misra S, Pandey P, Dalbhagat CG, Mishra HN. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: a Review. FOOD BIOPROCESS TECH 2022; 15:998-1039. [PMID: 35126801 PMCID: PMC8800850 DOI: 10.1007/s11947-021-02753-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/16/2021] [Indexed: 12/29/2022]
Abstract
From the past few decades, consumers' demand for probiotic-based functional and healthy food products is rising exponentially. Encapsulation is an emerging field to protect probiotics from unfavorable conditions and to deliver probiotics at the target place while maintaining the controlled release in the colon. Probiotics have been encapsulated for decades using different encapsulation methods to maintain their viability during processing, storage, and digestion and to give health benefits. This review focuses on novel microencapsulation techniques of probiotic bacteria including vacuum drying, microwave drying, spray freeze drying, fluidized bed drying, impinging aerosol technology, hybridization system, ultrasonication with their recent advancement, and characteristics of the commonly used polymers have been briefly discussed. Other than novel techniques, characterization of microcapsules along with their mechanism of release and stability have shown great interest recently in developing novel functional food products with synergetic effects, especially in COVID-19 outbreak. A thorough discussion of novel processing technologies and applications in food products with the incorporation of recent research works is the novelty and highlight of this review paper.
Collapse
Affiliation(s)
- Sourav Misra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Pooja Pandey
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Chandrakant Genu Dalbhagat
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| | - Hari Niwas Mishra
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721 302 India
| |
Collapse
|
9
|
Moreira MTC, Martins E, Perrone ÍT, de Freitas R, Queiroz LS, de Carvalho AF. Challenges associated with spray drying of lactic acid bacteria: Understanding cell viability loss. Compr Rev Food Sci Food Saf 2021; 20:3267-3283. [PMID: 34146458 DOI: 10.1111/1541-4337.12774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Lactic acid bacteria (LAB) cultures used in food fermentation are often dried to reduce transportation costs and facilitate handling during use. Dried LAB ferments are generally lyophilized to ensure high cell viability. Spray drying has come to the forefront as a promising technique due to its versatility and lower associated energy costs. Adverse conditions during spray drying, such as mechanical stress, dehydration, heating, and oxygen exposure, can lead to low LAB cell viability. This reduced viability has limited spray drying's industrial applications thus far. This review aims to demonstrate the operations and thermodynamic principles that govern spray drying, then correlate them to the damage suffered by LAB cells during the spray-drying process. The particularities of spray drying that might cause LAB cell death are detailed in this review, and the conclusion may enhance future studies on ways to improve cell viability.
Collapse
Affiliation(s)
| | - Evandro Martins
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Ítalo Tuler Perrone
- Pharmaceutical Sciences Department, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Rosângela de Freitas
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Lucas Sales Queiroz
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | | |
Collapse
|
10
|
Gaio D, DeMaere MZ, Anantanawat K, Eamens GJ, Liu M, Zingali T, Falconer L, Chapman TA, Djordjevic SP, Darling AE. A large-scale metagenomic survey dataset of the post-weaning piglet gut lumen. Gigascience 2021; 10:giab039. [PMID: 34080630 PMCID: PMC8173662 DOI: 10.1093/gigascience/giab039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early weaning and intensive farming practices predispose piglets to the development of infectious and often lethal diseases, against which antibiotics are used. Besides contributing to the build-up of antimicrobial resistance, antibiotics are known to modulate the gut microbial composition. As an alternative to antibiotic treatment, studies have previously investigated the potential of probiotics for the prevention of postweaning diarrhea. In order to describe the post-weaning gut microbiota, and to study the effects of two probiotics formulations and of intramuscular antibiotic treatment on the gut microbiota, we sampled and processed over 800 faecal time-series samples from 126 piglets and 42 sows. RESULTS Here we report on the largest shotgun metagenomic dataset of the pig gut lumen microbiome to date, consisting of >8 Tbp of shotgun metagenomic sequencing data. The animal trial, the workflow from sample collection to sample processing, and the preparation of libraries for sequencing, are described in detail. We provide a preliminary analysis of the dataset, centered on a taxonomic profiling of the samples, and a 16S-based beta diversity analysis of the mothers and the piglets in the first 5 weeks after weaning. CONCLUSIONS This study was conducted to generate a publicly available databank of the faecal metagenome of weaner piglets aged between 3 and 9 weeks old, treated with different probiotic formulations and intramuscular antibiotic treatment. Besides investigating the effects of the probiotic and intramuscular antibiotic treatment, the dataset can be explored to assess a wide range of ecological questions with regards to antimicrobial resistance, host-associated microbial and phage communities, and their dynamics during the aging of the host.
