1
|
He Y, Yang Y, Huang H, Yang W, Ren B, Hu Q, Jin J, Wen S, Cheng H, Shen L. Spatio-temporal variations in activity of aerobic methane oxidation and community structure of methanotrophs in sediment of Wuxijiang river. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125200. [PMID: 39461609 DOI: 10.1016/j.envpol.2024.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Rivers are hotspots for methane (CH4) emissions, and aerobic methane oxidation is a crucial process in controlling emissions. The spatio-temporal heterogeneity of river environment can greatly affect the methane oxidation process. However, currently, few studies have focused on the spatio-temporal changes in activity of methane oxidation and the associated microbiome in riverine ecosystems, which hinders a comprehensive understanding the role of this process in reducing emissions of CH4. Here, we investigated the variations in methane oxidation activity and community of methanotrophs in sediment of a mountain river across different reaches and seasons. The potential methane oxidation rate ranged from 24.11 to 493.03 nmol CH4 g-1 (sediment) d-1, which was significantly greater in sediment obtained during the winter than in that obtained during the summer. Moreover, the rate in middle reaches was significantly greater than that in upper and lower reaches in summer. The abundance of pmoA gene of methanotrophs ranged from 2.45 × 10⁶ to 2.98 × 10⁷ copies g-1 (sediment), which was also significantly greater in winter than in summer and showed significant variations among reaches. Additionally, methanotrophic diversity and community composition exhibited significant variations across both reaches and seasons, and the relative abundance of Methylococcus and Methylocystis was closely associated with methane oxidation activity. Sediment NH4+ content, pH and temperature were potentially crucial factors affecting the activity or methanotrophic community. In conclusion, it is necessary to consider both temporal and spatial scales to improve our understanding of the significance and driving mechanisms of methane oxidation in controlling CH4 emissions from rivers.
Collapse
Affiliation(s)
- Yefan He
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yuling Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hechen Huang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wangting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bingjie Ren
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qinan Hu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jinghao Jin
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Sile Wen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Haixiang Cheng
- College of Chemistry and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Lidong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
2
|
Li Y, Che X, Chen H, Meng Z, Li X, Wang X, Zhu L, Zhao Y. Effects of filter-feeding fish faeces on microbial driving mechanism of lake sediment carbon transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175594. [PMID: 39154991 DOI: 10.1016/j.scitotenv.2024.175594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silver carp (Hypophthalmichthys molitrix) can filter the carbon in the food taken up by phytoplankton and plays an important role in carbon fixation. In this study, the faeces of silver carp, the dominant fish species in Qiandao Lake, China, were collected and subjected to a closed incubation and transformation experiment for three months. The physical and chemical indices of water and sediment mixture, carbon metabolic enzyme activity, and microbial sequences were analyzed to identify the key microbial strains that affect carbon transformation as well as the main factors influencing carbon transformation. The results showed maximum CO2 and CH4 emission fluxes on day 15 of fish faeces and sediment interaction. In the faeces addition group, the contents of soluble organic carbon, soluble inorganic carbon, SO42-, and PO43- were significantly increased, while the dissolved oxygen content was significantly decreased. Furthermore, the pH, total carbon content, volatile suspended solids content, and activities of four carbon-metabolizing enzymes were significantly increased in the faeces addition group. The 16sRNA analysis of methanogenic and methane-oxidizing bacteria showed that Euryarchaea and Pseudomonas accounted for the highest proportion respectively. The most significant differences expression were found for Methylbacterium in the methanogenic bacteria and Methylobacter in the methane oxidizing bacteria. Structural variance model showed that interaction of fish faeces and sediments mainly caused changes in sulfate content, leading to variations in methanogens and methanotrophs and promotion of CH4 emission. The results of this study can provide a theoretical reference for the mechanism of carbon reduction and emission reduction of lake filter-feeding fish.
Collapse
Affiliation(s)
- Yiming Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xuan Che
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China.
| | - Hongyuan Chen
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Zhanpeng Meng
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinfeng Li
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xiaodong Wang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Lin Zhu
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
3
|
Liu Q, Duan X, Zhang Y, Duan L, Zhang X, Liu F, Li D, Zhang H. Rainfall seasonality shapes microbial assembly and niche characteristics in Yunnan Plateau lakes, China. ENVIRONMENTAL RESEARCH 2024; 257:119410. [PMID: 38871273 DOI: 10.1016/j.envres.2024.119410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Microorganisms are crucial components of freshwater ecosystems. Understanding the microbial community assembly processes and niche characteristics in freshwater ecosystems, which are poorly understood, is crucial for evaluating microbial ecological roles. The Yunnan Plateau lakes in China represent a freshwater ecosystem that is experiencing eutrophication due to anthropogenic activities. Here, variation in the assembly and niche characteristics of both prokaryotic and microeukaryotic communities was explored in Yunnan Plateau lakes across two seasons (dry season and rainy season) to determine the impacts of rainfall and environmental conditions on the microbial community and niche. The results showed that the environmental heterogeneity of the lakes decreased in the rainy season compared to the dry season. The microbial (bacterial and microeukaryotic) α-diversity significantly decreased during the rainy season. Deterministic processes were found to dominate microbial community assembly in both seasons. β-Diversity decomposition analysis revealed that microbial community compositional dissimilarities were dominated by species replacement processes. The co-occurrence networks indicated reduced species complexity for microbes and a destabilized network for prokaryotes prior to rainfall, while the opposite was found for microeukaryotes following rainfall. Microbial niche breadth decreased significantly in the rainy season. In addition, lower prokaryotic niche overlap, but greater microeukaryotic niche overlap, was observed after rainfall. Rainfall and environmental conditions significantly affected the microbial community assembly and niche characteristics. It can be concluded that rainfall and external pollutant input during the seasonal transition alter the lake environment, thereby regulating the microbial community and niche in these lakes. Our findings offer new insight into microbiota assembly and niche patterns in plateau lakes, further deepening the understanding of freshwater ecosystem functioning.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xinlu Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Donglin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650500, China; Southwest United Graduate School, Kunming, 650500, Yunnan, China.
