1
|
Li T, Liu X, Wang Z, Liu C, Liu Y, Cui N, Meng F, Zhang W, Wang D, Xu Y, Zhu X, Guo C, Wang Y. Characterization and rational engineering of an alkaline-tolerant azoreductase derived from Roseibium sp. H3510 for enhanced decolorization of azo dyes. Int J Biol Macromol 2024; 280:135810. [PMID: 39322137 DOI: 10.1016/j.ijbiomac.2024.135810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
rAzoR2326, an azoreductase derived from Roseibium sp. H3510, functions as an FMN-dependent homodimer utilizing NADH as cofactor. It demonstrated maximum activity at 45 °C and retained moderate activity above 50 °C, exhibiting stability from pH 7-10. Evolution and structure guided rational design of wild-type rAzoR2326 (WT) efficiently yielded 6 single-point mutants with improved thermostability and activity from a 22-variant library. Further combinatorial mutation led to mutant M20 with substantially enhanced thermostability (15-fold longer half-life at 50 °C) and activity (3.24-fold higher kcat/Km). M20 exhibited superior catalytic properties for decolorizing Allura Red compared to WT. Specifically, its decolorization capacity at pH 10.0 was 4.26-fold higher than WT. Additionally, M20 demonstrated remarkable thermostability, retaining 76.83 % decolorization activity for Allura Red after 120 min at 50 °C, whereas WT nearly lost all catalytic activity under the same conditions. Molecular dynamics simulations revealed the structural changes in M20, such as improved hydrogen bonding and a new C-H···π interaction, led to a more compact and rigid enzyme structure. This resulted in a more stable FMN-binding pocket and substrate tunnel, thereby improving the catalytic stability and activity of M20. Given its enhanced dye decolorization ability and alkaline tolerance, M20 shows promise as a biocatalyst for treating azo dye effluents.
Collapse
Affiliation(s)
- Tao Li
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xinqi Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Ziwei Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Cong Liu
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ning Cui
- Xinxiang Medical University Sanquan Medical College, Xinxiang 453003, PR China
| | - Fanling Meng
- Academic Affairs Office, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Wenbo Zhang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Dandan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yongtao Xu
- Henan Engineering Laboratory of Combinatorial Technique for Clinical & Biomedical Big Data, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Xueyi Zhu
- Zhengzhou Feier Medical Laboratory Co., LTD, Zhengzhou 450099, PR China
| | - Changjiang Guo
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China
| | - Yan Wang
- Henan Province Engineering Research Center of Innovation for Synthetic Biology, School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang 453003, PR China.
| |
Collapse
|
2
|
Zhou Z, Li R, Ng TB, Huang F, Ye X. Considerations regarding affinity determinants for aflatoxin B 1 in binding cavity of fungal laccase based on in silico mutational and in vitro verification studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113412. [PMID: 35304333 DOI: 10.1016/j.ecoenv.2022.113412] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Laccase, a multicopper oxidase, is well known for its industrial potentials to remove environmental pollutants due to its low substrate specificity to oxidize phenols and thus catalytic versatility. Many efforts focused on the metabolic mechanism, yet to decipher the structural determinants responsible for the differentiation between substrates. Aflatoxin B1 (AFB1), a new substrate for laccase, is a mycotoxin with a formidable environmental threat to public health and food safety. In the present study, we combined biochemical, in silico mutational and molecular-docking data to gain an insight to the function of key residues in the active cavity close to the T1 copper site in a characterized recombinant laccase from Cerrena unicolor (rCuL). Kinetic data for computer-assisted virtual mutants established the binding affinity of hydrogen bonds and residues (Asn336, Asp207, Val391, and Thr165) in rCuL to AFB1. The augmented binding affinity to AFB1 may be related to the conformational rearrangements of the laccase and its ability to hydrogen-bond with the substrate. Furthermore, the optimal pH and temperature for rCuL and variants mediated AFB1 degradation may depend on their pH stability and thermostability. Our findings reinforce the importance of the structure-function relationship of fungal laccases in degrading AFB1, providing mechanistic guidance for future biocatalyst and bioengineering applications.