Collapse
Affiliation(s)
- Daniela Gaio
- The iThree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Matthew Z DeMaere
- The iThree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Kay Anantanawat
- The iThree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Graeme J Eamens
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
| | - Michael Liu
- The iThree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Tiziana Zingali
- The iThree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Linda Falconer
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
| | - Toni A Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle NSW 2568, Australia
| | - Steven P Djordjevic
- The iThree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Aaron E Darling
- The iThree Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
11
|
Yang K, Liu M, Yang J, Wei X, Fan M, Zhang G. Physiological and proteomic responses of freeze-dried Oenococcus oeni SD-2a with ethanol-acclimations. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Marcial-Coba MS, Knøchel S, Nielsen DS. Low-moisture food matrices as probiotic carriers. FEMS Microbiol Lett 2019; 366:5281433. [PMID: 30629190 DOI: 10.1093/femsle/fnz006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
To exert a beneficial effect on the host, adequate doses of probiotics must be administered and maintaining their viability until consumption is thus essential. Dehydrated probiotics exhibit enhanced long-term viability and can be incorporated into low-moisture food matrices, which also possess high stability at refrigeration and ambient temperature. However, several factors associated with the desiccation process, the physicochemical properties of the matrix and the storage conditions can affect probiotic survival. In the near future, an increased demand for probiotics based on functionally dominant members of the gut microbiome ('next-generation probiotics', NGP) is expected. NGPs are very sensitive to oxygen and efficient encapsulation protocols are needed. Strategies to improve the viability of traditional probiotics and particularly of NGPs involve the selection of a suitable carrier as well as proper desiccation and protection techniques. Dehydrated probiotic microcapsules may constitute an alternative to improve the microbial viability during not only storage but also upper gastrointestinal tract passage. Here we review the main dehydration techniques that are applied in the industry as well as the potential stresses associated with the desiccation process and storage. Finally, low- or intermediate-moisture food matrices suitable as carriers of traditional as well as NGPs will be discussed.
Collapse
Affiliation(s)
- Martín Sebastián Marcial-Coba
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Susanne Knøchel
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| | - Dennis Sandris Nielsen
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark
| |
Collapse
|
13
|
Makhathini SS, Kalhapure RS, Jadhav M, Waddad AY, Gannimani R, Omolo CA, Rambharose S, Mocktar C, Govender T. Novel two-chain fatty acid-based lipids for development of vancomycin pH-responsive liposomes against Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA). J Drug Target 2019; 27:1094-1107. [DOI: 10.1080/1061186x.2019.1599380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sifiso S. Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rahul S. Kalhapure
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy, The University of Texas, El Paso, TX, USA
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ayman Y. Waddad
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ramesh Gannimani
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Ou F, McGoverin C, Swift S, Vanholsbeeck F. Near real-time enumeration of live and dead bacteria using a fibre-based spectroscopic device. Sci Rep 2019; 9:4807. [PMID: 30886183 PMCID: PMC6423134 DOI: 10.1038/s41598-019-41221-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/28/2019] [Indexed: 01/05/2023] Open
Abstract
A rapid, cost-effective and easy method that allows on-site determination of the concentration of live and dead bacterial cells using a fibre-based spectroscopic device (the optrode system) is proposed and demonstrated. Identification of live and dead bacteria was achieved by using the commercially available dyes SYTO 9 and propidium iodide, and fluorescence spectra were measured by the optrode. Three spectral processing methods were evaluated for their effectiveness in predicting the original bacterial concentration in the samples: principal components regression (PCR), partial least squares regression (PLSR) and support vector regression (SVR). Without any sample pre-concentration, PCR achieved the most reliable results. It was able to quantify live bacteria from 108 down to 106.2 bacteria/mL and showed the potential to detect as low as 105.7 bacteria/mL. Meanwhile, enumeration of dead bacteria using PCR was achieved between 108 and 107 bacteria/mL. The general procedures described in this article can be applied or modified for the enumeration of bacteria within populations stained with fluorescent dyes. The optrode is a promising device for the enumeration of live and dead bacterial populations particularly where rapid, on-site measurement and analysis is required.