| |
Collapse
|
4
|
Li C, Zhang Y, Zheng Y, Shi C, Lu Y, Zhang Y, Yuan S. Contaminant transformation during sediment oxygenation: Temporal variation of oxidation mechanisms mediated by hydroxyl radicals and aerobic microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170855. [PMID: 38340822 DOI: 10.1016/j.scitotenv.2024.170855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Sediment oxidation by oxygen is ubiquitous, whereas the mechanisms of concurrent contaminant oxidation, particularly the temporal variation of chemical and biological oxidation, remain inadequately understood. This study investigated the oxidation of two contaminants (phenol and trichloroethylene) with different responses during the oxygenation of four natural sediments with different redox properties. Results showed that contaminant oxidation was initially dominated by hydroxyl radicals (•OH) (first stage), stabilized for different time for different sediments (second stage), and was re-started by microbial mechanism (third stage). In the first short stage, the contribution of chemical oxidation by •OH was mainly determined by the variation of sediment electron-donating capacity (EDC). In the second long stage, the stabilization time was dependent on sediment redox properties, that is, the abundance and growth of aerobic microbes capable of degrading the target contaminants. A more reduced sediment resulted in a higher extent of oxidation by •OH and a longer stabilization time. When the third stage of aerobic microbial oxidation was started, the contaminants like phenol that can be utilized by microbes can be oxidized quickly and completely, and those refractory contaminants like trichloroethylene remained unchanged. The study differentiates chemical and biological mechanisms for contaminant oxidation during sediment oxygenation.
Collapse
Affiliation(s)
- Chengwei Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Yanting Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Yunsong Zheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Chongwen Shi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Yuxi Lu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Yaoqiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China
| | - Songhu Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, School of Environmental Studies, China University of Geosciences, 68 Jincheng Street, East Lake High-Tech Development Zone, Wuhan, Hubei 430078, PR China.
| |
Collapse
|
5
|
Park SM, Rhee MS. Prevalence and phylogenetic traits of nitrite-producing bacteria in raw ingredients and processed baby foods: Potential sources of foodborne infant methemoglobinemia. Food Res Int 2024; 178:113966. [PMID: 38309914 DOI: 10.1016/j.foodres.2024.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Nitrite, which has been mainly regarded as a chemical hazard, can induce infant methemoglobinemia. As for nitrite as a product of microbial metabolism, the contribution of the oral or gut microbiome has mostly received attention, whereas the role of nitrite-producing bacteria (NPBs) in food has been less elucidated. In this study, mesophilic NPBs were isolated from food samples (n = 320) composed of raw ingredients for weaning foods (n = 160; beetroot, broccoli, carrot, lettuce, rice powder, spinach, sweet potato, and honey) and processed baby foods (n = 160; cereal snack, cheese, yogurt, powdered infant formula, sorghum syrup, vegetable fruit juice, and weaning food). The phylogenetic diversity of the NPB strains was analyzed via 16S rRNA sequencing. All 15 food items harbored NPBs, with a prevalence of 71.9 % and 34.4 % for the raw ingredients and processed foods, respectively. The NPBs isolated from the foods were identified as Actinomycetota (Actinomycetes), Bacteroidota (Flavobacteriia, Sphingobacteriia), Bacillota (Bacilli), or Pseudomonadota (Alpha-, Beta-, and Gammaproteobacteria). Among the raw and processed foods, beetroot (85.0 %) and powdered infant formula (70.0 %) showed had the highest NPB prevalence (P > 0.05). Bacillota predominated in both types of food. The contamination source of Pseudomonadota, which was another major phylum present in the raw ingredients, was presumed to be the soil and endophytes in the seeds, whereas that of Bacillota was the manufacturing equipment used with the raw ingredients. Common species for probiotics, such as Lacticaseibacillus, Leuconostoc, Enterococcus, and Bacillus, were isolated and identified as NPBs. To our knowledge, this is the first study to reveal the taxonomical diversity and omnipresence of NPBs in food for babies. The results of this study highlight the importance of food-mediated microbiological risks of infant methemoglobinemia which are yet underrecognized.
Collapse
Affiliation(s)
- Sun Min Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Gou Y, Qin Y, Ouyang C, Zheng W, Jiang C. Research on aerobic oxidation of methane bacteria and its influencing factors in Chongqing central city section of the Yangtze River, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6435-6453. [PMID: 37322172 DOI: 10.1007/s10653-023-01631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
Bacterial communities play an important role in the carbon cycle of freshwater ecosystems. In order to understand the influencing factors of bacterial community in the process of carbon cycle and search for measures to reduce carbon emissions, Chongqing central city section of the Yangtze River and its tributaries were selected to be the study area in this research. High-throughput sequencing was applied to study aerobic oxidation of methane bacteria (MOB) in sampling area. The results showed that there were spatial differences in the community diversity of aerobic MOB in the Yangtze River in central Chongqing. The Shannon index in the sediment (2.389-2.728) was higher than that in the water (1.820-2.458), and the community diversity in the middle reaches of the main river was higher than that in the upstream and the downstream. The aerobic MOB community was mainly dominated by Type II (Methylocystis). Most of operational taxonomic units (OTUs) in the top ten had high homology with MOB from river and lake sediments, and a few OTUs had high homology with MOB from paddy fields, forests and wetland soils. The main environmental factors affecting the community structure of aerobic MOB were NH4+-N, dissolved oxygen (DO), temperature (T, p ≤ 0.001), pH (p ≤ 0.05), methane (CH4) and carbon dioxide (CO2).