Collapse
Affiliation(s)
- Zhimin Zhou
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Renkuan Li
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Tzi Bun Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, New Territories 999077, Hong Kong, China
| | - Fang Huang
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China
| | - Xiuyun Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China; The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou 350116, China; National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou 350116, China.
| |
Collapse
|
3
|
Ngo ACR, Qi J, Juric C, Bento I, Tischler D. Identification of molecular basis that underlie enzymatic specificity of AzoRo from Rhodococcus opacus 1CP: A potential NADH:quinone oxidoreductase. Arch Biochem Biophys 2022; 717:109123. [PMID: 35051387 DOI: 10.1016/j.abb.2022.109123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 12/15/2022]
Abstract
Azo dyes are important to various industries such as textile industries. However, these dyes are known to comprise toxic, mutagenic, and carcinogenic representatives. Several approaches have already been employed to mitigate the problem such as the use of enzymes. Azoreductases have been well-studied in its capability to reduce azo dyes. AzoRo from Rhodococcus opacus 1CP has been found to be accepting only methyl red as a substrate, surmising that the enzyme may have a narrow active site. To determine the active site configuration of AzoRo at atomic level and identify the key residues involved in substrate binding and enzyme specificity, we have determined the crystal structure of holo-AzoRo and employed a rational design approach to generate AzoRo variants. The results reported here show that AzoRo has a different configuration of the active site when compared with other bacterial NAD(P)H azoreductases, having other key residues playing a role in the substrate binding and restricting the enzyme activity towards different azo dyes. Moreover, it was observed that AzoRo has only about 50% coupling yield to methyl red and p-benzoquinone - giving rise to the possibility that NADH oxidation still occurs even during catalysis. Results also showed that AzoRo is more active and more efficient towards quinones (about four times higher than methyl red).
Collapse
Affiliation(s)
- Anna Christina R Ngo
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Jingxian Qi
- Environmental Microbiology, Faculty of Chemistry and Physics, TU Bergakademie Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Cindy Juric
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Isabel Bento
- European Molecular Biology Laboratory, EMBL c/o DESY, Building 25A, Notkestr. 85, 22607, Hamburg, Germany
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
| |
Collapse
|
4
|
In vitro and in silico analysis of Brilliant Black degradation by Actinobacteria and a Paraburkholderia sp. Genomics 2022; 114:110266. [PMID: 35031427 DOI: 10.1016/j.ygeno.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/20/2021] [Accepted: 01/08/2022] [Indexed: 11/24/2022]
Abstract
The soil bacteria isolated in this study, including three strains of actinobacteria and one Paraburkholderia sp., showed decolorization activity of azo dyes in the resting cell assay and were shown to use methyl red as the sole carbon source to proliferate. Therefore, their ability to degrade, bioabsorb, or a combination of both was investigated using the substrate brilliant black. The strains DP-A9 and DP-L11, within 24 h of incubation, showed complete biodegradation of 173.54 mg/L brilliant black and the strains DP-D10 and DP-P12 showed partial decolorization of 83.3 mg/L and 36.4 mg/L, respectively, by both biosorption and biodegradation. In addition, the shotgun assembled genome of strains studied included a highly diverse set of genes encoding for candidate dye degrading enzymes, providing avenues to study azo dye metabolism in more detail.
Collapse
|
5
|
Yoneda K, Sakuraba H, Araki T, Ohshima T. Stereospecificity of hydride transfer and molecular docking in FMN-dependent NADH-indigo reductase of Bacillus smithii. FEBS Open Bio 2021; 11:1981-1986. [PMID: 34043290 PMCID: PMC8255831 DOI: 10.1002/2211-5463.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
In this study, we investigated the stereospecificity of hydride transfer from NADH to flavin mononucleotide (FMN) in reactions catalyzed by the FMN‐dependent NADH‐indigo reductase expressed by thermophilic Bacillus smithii. We performed 1H‐NMR spectroscopy using deuterium‐labeled NADH (4R‐2H‐NADH) and molecular docking simulations to reveal that the pro‐S hydrogen at the C4 position of the nicotinamide moiety in NADH was specifically transferred to the flavin‐N5 atom of FNM. Altogether, our findings may aid in the improvement of the indigo dyeing (Aizome) process.