Collapse
Affiliation(s)
- Fang Ou
- Department of Physics, The University of Auckland, Auckland, New Zealand.
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand.
| | - Cushla McGoverin
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| | - Simon Swift
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Frédérique Vanholsbeeck
- Department of Physics, The University of Auckland, Auckland, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland, New Zealand
| |
Collapse
|
15
|
Gong P, Sun J, Lin K, Di W, Zhang L, Han X. Changes process in the cellular structures and constituents of Lactobacillus bulgaricus sp1.1 during spray drying. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Zhang C, Yang L, Ding Z, Yin B, Chen D, Guan C, Gu R. New selective media for isolation and enumeration of Lactobacillus rhamnosus and Streptococcus thermophilus. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00059-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Yang K, Zhu Y, Qi Y, Zhang T, Liu M, Zhang J, Wei X, Fan M, Zhang G. Analysis of proteomic responses of freeze-dried Oenococcus oeni to access the molecular mechanism of acid acclimation on cell freeze-drying resistance. Food Chem 2019; 285:441-449. [PMID: 30797368 DOI: 10.1016/j.foodchem.2019.01.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/24/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Malolactic fermentation (MLF), usually induced by Oenococcus oeni (O. oeni), is an important process to improve wine quality. Acid acclimation has been proven to be useful for enhancing the viability of lyophilized O. oeni. To explain the involved mechanisms, cell integrity, morphology and protein patterns of lyophilized O. oeni SD-2a were investigated with acid acclimation. After lyophilization, improvement of cell integrity and more extracellular polymeric substances (EPS) were observed in acid acclimated cells. Combined with GO and KEGG analysis, different abundant proteins were noticeably enriched in the carbohydrate metabolism process, especially amino sugar and nucleotide sugar metabolism. The most significant result was the over-expression of proteins participating in cell wall biosynthesis, EPS production, ATP binding and the bacterial secretion system. This result indicated the important role of acid acclimation on cell envelope properties. In addition, protein response to stress and arginine deiminase pathway were also proven to be over-expressed.
Collapse
Affiliation(s)
- Kun Yang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China; College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Yang Zhu
- School of Agriculture and Food Sciences, University of Queensland, QLD 4046, Australia
| | - Yiman Qi
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Tingjing Zhang
- College of Food Science and Technology, Henan University of Technology, Zhenzhou 450001, China
| | - Miaomiao Liu
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Jie Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Xinyuan Wei
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China
| | - Mingtao Fan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China.
| | - Guoqiang Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
18
|
Efficient Culture of Rhodopseudomonas Palustris Using Landfill Leachate. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.4.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Pellicer-Alborch K, Angersbach A, Neubauer P, Junne S. Electrooptical Determination of Polarizability for On-Line Viability and Vitality Quantification of Lactobacillus plantarum Cultures. Front Bioeng Biotechnol 2018; 6:188. [PMID: 30564571 PMCID: PMC6289024 DOI: 10.3389/fbioe.2018.00188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
The rapid assessment of cell viability is crucial for process optimization, e.g., during media selection, determination of optimal environmental growth conditions and for quality control. In the present study, the cells' electric anisotropy of polarizability (AP) as well as the mean cell length in Lactobacillus plantarum batch and fed-batch fermentations were monitored with electrooptical measurements coupled to fully automated sample preparation. It was examined, whether this measurement can be related to the cells' metabolic activity, and thus represents a suitable process analytical technology. It is demonstrated that the AP is an early indicator to distinguish between suitable and unsuitable growth conditions in case of a poor energy regeneration or cell membrane defects in L. plantarum batch and fed-batch cultivations. It was shown that the applied method allowed the monitoring of physiological and morphological changes of cells in various growth phases in response to a low pH-value, substrate concentration changes, temperature alterations, exposure to air and nutrient limitation. An optimal range for growth in batch mode was achieved, if the AP remained above 25·10−28 F·m2 and the mean cell length at ~2.5 μm. It was further investigated, in which way the AP develops after freeze-drying of samples, which were taken in different cultivation phases. It was found that the AP increased most rapidly in resuspended samples from the retardation and late stationary phases, while samples from the early stationary phase recovered slowly. Electrooptical measurements provide valuable information about the physiologic and morphologic state of L. plantarum cells, e.g., when applied as starter cultures or as probiotic compounds.