Collapse
Affiliation(s)
- Yujia Gou
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Metropolitan College of Science and Technology, Chongqing, 402160, China
| | - Yu Qin
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Changyue Ouyang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Wang Zheng
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Chengyong Jiang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
7
|
Ouyang C, Qin Y, Liang Y, Gou Y. Community structure and network interaction of aerobic methane-oxidizing bacteria in Chongqing's central urban area in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56368-56381. [PMID: 36914933 DOI: 10.1007/s11356-023-26310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
A reservoir is an important source of methane (CH4), which is consumed by aerobic methane-oxidizing bacteria (MOB), representing the main CH4 sink in water. The central urban area of Chongqing in the Three Gorges Reservoir (TGR) area was selected as the study area in 2021. High-throughput sequencing was used to analyze the community structure and abundance of MOBs. The results showed that Methylocystis (Type II) was the dominant MOB in water, whereas Methylococcus (Type I) and Methylocystis co-dominated the sediments. High water temperature in the study area largely accounted for the predominance of Type II MOBs in the two habitats. Moreover, the influence of environmental factors on MOB community and its interspecific relationship were significantly regulated by the operation of the TGR. In the low-water-level period, NO2--N and CO2 concentration significantly correlated with Methylocystis, whereas in the high-water-level period, the higher discharge and velocity weakened the influence of all environmental factors on Methylocystis. In addition, the scouring of sediments by increasing discharge in the high-water-level period caused a significant decrease in dissolved CH4 concentration. The decrease in substrate increased interspecific competition within the MOB community, especially between different types of MOBs, in the high-water-level period.
Collapse
Affiliation(s)
- Changyue Ouyang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yu Qin
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yue Liang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yujia Gou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, China
| |
Collapse
|
8
|
Chen F, Niu Y, An Z, Wu L, Zhou J, Qi L, Yin G, Dong H, Li X, Gao D, Liu M, Zheng Y, Hou L. Effects of periodic drying-wetting on microbial dynamics and activity of nitrite/nitrate-dependent anaerobic methane oxidizers in intertidal wetland sediments. WATER RESEARCH 2023; 229:119436. [PMID: 36459897 DOI: 10.1016/j.watres.2022.119436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays an important role in methane (CH4) consumption in intertidal wetlands. However, little is known about the responses of n-DAMO in intertidal wetlands to periodic drying-wetting caused by tidal cycling. Here, comparative experiments (waterlogged, desiccated, reflooded) with the Yangtze estuarine intertidal sediments were performed to examine the effects of periodic tidal changes on n-DAMO microbial communities, abundances, and potential activities. Functional gene sequencing indicated the coexistence of n-DAMO bacteria and archaea in the tide-fluctuating environments and generally higher biodiversity under reflooded conditions than consecutive inundation or emersion. The n-DAMO microbial abundance and associated activity varied significantly during alternative exposure and inundation, with higher abundance and activity under the waterlogged than desiccated conditions. Reflooding of intertidal wetlands might intensify n-DAMO activities, indicating the resilience of n-DAMO microbial metabolisms to the wetting-drying events. Structural equation modeling and correlation analysis showed that n-DAMO activity was highly related to n-DAMO microbial abundance and substrate availability under inundation, whereas salt accumulation in sediment was the primary factor restraining n-DAMO activity under the desiccation. Overall, this study reveals tidal-induced shifts of n-DAMO activity and associated contribution to mitigating CH4, which may help accurately project CH4 emission from intertidal wetlands under different tidal scenarios.
Collapse
Affiliation(s)
- Feiyang Chen
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Zhirui An
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Li Wu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Lin Qi
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
| | - Guoyu Yin
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Xiaofei Li
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China
| | - Yanling Zheng
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China; School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai 200241, China.
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
9
|
Legierse A, Struik Q, Smith G, Echeveste Medrano MJ, Weideveld S, van Dijk G, Smolders AJP, Jetten M, Veraart AJ, Welte CU, Glodowska M. Nitrate-dependent anaerobic methane oxidation (N-DAMO) as a bioremediation strategy for waters affected by agricultural runoff. FEMS Microbiol Lett 2023; 370:fnad041. [PMID: 37170064 PMCID: PMC10214460 DOI: 10.1093/femsle/fnad041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023] Open
Abstract
Agricultural drainage ditches are subjected to high anthropogenic nitrogen input, leading to eutrophication and greenhouse gas emissions. Nitrate-dependent anaerobic methane oxidation (N-DAMO) could be a promising remediation strategy to remove methane (CH4) and nitrate (NO3-) simultaneously. Therefore, we aimed to evaluate the potential of N-DAMO to remove excess NO3- and decrease CH4 release from agricultural drainage ditches. Microcosm experiments were conducted using sediment and surface water collected from three different sites: a sandy-clay ditch (SCD), a freshwater-fed peatland ditch (FPD), and a brackish peatland ditch (BPD). The microcosms were inoculated with an N-DAMO enrichment culture dominated by Candidatus Methanoperedens and Candidatus Methylomirabilis and supplemented with 13CH4 and 15NO3-. A significant decrease in CH4 and NO3- concentration was only observed in the BPD sediment. In freshwater sediments (FPD and SCD), the effect of N-DAMO inoculation on CH4 and NO3- removal was negligible, likely because N-DAMO microorganisms were outcompeted by heterotrophic denitrifiers consuming NO3- much faster. Overall, our results suggest that bioaugmentation with N-DAMO might be a potential strategy for decreasing NO3- concentrations and CH4 emission in brackish ecosystems with increasing agricultural activities where the native microbial community is incapable of efficient denitrification.