Collapse
Affiliation(s)
- Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kita-gun, Japan
| | - Tomohiro Araki
- Department of Bioscience, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Japan
| |
Collapse
|
6
|
John J, Dineshram R, Hemalatha KR, Dhassiah MP, Gopal D, Kumar A. Bio-Decolorization of Synthetic Dyes by a Halophilic Bacterium Salinivibrio sp. Front Microbiol 2021; 11:594011. [PMID: 33414770 PMCID: PMC7784543 DOI: 10.3389/fmicb.2020.594011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Synthetic dyes, extensively used in various industries, act as pollutants in the aquatic environment, and pose a significant threat to living beings. In the present study, we assessed the potential of a halophilic bacterium Salinivibrio kushneri HTSP isolated from a saltpan for decolorization and bioremediation of synthetic dyes. The genomic assessment of this strain revealed the presence of genes encoding the enzymes involved in decolorization mechanisms including FMN-dependent NADH azoreductase Clade III, which cleave the azo bond of the dye, and the enzymes involved in deamination and isomerization of intermediate compounds. The dye decolorization assay was performed using this bacterial strain on three water-soluble dyes in different concentrations: Coomassie brilliant blue (CBB) G-250 (500–3,000 mg/L), Safranin, and Congo red (50–800 mg/L). Within 48 h, more than 80% of decolorization was observed in all tested concentrations of CBB G-250 and Congo red dyes. The rate of decolorization was the highest for Congo red followed by CBB G-250 and then Safranin. Using UV-Visible spectrometer and Fourier Transform Infrared (FTIR) analysis, peaks were observed in the colored and decolorized solutions. The results indicated a breakdown of dyes upon decolorization, as some peaks were shifted and lost for different vibrations of aromatic rings, aliphatic groups (–CH2, –CH3) and functional groups (–NH, –SO3H, and –SO3−) in decolorized solutions. This study has shown the potential of S. kushneri HTSP to decolorize dyes in higher concentrations at a faster pace than previously reported bacterial strains. Thus, we propose that our isolated strain can be utilized as a potential dye decolorizer and biodegradative for wastewater treatment.
Collapse
Affiliation(s)
- Jojy John
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India.,International Research Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, India
| | - Ramadoss Dineshram
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, India
| | | | - Magesh Peter Dhassiah
- Department of Marine Biotechnology, National Institute of Ocean Technology, Chennai, India
| | - Dharani Gopal
- Department of Marine Biotechnology, National Institute of Ocean Technology, Chennai, India
| | - Amit Kumar
- International Research Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, India
| |
Collapse
|
7
|
Ma H, Xu KZ, Wang YJ, Yan N, Liao XR, Guan ZB. Enhancing the decolorization activity of Bacillus pumilus W3 CotA-laccase to Reactive Black 5 by site-saturation mutagenesis. Appl Microbiol Biotechnol 2020; 104:9193-9204. [PMID: 32918582 DOI: 10.1007/s00253-020-10897-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/31/2022]
Abstract
Reactive Black 5 (RB5) is a typical refractory azo dye. Widespread utilization of RB5 has caused a variety of environmental and health problems. The enzymatic degradation of RB5 can be a promising solution due to its superiority as an eco-friendly and cost-competitive process. Bacterial CotA-laccase shows great application prospect to eliminate hazardous dyes from wastewater. However, efficient decolorization of RB5 CotA-laccase generally requires the participation of costly, toxic mediators. In the present study, we modified the amino acids Thr415 and Thr418 near the type 1 copper site and the amino acid Gln442 at the entrance of the substrate-binding pocket of Bacillus pumilus W3 CotA-laccase to boost its RB5 decolorization activity based on molecular docking analysis and site-saturation mutagenesis. Through the strategies, two double site mutants T415D/Q442A and T418K/Q442A obtained demonstrated 43.94 and 52.64% RB5 decolorization rates in the absence of a mediator at pH 10.0, respectively, which were about 3.70- and 4.43-fold higher compared with the wild-type CotA-laccase. Unexpectedly, the catalytic efficiency of the T418K/Q442A to ABTS was enhanced by 5.33-fold compared with the wild-type CotA-laccase. The mechanisms of conferring enhanced activity to the mutants were proposed by structural analysis. In summary, the mutants T415D/Q442A and T418K/Q442A have good application potentials for the biodegradation of RB5. KEY POINTS: • Three amino acids of CotA-laccase were manipulated by site-saturation mutagenesis. • Decolorization rate of two mutants to RB5 was enhanced 3.70- and 4.43-fold, respectively. • The mechanisms of awarding enhanced activity to the mutants were supposed.