Collapse
Affiliation(s)
- Klaus Pellicer-Alborch
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Stefan Junne
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
20
|
Zhou F, Jiang X, Wang T, Zhang B, Zhao H. Lyciumbarbarum Polysaccharide (LBP): A Novel Prebiotics Candidate for Bifidobacterium and Lactobacillus. Front Microbiol 2018; 9:1034. [PMID: 29867910 PMCID: PMC5968096 DOI: 10.3389/fmicb.2018.01034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/01/2018] [Indexed: 11/13/2022] Open
Abstract
Lycium barbarum is a boxthorn that produces the goji berries. The aim of the current study was to evaluate the proliferative effect of L. barbarum polysaccharides (LBP) on probiotics. LBP was extracted from goji berries and its monosaccharide composition characterized by gas chromatography (GC). The LBP extract contained arabinose, rhamnose, xylose, mannose, galactose, and glucose. LBP obviously promoted the proliferation of lactic acid bacteria (LAB) strains, especially Bifidobacterium longum subsp. infantis Bi-26 and Lactobacillus acidophilus NCFM. In the presence of LBP in the growth medium, the β-galactosidase (β-GAL) and lactate dehydrogenase (LDH) activities of strain Bi-26 significantly increased. The activities of β-GAL, LDH, hexokinase (HK), 6-phosphofructokinase (PFK), and pyruvate kinase (PK) of strain NCFM significantly increased under those conditions. LAB transcriptome sequencing analysis was performed to elucidate the mechanism responsible for the proliferative effect of LBP. The data revealed that LBP promoted the bacterial biosynthetic and metabolic processes, gene expression, transcription, and transmembrane transport. Pyruvate metabolism, carbon metabolism, phosphotransferase system (PTS), and glycolysis/gluconeogenesis genes were overexpressed. Furthermore, LBP improved cell vitality during freeze-drying and tolerance of the gastrointestinal environment. In summary, LBP can be used as a potential prebiotic for Bifidobacterium and Lactobacillus.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoying Jiang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
| | - Tao Wang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Bolin Zhang
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Hongfei Zhao
- Department of Food Science, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
21
|
Silva MP, Tulini FL, Martins E, Penning M, Fávaro-Trindade CS, Poncelet D. Comparison of extrusion and co-extrusion encapsulation techniques to protect Lactobacillus acidophilus LA3 in simulated gastrointestinal fluids. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Berninger T, González López Ó, Bejarano A, Preininger C, Sessitsch A. Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microb Biotechnol 2018; 11:277-301. [PMID: 29205959 PMCID: PMC5812248 DOI: 10.1111/1751-7915.12880] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/11/2017] [Accepted: 10/08/2017] [Indexed: 01/20/2023] Open
Abstract
The application of beneficial, plant-associated microorganisms is a sustainable approach to improving crop performance in agriculture. However, microbial inoculants are often susceptible to prolonged periods of storage and deleterious environmental factors, which negatively impact their viability and ultimately limit efficacy in the field. This particularly concerns non-sporulating bacteria. To overcome this challenge, the availability of protective formulations is crucial. Numerous parameters influence the viability of microbial cells, with drying procedures generally being among the most critical ones. Thus, technological advances to attenuate the desiccation stress imposed on living cells are key to successful formulation development. In this review, we discuss the core aspects important to consider when aiming at high cell viability of non-sporulating bacteria to be applied as microbial inoculants in agriculture. We elaborate the suitability of commonly applied drying methods (freeze-drying, vacuum-drying, spray-drying, fluidized bed-drying, air-drying) and potential measures to prevent cell damage from desiccation (externally applied protectants, stress pre-conditioning, triggering of exopolysaccharide secretion, 'helper' strains). Furthermore, we point out methods for assessing bacterial viability, such as colony counting, spectrophotometry, microcalorimetry, flow cytometry and viability qPCR. Choosing appropriate technologies for maintenance of cell viability and evaluation thereof will render formulation development more efficient. This in turn will aid in utilizing the vast potential of promising, plant beneficial bacteria as sustainable alternatives to standard agrochemicals.