Collapse
Affiliation(s)
- Annabel Legierse
- Department of Microbiology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Quinten Struik
- Aquatic Ecology and Environmental Biology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Garrett Smith
- Department of Microbiology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | | | | | - Gijs van Dijk
- Aquatic Ecology and Environmental Biology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
- B-WARE Research Centre, Nijmegen 6525 ED, The Netherlands
| | - Alfons J P Smolders
- Aquatic Ecology and Environmental Biology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
- B-WARE Research Centre, Nijmegen 6525 ED, The Netherlands
| | - Mike Jetten
- Department of Microbiology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Annelies J Veraart
- Aquatic Ecology and Environmental Biology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Martyna Glodowska
- Department of Microbiology, RIBES, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
10
|
Yue Y, Wang F, Pan J, Chen XP, Tang Y, Yang Z, Ma J, Li M, Yang M. Spatiotemporal dynamics, community assembly and functional potential of sedimentary archaea in reservoirs: coaction of stochasticity and nutrient load. FEMS Microbiol Ecol 2022; 98:6701916. [PMID: 36111740 DOI: 10.1093/femsec/fiac109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/16/2022] [Accepted: 09/14/2022] [Indexed: 01/21/2023] Open
Abstract
Archaea participate in biogeochemical cycles in aquatic ecosystems, and deciphering their community dynamics and assembly mechanisms is key to understanding their ecological functions. Here, sediments from 12 selected reservoirs from the Wujiang and Pearl River basins in southwest China were investigated using 16S rRNA Illumina sequencing and quantitative PCR for archaeal abundance and richness in all seasons. Generally, archaeal abundance and α-diversity were significantly correlated with temperature; however, β-diversity analysis showed that community structures varied greatly among locations rather than seasons, indicating a distance-decay pattern with geographical variation. The null model revealed the major contribution of stochasticity to archaeal community assembly, which was further confirmed by the neutral community model that could explain 71.7% and 90.2% of the variance in archaeal assembly in the Wujiang and Pearl River basins, respectively. Moreover, sediment total nitrogen and organic carbon levels were significantly correlated with archaeal abundance and α-diversity. Interestingly, these nutrient levels were positively and negatively correlated, respectively, with the abundance of methanogenic and ammonia-oxidized archaea: the dominant sedimentary archaea in these reservoirs. Taken together, this work systematically characterized archaeal community profiles in reservoir sediments and demonstrated the combined action of stochastic processes and nutrient load in shaping archaeal communities in reservoir ecosystems.
Collapse
Affiliation(s)
- Yihong Yue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue-Ping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yi Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhihong Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing Ma
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
11
|
Chen J, Zhou Z, Gu JD. Distribution pattern of N-damo bacteria along an anthropogenic nitrogen input gradient from the coastal mangrove wetland to the South China sea sediments. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105739. [PMID: 36084374 DOI: 10.1016/j.marenvres.2022.105739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Microbial nitrite-dependent anaerobic methane oxidation (n-damo) process is important for mitigating methane emission and anthropogenic nitrogen inputs in the marine environment. However, the distribution pattern of n-damo bacteria along an anthropogenic N-input gradient from the coastal wetland to the pristine South China Sea is poorly understood. This study investigated the diversity and abundance of n-damo bacteria in samples collected along a N-input gradient from Mai Po (MP) mangrove wetland sediments of the Pearl River Estuary (PRE) to the deep ocean sediments of the South China Sea (SCS). Retrieved 16S rDNA sequences showed a shift of n-damo community composition of complex structures with both freshwater and marine n-damo lineages in MP intertidal sediments to marine dominated characteristic in SCS sediments. The observed variation of Shannon and Chao1 indexes of n-damo bacteria shared a similar trend of a decrease at first followed by an increase along the targeting gradient with previously investigated methanogens, anaerobic methanotrophic archaea, ammonia-oxidizing archaea and ammonia-oxidizing bacteria, but had a reverse pattern with anammox bacteria. The community structure of pmoA gene sequences contained freshwater lineages only in SCS continental shelf sediments closer to the PRE, and turned to group with other marine samples in deeper and pristine sediments. Results suggested that n-damo bacteria might be a major contributor to anaerobic denitrification in the SCS sediments because their abundances were much higher than previously studied anammox bacteria in the same sample set. The distribution pattern of n-damo bacterial diversity, richness and abundance along the anthropogenic N-input gradient implies that they could be used as a bio-indicator for monitoring the anthropogenic/terrestrial inputs in marine environments.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, PR China; Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Zhichao Zhou
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China.