Collapse
Affiliation(s)
- Hui Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Kai-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Ya-Jing Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Na Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Xiang-Ru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Zheng-Bing Guan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| |
Collapse
|
8
|
Yoneda K, Yoshioka M, Sakuraba H, Araki T, Ohshima T. Structural and biochemical characterization of an extremely thermostable FMN-dependent NADH-indigo reductase from Bacillus smithii. Int J Biol Macromol 2020; 164:3259-3267. [PMID: 32861785 DOI: 10.1016/j.ijbiomac.2020.08.197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022]
Abstract
The FMN-dependent NADH-indigo reductase gene from the thermophilic bacterium Bacillus smithii was overexpressed in Escherichia coli. The expressed enzyme functioned as a highly thermostable indigo reductase that retained complete activity even after incubation at 100 °C for 10 min. Furthermore, B. smithii indigo reductase exhibited high stability over a wider pH range and longer storage periods compared with indigo reductases previously identified from other sources. The enzyme catalyzed the reduction of various azo compounds and indigo carmine. The crystal structures of the wild-type enzyme in complex with FMN/N-cyclohexyl-2-aminoethanesulfonate (CHES) and the Y151F mutant enzyme in complex with FMN were determined by the molecular replacement method and refined at resolutions of 1.97 and 1.95 Å, respectively. Then, indigo carmine molecule was modeled into the active site using the molecular docking simulation and the binding mode of indigo carmine was elucidated. In addition, the structure of B. cohnii indigo reductase, which is relatively less stable than B. smithii indigo reductase, was constructed by homology modeling. The factor contributing to the considerably higher thermostability of B. smithii indigo reductase was analyzed by comparing its structure with that of B. cohnii indigo reductase, which revealed that intersubunit aromatic interactions (F105-F172' and F172-F105') may be responsible for the high thermostability of B. smithii indigo reductase. Notably, site-directed mutagenesis results showed that F105 plays a major role in the intersubunit aromatic interaction.
Collapse
Affiliation(s)
- Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto 862-8652, Japan.