Collapse
Affiliation(s)
- Teresa Berninger
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Óscar González López
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Ana Bejarano
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Claudia Preininger
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbHCenter for Health and BioresourcesBioresources UnitKonrad‐Lorenz‐Straße 243430TullnAustria
| |
Collapse
|
23
|
Ou F, McGoverin C, Swift S, Vanholsbeeck F. Absolute bacterial cell enumeration using flow cytometry. J Appl Microbiol 2017; 123:464-477. [DOI: 10.1111/jam.13508] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/18/2017] [Accepted: 06/04/2017] [Indexed: 11/29/2022]
Affiliation(s)
- F. Ou
- Department of Physics; The Dodd-Walls Centre for Photonic and Quantum Technologies; The University of Auckland; Auckland New Zealand
| | - C. McGoverin
- Department of Physics; The Dodd-Walls Centre for Photonic and Quantum Technologies; The University of Auckland; Auckland New Zealand
| | - S. Swift
- School of Medical Sciences; The University of Auckland; Auckland New Zealand
| | - F. Vanholsbeeck
- Department of Physics; The Dodd-Walls Centre for Photonic and Quantum Technologies; The University of Auckland; Auckland New Zealand
| |
Collapse
|
24
|
Buszewski B, Milanowski M, Ligor T, Pomastowski P. Investigation of bacterial viability from incubated saliva by application of flow cytometry and hyphenated separation techniques. Electrophoresis 2017; 38:2081-2088. [PMID: 28429817 DOI: 10.1002/elps.201700057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/31/2017] [Accepted: 04/14/2017] [Indexed: 12/23/2022]
Abstract
The aim of the study was determination of bacterial viability in saliva samples and finding a correlation between microbiological and volatile profiles of saliva depending on incubation time. Bacteria colonizing healthy oral cavities were also identified. Twelve healthy adults donated unstimulated saliva samples. Flow cytometry, optical density measurements and colony-forming unit (CFU) counting method were employed for analyses of native and inoculated saliva after 0, 1, 2, 24, and 48 h of incubation. Volatile profiles were acquired using headspace-solid phase microextraction-gas chromatography/mass spectrometry (HS-SPME-GC/MS). Oral bacteria were the most viable within 2 h after collection of saliva. Extension of incubation time to 48 h caused considerable decrease in live bacteria counts and sharp increase in dead bacteria counts. The most prevalent strain was Sphingomonas paucimobilis (26.67%). The number of volatiles raised from 5 to 27 with incubation time and most of them were putrefaction products, such as methanethiol, indole and pyrrole. HS-SPME-GC/MS method is insufficient for volatile profiling of "fresh" saliva and should be directed rather to investigation of bacterial metabolites.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
25
|
Zou W, Li X, Lai Z, Zhang X, Hu X, Zhou Q. Graphene Oxide Inhibits Antibiotic Uptake and Antibiotic Resistance Gene Propagation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33165-33174. [PMID: 27934199 DOI: 10.1021/acsami.6b09981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Antibiotics and antibiotic resistance genes (ARGs) in the natural environment have become substantial threats to the ecosystem and public health. Effective strategies to control antibiotics and ARG contaminations are emergent. A novel carbon nanomaterial, graphene oxide (GO), has attracted a substantial amount of attention in environmental fields. This study discovered the inhibition effects of GO on sulfamethoxazole (SMZ) uptake for bacteria and ARG transfer among microorganisms. GO promoted the penetration of SMZ from intracellular to extracellular environments by increasing the cell membrane permeability. In addition, the formation of a GO-SMZ complex reduced the uptake of SMZ in bacteria. Moreover, GO decreased the abundance of the sulI and intI genes by approximately 2-3 orders of magnitude, but the global bacterial activity was not obviously inhibited. A class I integron transfer experiment showed that the transfer frequency was up to 55-fold higher in the control than that of the GO-treated groups. Genetic methylation levels were not significant while sulI gene replication was inhibited. The biological properties of ARGs were altered due to the GO-ARG noncovalent combination, which was confirmed using multiple spectral analyses. This work suggests that GO can potentially be applied for controlling ARG contamination via inhibiting antibiotic uptake and ARG propagation.