| |
Collapse
|
12
|
Tributary Loadings and Their Impacts on Water Quality of Lake Xingyun, a Plateau Lake in Southwest China. WATER 2022. [DOI: 10.3390/w14081281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Lake Xingyun is a hypertrophic shallow lake on the Yunnan Plateau of China. Its water quality (WQ) has degraded severely during the past three decades with catchment development. To better understand the external nutrient loading impacts on WQ, we measured nutrient concentrations in the main tributaries during January 2010–April 2018 and modelled the monthly volume of all the tributaries for the same period. The results show annual inputs of total nitrogen (TN) had higher variability than total phosphorus (TP). The multi-year average load was 183.8 t/year for TN and 23.3 t/year for TP during 2010–2017. The average TN and TP loads for 2010–2017 were 36.6% higher and 63.8% lower, respectively, compared with observations in 1999. The seasonal patterns of TN and TP external loading showed some similarity, with the highest loading during the wet season and the lowest during the dry season. Loads in spring, summer, autumn, winter, and the wet season (May–October) accounted for 14.2%, 48.8%, 30.3%, 6.7%, and 84.9% of the annual TN load and 14.1%, 49.8%, 28.1%, 8%, and 84.0% of the annual TP load during 2010–2017. In-lake TN and TP concentrations followed a pattern similar to the external loading. The poor correlation between in-lake nutrient concentrations and tributary nutrient inputs at monthly and annual time scales suggests both external loading and internal loading were contributing to the lake eutrophication. Although effective lake restoration will require reducing nutrient losses from catchment agriculture, there may be a need to address a reduction of internal loads through sediment dredging or capping, geochemical engineering, or other effective measures. In addition, the method of producing monthly tributary inflows based on rainfall data in this paper might be useful for estimating runoff at other lakes.
Collapse
|
13
|
Yang Y, Chen J, Pratscher J, Xie S. DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152742. [PMID: 34974014 DOI: 10.1016/j.scitotenv.2021.152742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Methanotrophs are the main consumers of methane produced in lake sediments. In shallow lakes suffering from eutrophication, methanogenesis is accelerated by the excess organic carbon input, and thus methanotrophs play a key role in regulating this methane flux as well as carbon cycling. Here, we applied nucleic acid stable isotope probing (SIP) to investigate the active methanotrophic microbial community in sediments of several shallow lakes affected by eutrophication. Our results showed that an active methanotrophic community dominated by gamma-proteobacterial methanotrophs, as well as abundant beta-proteobacterial methanol-utilizers, was involved in methane-derived carbon assimilation. Crenothrix, a filamentous methanotroph, was found to be a key methane consumer in all studied lakes. The ecological role of Crenothrix in lacustrine ecosystems is so far poorly understood, with only limited information on its existence in the water column of stratified lakes. Our results provide a novel ecological insight into this group by revealing a wide distribution of Crenothrix in lake sediments. The active methane assimilation by Crenothrix also suggested that it might represent a so far overlooked but crucial biological sink of methane in shallow lakes.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jennifer Pratscher
- The Lyell Centre, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Research Avenue South, Edinburgh EH14 4AP, UK
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Wang B, Stirling E, He Z, Ma B, Zhang H, Zheng X, Xiao F, Yan Q. Pollution alters methanogenic and methanotrophic communities and increases dissolved methane in small ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149723. [PMID: 34438138 DOI: 10.1016/j.scitotenv.2021.149723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 05/28/2023]
Abstract
Small ponds have become a hotspot of greenhouse gas emissions, but our understanding of methane (CH4) cycling and its biological regulation in small polluted ponds remains limited. To assess how pollution affects CH4 content, we investigated dissolved CH4 concentrations, water and sediments properties, methanogenic and methanotrophic communities in two types of small polluted ponds. Compared with low pollution (LP) ponds, high pollution (HP) ponds showed significantly (P < 0.05) higher dissolved CH4 in water. Sequencing of methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) genes showed that HP led to significant (P < 0.05) shifts of CH4-cycling microbial communities, with increased Shannon index of sediment methanogenic communities and water methanotrophic communities. There were also strong negative associations (P < 0.05) between dissolved CH4 concentrations and interdomain methanogen-methanotroph network connectivity in water and sediments, respectively. The partial least squares path modeling indicated that dissolved oxygen, total organic carbon, ammonium nitrogen and nitrate nitrogen of water, and total nitrogen and total carbon of sediment, and CH4-cycling microbes could regulate the CH4 content. This study clarified the effects of environmental deterioration on CH4 cycling in small ponds, highlighting the use of methanogen-methanotroph network connectivity to assess the CH4 production.
Collapse
Affiliation(s)
- Binhao Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xiafei Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Roland FAE, Borges AV, Bouillon S, Morana C. Nitrate-dependent anaerobic methane oxidation and chemolithotrophic denitrification in a temperate eutrophic lake. FEMS Microbiol Ecol 2021; 97:6360975. [PMID: 34468740 DOI: 10.1093/femsec/fiab124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/30/2021] [Indexed: 11/12/2022] Open
Abstract
While the emissions of methane (CH4) by natural systems have been widely investigated, CH4 aquatic sinks are still poorly constrained. Here, we investigated the CH4 cycle and its interactions with nitrogen (N), iron (Fe) and manganese (Mn) cycles in the oxic-anoxic interface and deep anoxic waters of a small, meromictic and eutrophic lake, during two summertime sampling campaigns. Anaerobic CH4 oxidation (AOM) was measured from the temporal decrease of CH4 concentrations, with the addition of three potential electron acceptors (NO3-, iron oxides (Fe(OH)3) and manganese oxides (MnO2)). Experiments with the addition of either 15N-labeled nitrate (15N-NO3-) or 15N-NO3- combined with sulfide (H2S), to measure denitrification, chemolithotrophic denitrification and anaerobic ammonium oxidation (anammox) rates, were also performed. Measurements showed AOM rates up to 3.8 µmol CH4 L-1 d-1 that strongly increased with the addition of NO3- and moderately increased with the addition of Fe(OH)3. No stimulation was observed with MnO2 added. Potential denitrification and anammox rates up to 63 and 0.27 µmol N2 L-1 d-1, respectively, were measured when only 15N-NO3- was added. When H2S was added, both denitrification and anammox rates increased. Altogether, these results suggest that prokaryote communities in the redoxcline are able to efficiently use the most available substrates.