| | - Misa Yoshioka
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto 862-8652, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Tomohiro Araki
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto-shi, Kumamoto 862-8652, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| |
Collapse
|
9
|
An X, Chen Y, Chen G, Feng L, Zhang Q. Integrated metagenomic and metaproteomic analyses reveal potential degradation mechanism of azo dye-Direct Black G by thermophilic microflora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110557. [PMID: 32259760 DOI: 10.1016/j.ecoenv.2020.110557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Direct Black G (DBG) is a typical toxic azo dye with extensive applications but it poses a serious threat to the aquatic ecosystem and humans. It is necessary to efficiently and safely remove DBG from environments by the application of various treatment technologies. A thermophilic microflora previously isolated from the soil can effectively metabolize DBG. However, the molecular basis of DBG degradation by this thermophilic microflora remains unknown. In this study, metagenomic sequencing technology and qRT-PCR have been used to elucidate the functional potential of genes and their modes of action on DBG. A quantitative metaproteomic method was further utilized to identify the relative functional proteins involved. Subsequently, the possible co-metabolic molecular mechanisms of DBG degradation by candidate genes and functional proteins of the thermophilic microflora were illustrated. The combination of metagenomics and metaproteomics to investigate the degradation of DBG by a microflora was reported for the first time in recent literature; this can further provide a deep insight into the molecular degradation mechanism of dye pollutants by natural microflora.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Yan Chen
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Guotao Chen
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Linlin Feng
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Biotechnology, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China; Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
10
|
Kumaran S, Ngo ACR, Schultes FPJ, Tischler D. Draft genome sequence of Kocuria indica DP-K7, a methyl red degrading actinobacterium. 3 Biotech 2020; 10:175. [PMID: 32226704 PMCID: PMC7090119 DOI: 10.1007/s13205-020-2136-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
In the present study, we report the draft genome of soil isolate DP-K7 that has the potential to degrade methyl red. The 16S rRNA gene sequencing and whole-genome analysis exposed that the bacterial strain DP-K7 belongs to the species Kocuria indica. The genome annotation of the strain DP-K7 through the bioinformatics tool “Prokka” showed that the genome contains 3,010,594 bp with 69.01% GC content. The genome comprises 57 contigs including 2 rRNA genes, 47 tRNA genes, and 2754 CDS. The plate and broth assay showed that the strain DP-K7 has the potential to utilize methyl red as the sole carbon source for growth. Indeed, the RP-HPLC analysis proved that the strain DP-K7 is capable of degrading methyl red. The genome BLAST against a characterized azoreductase (AzoB—Xenophilus azovorans KF46F) revealed the presence of two azoreductase-like genes (azoKi-1 and azoKi-2). The phylogenetic analysis of the primary amino acid sequence of characterized azoreductases suggested that AzoKi-1 and AzoKi-2 belong to members of the clade IV azoreductase, which are flavin-independent. The multiple sequence alignment of AzoKi-1 and AzoKi-2 with flavin-independent azoreductases showed the presence of NAD(P)H binding like motif (GxxGxxG). In addition, other genes coding for dye degrading enzymes (SodC, SodA, KatA, KatE, and DyP2) were also found in the genome supporting that the strain K. indica DP-K7 is a potential azo dye degrader.
Collapse
Affiliation(s)
- Selvapravin Kumaran
- Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | - Anna Christina R. Ngo
- Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| | | | - Dirk Tischler
- Microbial Biotechnology, Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
11
|
Biochemical characterization of a novel azoreductase from Streptomyces sp.: Application in eco-friendly decolorization of azo dye wastewater. Int J Biol Macromol 2019; 140:1037-1046. [PMID: 31449862 DOI: 10.1016/j.ijbiomac.2019.08.196] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 01/07/2023]
Abstract
Azo dyes are the most widely applied chemical dyes that have also raised great concerns for environmental contamination and human health issues. There has been a growing interest in discovering bioremediation methods to degrade azo dyes for environmental and economic purposes. Azoreductases are key enzymes evolved in nature capable of degrading azo dyes. The current work reports the identification, expression, and properties of a novel azoreductase (AzoRed2) from Streptomyces sp. S27 which shows an excellent stability against pH change and organic solvents. To overcome the requirements of coenzyme while degrading azo dyes, we introduced a coenzyme regeneration enzyme, Bacillus subtilis glucose 1-dehydrogenase (BsGDH), to construct a recycling system in living cells. The whole-cell biocatalyst containing AzoRed2 and BsGDH was used to degrade a representative azo dye methyl red. The degradation rate of methyl red was up to 99% in 120 min with high substrate concentration (250 μM) and no external coenzyme added. The degradation rate was still 98% in the third batch trial. To sum up, a novel azoreductase with good properties was found, which was applied to construct whole-cell biocatalyst. Both the enzymes and whole-cell biocatalysts are good candidates for the industrial wastewater treatment and environmental restoration.