Collapse
Affiliation(s)
- Wei Zou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Ziyang Lai
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Xingli Zhang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin 300071, China
| |
Collapse
|
26
|
Champagne CP, Raymond Y, Arcand Y. Effects of production methods and protective ingredients on the viability of probiotic Lactobacillus rhamnosus R0011 in air-dried alginate beads. Can J Microbiol 2016; 63:35-45. [PMID: 27900876 DOI: 10.1139/cjm-2016-0349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of this study was to use a microencapsulation technology to prepare air-dried concentrated cultures of Lactobacillus rhamnosus R0011. The cultures were microencapsulated in alginate beads, which were added to a growth medium to allow cell multiplication inside the matrix; the beads were recovered, dipped in protective solutions, and air-dried. The effects of fermentation technology and of the composition of the protective solutions on subsequent survival during air-drying were examined. The cells prepared under a constant pH of 6.2 had only 2.5% survival to air-drying at 25 °C when the protective solution was composed of sucrose and phosphate. Allowing the pH to drop to 4.2 during the biomass production step and using a protective medium composed of glycerol, maltodextrin, yeast extract, and ascorbate increased survival to 20%. If the ingredients of the protective medium at the beginning of drying were concentrated at a water activity of 0.96 rather than 0.98, survival during air-drying increased further to 56%. This rate was similar to that of a traditional freeze-drying process. These data suggest that applying a combination of acid and osmotic stresses to L. rhamnosus R0011 cells improves their subsequent stability during the air-drying process. Dried microencapsulated cultures having 2.6 × 1011 CFU·g-1 were obtained.
Collapse
Affiliation(s)
- Claude P Champagne
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada.,Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Yves Raymond
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada.,Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada
| | - Yves Arcand
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada.,Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard W., Saint-Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
27
|
Broeckx G, Vandenheuvel D, Claes IJ, Lebeer S, Kiekens F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm 2016; 505:303-18. [DOI: 10.1016/j.ijpharm.2016.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
|
28
|
Habtewold T, Duchateau L, Christophides GK. Flow cytometry analysis of the microbiota associated with the midguts of vector mosquitoes. Parasit Vectors 2016; 9:167. [PMID: 27004717 PMCID: PMC4802834 DOI: 10.1186/s13071-016-1438-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/08/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The scientific interest to understand the function and structure of the microbiota associated with the midgut of mosquito disease vectors is increasing. The advancement of such a knowledge has encountered challenges and limitations associated with conventional culture-based and PCR techniques. METHODS Flow cytometry (FCM) combined with various cell marking dyes have been successfully applied in the field of ecological microbiology to circumvent the above shortcomings. Here, we describe FCM technique coupled with live/dead differential staining dyes SYBR Green I (SGI) and Propidium Iodide (PI) to quantify and study other essential characteristics of the mosquito gut microbiota. RESULTS A clear discrimination between cells and debris, as well as between live and dead cells was achieved when the midgut homogenate was subjected to staining with 5 × 103 dilution of the SGI and 30 μM concentration of the PI. Reproducibly, FCM event collections produced discrete populations including non-fluorescent cells, SYBR positive cells, PI fluorescing cells and cells that fluoresce both in SYBR and PI, all these cell populations representing, respectively, background noise, live bacterial, dead cells and inactive cells with partial permeability to PI. The FCM produced a strong linear relationship between cell counts and their corresponding dilution factors (R (2) = 0.987), and the technique has a better precision compared to qRT-PCR. The FCM count of the microbiota reached a peak load at 18 h post-feeding and started declining at 24 h. The present FCM technique also successfully applied to quantify bacterial cells in fixed midgut samples that were homogenized in 4 % PFA. CONCLUSION The FCM technique described here offers enormous potential and possibilities of integration with advanced molecular biochemical techniques for the study of the microbiota community in disease vector mosquitoes.