Collapse
Affiliation(s)
- Fleur A E Roland
- Chemical Oceanography Unit, Université de Liège, 4000 Liège, Belgium
| | - Alberto V Borges
- Chemical Oceanography Unit, Université de Liège, 4000 Liège, Belgium
| | - Steven Bouillon
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven (KU Leuven), 3001 Leuven, Belgium
| | - Cédric Morana
- Chemical Oceanography Unit, Université de Liège, 4000 Liège, Belgium
| |
Collapse
|
16
|
Zamanpour MK, Kaliappan RS, Rockne KJ. Gas ebullition from petroleum hydrocarbons in aquatic sediments: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110997. [PMID: 32778285 DOI: 10.1016/j.jenvman.2020.110997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Gas ebullition in sediment results from biogenic gas production by mixtures of bacteria and archaea. It often occurs in organic-rich sediments that have been impacted by petroleum hydrocarbon (PHC) and other anthropogenic pollution. Ebullition occurs under a relatively narrow set of biological, chemical, and sediment geomechanical conditions. This process occurs in three phases: I) biogenic production of primarily methane and dissolved phase transport of the gases in the pore water to a bubble nucleation site, II) bubble growth and sediment fracture, and III) bubble rise to the surface. The rate of biogenic gas production in phase I and the resistance of the sediment to gas fracture in phase II play the most significant roles in ebullition kinetics. What is less understood is the role that substrate structure plays in the rate of methanogenesis that drives gas ebullition. It is well established that methanogens have a very restricted set of compounds that can serve as substrates, so any complex organic molecule must first be broken down to fermentable compounds. Given that most ebullition-active sediments are completely anaerobic, the well-known difficulty in degrading PHCs under anaerobic conditions suggests potential limitations on PHC-derived gas ebullition. To date, there are no studies that conclusively demonstrate that weathered PHCs can alone drive gas ebullition. This review consists of an overview of the factors affecting gas ebullition and the biochemistry of anaerobic PHC biodegradation and methanogenesis in sediment systems. We next compile results from the scholarly literature on PHCs serving as a source of methanogenesis. We combine these results to assess the potential for PHC-driven gas ebullition using energetics, kinetics, and sediment geomechanics analyses. The results suggest that short chain <C10 alkanes are the only PHC class that alone may have the potential to drive ebullition, and that PHC-derived methanogenesis likely plays a minor part in driving gas ebullition in contaminated sediments compared to natural organic matter.
Collapse
Affiliation(s)
| | - Raja Shankar Kaliappan
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Karl John Rockne
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
17
|
Liu Y, Wang X, Chen Y, Zhang L, Xu K, Du Y. Anaerobic methane-oxidizing bacterial communities in sediments of a drinking reservoir, Beijing, China. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01578-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Yang Y, Tong T, Chen J, Liu Y, Xie S. Ammonium Impacts Methane Oxidation and Methanotrophic Community in Freshwater Sediment. Front Bioeng Biotechnol 2020; 8:250. [PMID: 32296693 PMCID: PMC7137091 DOI: 10.3389/fbioe.2020.00250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
Lacustrine ecosystems are regarded as one of the important natural sources of greenhouse gas methane. Aerobic methane oxidation, carried out by methane-oxidizing bacteria, is a key process regulating methane emission. And ammonium is believed to greatly influence aerobic methane oxidation activity. To date, disagreement exists in the threshold of ammonium effect. Moreover, knowledge about how aerobic methanotrophic community composition and functional gene transcription respond to ammonium is still lacking. In the present study, microcosms with freshwater lake sediment were constructed to explore the effect of ammonium level on aerobic methanotrophs. Methane oxidation potential, and the density, diversity and composition of pmoA gene and its transcripts were examined during 2-week incubation. A negative impact of ammonium on aerobic methane oxidation potential and a positive impact on pmoA gene density were observed only at a very high level of ammonium. However, pmoA gene transcription increased notably at all ammonium levels. The composition of functional pmoA gene and transcripts were also influenced by ammonium. But a great shift was only observed in pmoA transcripts at the highest ammonium level.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
19
|
He Z, Xu S, Zhao Y, Pan X. Methane emissions from aqueous sediments are influenced by complex interactions among microbes and environmental factors: A modeling study. WATER RESEARCH 2019; 166:115086. [PMID: 31536890 DOI: 10.1016/j.watres.2019.115086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/16/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Methane fluxes from aqueous sediments strongly influence global atmospheric methane. However, many questions still puzzle researchers; for example, why are some unstable sediments atmospheric methane sinks? In this study, a biofilm model originally developed for wastewater treatment was modified to simulate the microbial kinetics and substance conversions in aqueous surface sediments. The model was validated by the experimental data and could predict chemical profiles and microbial distributions in sediments. The model revealed complicated interactions between different microbial communities and environmental factors, including competition between aerobic methane-oxidizing bacteria, nitrite-dependent anaerobic methane-oxidizing bacteria, and anaerobic ammonia-oxidizing bacteria. The results of model simulations showed that the effects of environmental factors, especially dissolved oxygen and ammonia in overlying water, on methane fluxes are very complicated. Rapid environmental changes (which can be caused by tide, day-night alternation, or zoobenthic and human activity) and intensive competition between microbes greatly affected methane fluxes and resulted in alternation between atmospheric methane source and sink in unstable sediments. This study extends the application of a wastewater treatment model to ecological studies of microbial interactions in natural sediments and explains some problems that might be difficult to resolve by using experimental methods.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Shuyu Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yuanhai Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| |
Collapse
|
20
|