Collapse
|
12
|
Srinivasan S, Sadasivam SK, Gunalan S, Shanmugam G, Kothandan G. Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:599-608. [PMID: 30836241 DOI: 10.1016/j.envpol.2019.02.080] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Growth of textile industries led to production of enormous dye varieties. These textile dyes are largely used, chemically stable and easy to synthesize. But they are recalcitrant and persist as less biodegradable pollutants when discharged into waterbodies. Potential use of enzyme-linked bioremediation of textile dyes will control their toxicity in waterbodies. Bioinformatics and Molecular docking tool provides an insight into remediation mechanism by predicting susceptibility of dye degradation using oxidoreductive enzymes. In this study, six dyes, Reactive Red F3B, Remazol Red RGB, Joyfix Red RB, Joyfix Yellow MR, Remazol Blue RGB and Turquoise CL-5B of azo, anthraquinone and phthalocyanine molecular class were identified as potential targets for degradation by laccase and azoreductase of Aeromonas hydrophila in addition to Lysinibacillus sphaericus through in silico docking tool BioSolveIT-FlexX. Azoreductase breaks azo bonds by ping-pong mechanism whereas laccase decolorizes dyes by free radical mechanism which is not specific in nature. Results were analyzed based on parameters like stability, catalytic action and selectivity for enzyme-dye interactions. Amino acids of enzymes interacted with several dyes substantiating variations in active site for enzyme-ligand binding affinity. This suggests the role of enzymes in decolorizing an extensive variety of textile dyes, thereby, aiding in understanding the enzyme mechanisms in Bioremediation.
Collapse
Affiliation(s)
- Shantkriti Srinivasan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India; PG & Research Department of Biotechnology, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India.
| | - Senthil Kumar Sadasivam
- Geobiotechnology Laboratory, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India; PG & Research Department of Botany, National College (Autonomous), Tiruchirappalli, 620001, Tamil Nadu, India
| | - Seshan Gunalan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, 600025, Tamil Nadu, India
| | - Gnanendra Shanmugam
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, South Korea
| | - Gugan Kothandan
- CAS in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, 600025, Tamil Nadu, India
| |
Collapse
|
13
|
Suzuki H. Remarkable diversification of bacterial azoreductases: primary sequences, structures, substrates, physiological roles, and biotechnological applications. Appl Microbiol Biotechnol 2019; 103:3965-3978. [PMID: 30941462 DOI: 10.1007/s00253-019-09775-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Azoreductases reductively cleave azo linkages by using NAD(P)H as an electron donor. The enzymes are widely found in bacteria and act on numerous azo dyes, which allow various unique applications. This review describes primary amino acid sequences, structures, substrates, physiological roles, and biotechnological applications of bacterial azoreductases to discuss their remarkable diversification. According to primary sequences, azoreductases were classified phylogenetically into four main clades. Most members of clades I-III are flavoproteins, whereas clade IV members include flavin-free azoreductases. Clades I and II prefer NADPH and NADH, respectively, as electron donors, whereas other members generally use both. Several enzymes formed no clades; moreover, some bacteria produce azoreductases with longer primary structures than those hitherto identified, which implies further diversification of bacterial azoreductases. The crystal structures commonly reveal the Rossmann folds; however, ternary structures are moderately varied with different quaternary conformation. Although physiological roles are obscure, several azoreductases have been shown to act on metabolites such as flavins, quinones, and metal ions more efficiently than on azo dyes. Considering that many homologs exclusively act on these metabolites, it is possible that azoreductases are actually side activities of versatile reductases that act on various substrates with different specificities. In parallel, this idea raises the possibility that homologous enzymes, even if these are already defined as other types of reductases, widely harbor azoreductase activities. Although azoreductases for which their genes have been identified are not abundant, it may be simple to identify azoreductases of biotechnological importance that have novel substrate specificities.