Collapse
Affiliation(s)
- Tibebu Habtewold
- Department of Life Sciences, Imperial College London, London, UK ,Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, University of Ghent, Ghent, Belgium
| | | |
Collapse
|
29
|
Alonso S. Novel Preservation Techniques for Microbial Cultures. NOVEL FOOD FERMENTATION TECHNOLOGIES 2016. [DOI: 10.1007/978-3-319-42457-6_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
|
31
|
Soto-Muñoz L, Torres R, Usall J, Viñas I, Solsona C, Teixidó N. DNA-based methodologies for the quantification of live and dead cells in formulated biocontrol products based on Pantoea agglomerans CPA-2. Int J Food Microbiol 2015; 210:79-83. [PMID: 26114590 DOI: 10.1016/j.ijfoodmicro.2015.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/02/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Pantoea agglomerans strain CPA-2 is an effective biocontrol agent (BCA) against the major postharvest pathogens present on pome and citrus fruits. Dehydration, such as freeze-drying, spray-drying and fluidized bed drying is one of the best ways to formulate BCAs. In this work, the survival of CPA-2 cells after formulation was determined by dilution plating and molecular methods as qPCR alone and combined with a sample pretreatment with a propidium monoazide dye (PMA-qPCR) and they were used to calculate treatment concentrations in efficacy trials on postharvest oranges. Furthermore, no significant differences in CPA-2 survival were observed as determined by dilution plating and PMA-qPCR after both the freeze drying and fluidized bed drying processes; however, an interesting significant difference was observed in the spray dried product comparing all quantitative methods. A difference of 0.48 and 2.17 log10 CFU or cells g/dw was observed among PMA-qPCR with qPCR and dilution plating, respectively. According to our study, dilution plating was shown to be an unreliable tool for monitoring the survival of CPA-2 after spray drying. In contrast, the combination of PMA and qPCR enabled a quick and unequivocal methodology to enumerate viable and VBNC CPA-2 cells under stress-dried conditions. Efficacy trials showed that, after 3 days, spray drying formulation rehydrated with 10% non-fat skimmed milk (NFSM) was as effective as fresh cells to control Penicillium digitatum in oranges.
Collapse
Affiliation(s)
- Lourdes Soto-Muñoz
- Food Technology Department, Lleida University, XaRTA-Postharvest, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain
| | - Josep Usall
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain
| | - Inmaculada Viñas
- Food Technology Department, Lleida University, XaRTA-Postharvest, Agrotecnio Center, Av. Rovira Roure, 191, 25198 Lleida, Catalonia, Spain
| | - Cristina Solsona
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, 25003 Lleida, Catalonia, Spain.
| |
Collapse
|
32
|
Rüger M, Ackermann M, Reichl U. Species-specific viability analysis of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus in mixed culture by flow cytometry. BMC Microbiol 2014; 14:56. [PMID: 24606608 PMCID: PMC3995885 DOI: 10.1186/1471-2180-14-56] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 02/25/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Bacterial species coexist commonly in mixed communities, for instance those occurring in microbial infections of humans. Interspecies effects contribute to alterations in composition of communities with respect to species and thus, to the course and severity of infection. Therefore, knowledge concerning growth and viability of single species in medically-relevant mixed communities is of high interest to resolve complexity of interspecies dynamics and to support development of treatment strategies. In this study, a flow cytometric method was established to assess the species-specific viability in defined three-species mixed cultures. The method enables the characterization of viability of Pseudomonas aeruginosa, Burkholderia cepacia and Staphylococcus aureus, which are relevant to lung infections of Cystic Fibrosis (CF) patients. The method combines fluorescence detection by antibody and lectin labeling with viability fluorescence staining using SYBRGreen I and propidium iodide. In addition, species-specific cell enumeration analysis using quantitative terminal restriction fragment length polymorphisms (qT-RFLP) was used to monitor the growth dynamics. Finally, to investigate the impact of substrate availability on growth and viability, concentrations of main substrates and metabolites released were determined. RESULTS For each species, the time course of growth and viability during mixed culture cultivations was obtained by using qT-RFLP analysis in combination with flow cytometry. Comparison between mixed and pure cultures revealed for every species differences in growth properties, e.g. enhanced growth of P. aeruginosa in mixed culture. Differences were also observed for B. cepacia and S. aureus in the time course of viability, e.g. an early and drastic reduction of viability of S. aureus in mixed culture. Overall, P. aeruginosa clearly dominated the mixed culture with regard to obtained cell concentrations. CONCLUSIONS In combination with qT-RFLP analysis, the methods enabled monitoring of species-specific cell concentrations and viability during co-cultivation of theses strains. Experimental findings suggest that the predominance of P. aeruginosa over B. cepacia and S. aureus in mixed culture under the chosen cultivation conditions is promoted by more efficient substrate consumption of P. aeruginosa, and antagonistic interspecies effects induced by P. aeruginosa.
Collapse
Affiliation(s)
- Marc Rüger
- Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Mandy Ackermann
- Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
| | - Udo Reichl
- Chair of Bioprocess Engineering, Otto von Guericke University, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|