Impact of Nutrient and Stoichiometry Gradients on Microbial Assemblages in Erhai Lake and Its Input Streams. WATER 2019. [DOI: 10.3390/w11081711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Networks of lakes and streams are linked by downslope flows of material and energy within catchments. Understanding how bacterial assemblages are associated with nutrients and stoichiometric gradients in lakes and streams is essential for understanding biogeochemical cycling in freshwater ecosystems. In this study, we conducted field sampling of bacterial communities from lake water and stream biofilms in Erhai Lake watershed. We determined bacterial communities using high-throughput 16S rRNA gene sequencing and explored the relationship between bacterial composition and environmental factors using networking analysis, canonical correspondence analysis (CCA), and variation partitioning analysis (VPA). Physicochemical parameters, nutrients, and nutrient ratios gradients between the lake and the streams were strongly associated with the differences in community composition and the dominant taxa. Cyanobacteria dominated in Erhai Lake, while Proteobacteria dominated in streams. The stream bacterial network was more stable with multiple stressors, including physicochemical-factors and nutrient-factors, while the lake bacterial network was more fragile and susceptible to human activities with dominant nutrients (phosphorus). Negative correlations between bacterial communities and soluble reactive phosphorus (SRP) as well as positive correlations between bacterial communities and dissolved organic carbon (DOC) in the network indicated these factors had strong effect on bacterial succession. Erhai Lake is in a eutrophic state, and high relative abundances of Synechococcus (40.62%) and Microcystis (16.2%) were noted during the course of our study. CCA indicated that nutrients (phosphorus) were key parameters driving Cyanobacteria-dominated community structure. By classifying the environmental factors into five categories, VPA analyses identified that P-factor (total phosphorus (TP) and SRP) as well as the synergistic effect of C-factor (DOC), N-factor (NO3−), and P-factor (TP and SRP) played a central role in structuring the bacterial communities in Erhai Lake. Heterogeneous physicochemical conditions explained the variations in bacterial assemblages in streams. This study provides a picture of stream–lake linkages from the perspective of bacterial community structure as well as key factors driving bacterial assemblages within lakes and streams at the whole watershed scale. We further argue that better management of phosphorus on the watershed scale is needed for ameliorating eutrophication of Erhai Lake.
Collapse
|
21
|
Tong T, Xie S. Impacts of sulfanilamide and oxytetracycline on methane oxidation and methanotrophic community in freshwater sediment. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:392-398. [PMID: 30790109 DOI: 10.1007/s10646-019-02026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2019] [Indexed: 05/28/2023]
Abstract
Methanotrophs are of great significance for the abatement of methane emission from anoxic environments. Antibiotics are ubiquitous in the environment and can affect microbial activity and community density and composition. However, information about the effect of antibiotics on methanotrophs is still lacking. The current study explored the influences of sulfonamides and tetracyclines on methane oxidation potential (MOP) and methanotrophic density and community structure in freshwater sediment microcosms. The addition of both sulfanilamide (SA) and oxytetracycline (OTC) could increase MOP and particulate methane monooxygenase subunit A (pmoA) gene density but decrease the number of pmoA transcripts. Both SA and OTC could also have impacts on sediment methanotrophic community structure. The antibiotic effects on MOP and methanotrophs were found to depend on the dosage and type of antibiotics. This work could provide some new insights towards the links between methane oxidation and antibiotics.
Collapse
Affiliation(s)
- Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China.
| |
Collapse
|
22
|
Yang Y, Chen J, Tong T, Li B, He T, Liu Y, Xie S. Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:863-872. [PMID: 30708301 DOI: 10.1016/j.scitotenv.2019.01.307] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/29/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Lake is an important natural source of methane, a potential greenhouse gas, in the atmosphere. Aerobic methanotrophs can consume a notable proportion of the methane produced in lacustrine ecosystems. However, previous studies mainly focused on aerobic methanotrophs in deep and oligotrophic lakes, while little is known about these organisms in shallow and eutrophic lakes. Lake eutrophication leads to more abundant substrates for methanogenesis, and a subsequent higher methane flux. Therefore, the methanotrophs in eutrophic lakes might play a more important role in mediating lacustrine methane emission. In the current study, aerobic methanotrophs in the sediments of two adjacent shallow freshwater lakes at different trophic status (mesotrophic and eutrophic, respectively) were investigated. Abundant methanotrophs and active aerobic methane oxidation were observed in both lakes. While the eutrophic lake harbored a higher abundance of methanotrophs. The result of pmoA-based high-throughput sequencing suggested that methanotrophic communities in the two studied lakes were dominated by unique groups (Type Ib and Type II), dependent on lake and season. But generally, eutrophication might lead to a higher proportion of Type II methanotrophs. The abundance and uniqueness of methanotrophic community could be attributed to lake eutrophication, and were regulated by environmental variables of both sediment and overlying water. This work provides a new insight towards methanotrophs in shallow freshwater lake impacted by eutrophication.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianfei Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianli Tong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Tao He
- South China Institute of Environmental Sciences, Ministry of Environment Protection (MEP), Guangzhou 510655, China
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
23
|
Luo Z, Li S, Hou K, Ji G. Spatial and seasonal bacterioplankton community dynamics in the main channel of the Middle Route of South-to-North Water Diversion Project. Res Microbiol 2019; 170:24-34. [DOI: 10.1016/j.resmic.2018.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/30/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022]
|
24
|
Yang Y, Chen J, Li B, Liu Y, Xie S. Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status. Syst Appl Microbiol 2018; 41:650-657. [DOI: 10.1016/j.syapm.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/15/2018] [Accepted: 08/02/2018] [Indexed: 11/30/2022]
|
25
|
Laskar F, Das Purkayastha S, Sen A, Bhattacharya MK, Misra BB. Diversity of methanogenic archaea in freshwater sediments of lacustrine ecosystems. J Basic Microbiol 2017; 58:101-119. [PMID: 29083035 DOI: 10.1002/jobm.201700341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
About half of the global methane (CH4 ) emission is contributed by the methanogenic archaeal communities leading to a significant increase in global warming. This unprecedented situation has increased the ever growing necessity of evaluating the control measures for limiting CH4 emission to the atmosphere. Unfortunately, research endeavors on the diversity and functional interactions of methanogens are not extensive till date. We anticipate that the study of the diversity of methanogenic community is paramount for understanding the metabolic processes in freshwater lake ecosystems. Although there are several disadvantages of conventional culture-based methods for determining the diversity of methanogenic archaeal communities, in order to understand their ecological roles in natural environments it is required to culture the microbes. Recently different molecular techniques have been developed for determining the structure of methanogenic archaeal communities thriving in freshwater lake ecosystem. The two gene based cloning techniques required for this purpose are 16S rRNA and methyl coenzyme M reductase (mcrA) in addition to the recently developed metagenomics approaches and high throughput next generation sequencing efforts. This review discusses the various methods of culture-dependent and -independent measures of determining the diversity of methanogen communities in lake sediments in lieu of the different molecular approaches and inter-relationships of diversity of methanogenic archaea.