Collapse
Affiliation(s)
- Hirokazu Suzuki
- Faculty of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan. .,Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan.
| |
Collapse
|
14
|
Shang N, Ding M, Dai M, Si H, Li S, Zhao G. Biodegradation of malachite green by an endophytic bacterium Klebsiella aerogenes S27 involving a novel oxidoreductase. Appl Microbiol Biotechnol 2019; 103:2141-2153. [PMID: 30613897 DOI: 10.1007/s00253-018-09583-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022]
Abstract
Endophytic microorganisms can metabolize organic contaminants and assist in plant growth, thus facilitating the phytoremediation of polluted environments. An endophytic bacterium capable of decoloring malachite green (MG) was isolated from the leaves of the wetland plant Suaeda salsa and was identified as Klebsiella aerogenes S27. Complete decolorization of MG (100 mg/l) was achieved in 8 h at 30 °C and pH 7.0. Ultraviolet-visible spectroscopy and Fourier-transform infrared spectroscopy analyses indicated the degradation of MG by the isolate. The enzymic assays of the strain showed the triphenylmethane reductase (TMR) activity. A gene encoding putative TMR-like protein (named as KaTMR) was cloned and heterologously expressed in Escherichia coli. KaTMR showed only 42.6-43.3% identities in amino acids compared with well-studied TMRs, and it phylogenetically formed a new branch in the family of TMRs. The degraded metabolites by recombinant KaTMR were detected by liquid chromatography-mass spectrometry, showing differences from the products of reported TMRs. The biotransformation pathway of MG was proposed. Phytotoxicity studies revealed the less-toxic nature of the degraded metabolites compared to the dye. This study presented the first report of an endophyte on the degradation and detoxification of triphenylmethane dye via a novel oxidoreductase, thus facilitating the study of the plant-endophyte symbiosis in the bioremediation processes.
Collapse
Affiliation(s)
- Nianjie Shang
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Mengjiao Ding
- College of Biological Science and Technology, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Hongli Si
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Shiguo Li
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
15
|
Guar gum blended alginate/agarose hydrogel as a promising support for the entrapment of peroxidase: Stability and reusability studies for the treatment of textile effluent. Int J Biol Macromol 2018; 116:463-471. [DOI: 10.1016/j.ijbiomac.2018.05.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022]
|
16
|
Ding H, Gao F, Yu Y, Chen B. Biochemical and Computational Insights on a Novel Acid-Resistant and Thermal-Stable Glucose 1-Dehydrogenase. Int J Mol Sci 2017; 18:ijms18061198. [PMID: 28587256 PMCID: PMC5486021 DOI: 10.3390/ijms18061198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 05/30/2017] [Accepted: 05/30/2017] [Indexed: 11/29/2022] Open
Abstract
Due to the dual cofactor specificity, glucose 1-dehydrogenase (GDH) has been considered as a promising alternative for coenzyme regeneration in biocatalysis. To mine for potential GDHs for practical applications, several genes encoding for GDH had been heterogeneously expressed in Escherichia coli BL21 (DE3) for primary screening. Of all the candidates, GDH from Bacillus sp. ZJ (BzGDH) was one of the most robust enzymes. BzGDH was then purified to homogeneity by immobilized metal affinity chromatography and characterized biochemically. It displayed maximum activity at 45 °C and pH 9.0, and was stable at temperatures below 50 °C. BzGDH also exhibited a broad pH stability, especially in the acidic region, which could maintain around 80% of its initial activity at the pH range of 4.0–8.5 after incubating for 1 hour. Molecular dynamics simulation was conducted for better understanding the stability feature of BzGDH against the structural context. The in-silico simulation shows that BzGDH is stable and can maintain its overall structure against heat during the simulation at 323 K, which is consistent with the biochemical studies. In brief, the robust stability of BzGDH made it an attractive participant for cofactor regeneration on practical applications, especially for the catalysis implemented in acidic pH and high temperature.
Collapse
Affiliation(s)
- Haitao Ding
- Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200136, China.
| | - Fen Gao
- East China Sea Fisheries Research Institute, Shanghai 200090, China.
| | - Yong Yu
- Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200136, China.
| | - Bo Chen
- Key Laboratory for Polar Science of State Oceanic Administration, Polar Research Institute of China, Shanghai 200136, China.
| |
Collapse
|
17
|
Bilal M, Iqbal HMN, Hussain Shah SZ, Hu H, Wang W, Zhang X. Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:836-842. [PMID: 27663907 DOI: 10.1016/j.jenvman.2016.09.040] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 02/05/2023]
Abstract
In this study, horseradish peroxidase (HRP) was covalently immobilized on the calcium-alginate support using glutaraldehyde (GA) as a cross-linking reagent for detoxification and degradation of synthetic dyes. Immobilization procedure furnished significant immobilization efficiency (86.27 ± 3.43%) along with apparent and relative activity of 24.39 ± 1.03 U/g and 84.97 ± 3.54%, respectively, for immobilized-HRP. In comparison to free-state, immobilized-HRP catalyzed the substrate oxidation reaction in a slightly acidic and wider temperature range, with an optimum at 60 °C. After 10 and 60 min of incubation at 60 °C, the immobilized-HRP displayed 99.0% and 89.0% of residual activities, whereas the free counterpart retained only 34.0% and 18.0% of residual activities, respectively. Moreover, the immobilized-HRP showed potential efficiency for the decolorization of dyes in sequential dye-decolorizing batch reactions. Cytotoxicity analysis using a plant bioassay and acute test demonstrated that the Ca-alginate immobilized-HRP may effectively be used for detoxification of dyes and has a great potential for large-scale environmental remediation.
Collapse
Affiliation(s)
- Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N. L. CP 64849, Mexico.
| | - Syed Zakir Hussain Shah
- Fish Nutrition Laboratory, Department of Zoology, Wildlife & Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Gao F, Ding H, Xu X, Zhao Y. A self-sufficient system for removal of synthetic dye by coupling of spore-displayed triphenylmethane reductase and glucose 1-dehydrogenase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21319-21326. [PMID: 27502455 DOI: 10.1007/s11356-016-7330-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Biodegradation of triphenylmethane dyes by microorganisms is hampered by the transport barrier imposed by cell membranes. On the other hand, cell-free systems using enzyme-based biodegradation strategy are costly. Therefore, an efficient and inexpensive approach circumventing these problems is highly desirable. Here, we constructed a self-sufficient system for synthetic dye removal by coupling of spore surface-displayed triphenylmethane reductase (TMR) and glucose 1-dehydrogenase (GDH) for the first time. Display of both TMR and GDH significantly enhanced their stability under conditions of extreme pH and temperature. These engineered spores also exhibited more robust long-term stability than their purified counterparts. Furthermore, we observed that a high ratio of spore-displayed GDH is necessary for high dye degradation efficiency. These results indicate that this continuous dye removal system with cofactor regeneration offers a promising solution for dye biodegradation applications.
Collapse
Affiliation(s)
- Fen Gao
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Haitao Ding
- Polar Research Institute of China, Shanghai, 200136, China
| | - Xiaohong Xu
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuhua Zhao
- College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Jasińska A, Paraszkiewicz K, Sip A, Długoński J. Malachite green decolorization by the filamentous fungus Myrothecium roridum--Mechanistic study and process optimization. BIORESOURCE TECHNOLOGY 2015; 194:43-8. [PMID: 26185924 DOI: 10.1016/j.biortech.2015.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 05/16/2023]
Abstract
The filamentous fungus Myrothecium roridum isolated from a dye-contaminated area was investigated in terms of its use for the treatment of Malachite green (MG). The mechanisms involved in this process were established. Peroxidases and cytochrome P-450 do not mediate MG elimination. The laccase of M. roridum IM 6482 was found to be responsible for the decolorization of 8-11% of MG. Thermostable low-molecular-weight factors (LMWF) resistant to sodium azide were found to be largely involved in dye decomposition. In addition, MG decolorization by M. roridum IM 6482 occurred in a non-toxic manner. Data from antimicrobial tests showed that MG toxicity decreased after decolorization. To optimize the MG decolorization process, the effects of operational parameters (such as the medium pH and composition, process temperature and culture agitation) were examined. The results demonstrate that M. roridum IM 6482 may be used effectively as an alternative to traditional decolorization agents.
Collapse
Affiliation(s)
- Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Katarzyna Paraszkiewicz
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego Street 48, 60-627 Poznań, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| |
Collapse
|