Collapse
Affiliation(s)
- Folguni Laskar
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Aniruddha Sen
- Advance Institutional Biotech Hub, Karimganj College, Karimganj, Assam, India
| | | | - Biswapriya B Misra
- Department of Genetics, Texas Biomedical Research Institute, San Antonio 78227, Texas, USA
| |
Collapse
|
26
|
Aerobic and anaerobic methanotrophic communities in urban landscape wetland. Appl Microbiol Biotechnol 2017; 102:433-445. [PMID: 29079862 DOI: 10.1007/s00253-017-8592-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
Both aerobic methane-oxidizing bacteria (MOB) and nitrite-dependent anaerobic methane oxidation (n-damo) organisms can be important methane sinks in a wetland. However, the influences of the vegetation type on aerobic MOB and n-damo communities in wetland, especially in constructed wetland, remain poorly understood. The present study investigated the influences of the vegetation type on both aerobic MOB and n-damo organisms in a constructed urban landscape wetland. Sediments were collected from eight sites vegetated with different plant species. The abundance (1.19-3.27 × 107 pmoA gene copies per gram dry sediment), richness (Chao1 estimator = 16.3-81.5), diversity (Shannon index = 2.10-3.15), and structure of the sediment aerobic MOB community were found to vary considerably with sampling site. In contrast, n-damo community abundance (8.74 × 105-4.80 × 106 NC10 16S rRNA gene copies per gram dry sediment) changed slightly with the sampling site. The richness (Chao1 estimator = 1-11), diversity (Shannon index = 0-0.78), and structure of the NC10 16S rRNA gene-based n-damo community illustrated slight site-related changes, while the spatial changes of the pmoA gene-based n-damo community richness (Chao1 estimator = 1-8), diversity (Shannon index = 0-0.99), and structure were considerable. The vegetation type could have a profound impact on the wetland aerobic MOB community and had a stronger influence on the pmoA-based n-damo community than on the NC10 16S-based one in urban wetland. Moreover, the aerobic MOB community had greater abundance and higher richness and diversity than the n-damo community. Methylocystis (type II MOB) predominated in urban wetland, while no known type I MOB species was detected. In addition, the ratio of total organic carbon to total nitrogen (C/N) might be a determinant of sediment n-damo community diversity and aerobic MOB richness.
Collapse
|
27
|
Long Y, Liu C, Lin H, Li N, Guo Q, Xie S. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir. Can J Microbiol 2017; 63:525-534. [DOI: 10.1139/cjm-2016-0585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0–5 cm, 5–10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 105 to 8.24 × 105 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32–2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from “Candidatus Methylomirabilis oxyfera”. Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.
Collapse
Affiliation(s)
- Yan Long
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Changbao Liu
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Hengliang Lin
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ningning Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Environment Protection, Guangzhou 510655, People’s Republic of China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
28
|
Wang S, Liu Y, Liu G, Huang Y, Zhou Y. A New Primer to Amplify pmoA Gene From NC10 Bacteria in the Sediments of Dongchang Lake and Dongping Lake. Curr Microbiol 2017; 74:908-914. [PMID: 28501892 DOI: 10.1007/s00284-017-1260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/28/2017] [Indexed: 11/27/2022]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is catalyzed by the NC10 phylum bacterium "Candidatus Methylomirabilis oxyfera" (M. oxyfera). Generally, the pmoA gene is applied as a functional marker to test and identify NC10-like bacteria. However, it is difficult to detect the NC10 bacteria from sediments of freshwater lake (Dongchang Lake and Dongping Lake) with the previous pmoA gene primer sets. In this work, a new primer cmo208 was designed and used to amplify pmoA gene of NC10-like bacteria. A newly nested PCR approach was performed using the new primer cmo208 and the previous primers cmo182, cmo682, and cmo568 to detect the NC10 bacteria. The obtained pmoA gene sequences exhibited 85-92% nucleotide identity and 95-97% amino acid sequence identity to pmoA gene of M. oxyfera. The obtained diversity of pmoA gene sequences coincided well with the diversity of 16S rRNA sequences. These results indicated that the newly designed pmoA primer cmo208 could give one more option to detect NC10 bacteria from different environmental samples.
Collapse
MESH Headings
- Aerobiosis
- Anaerobiosis
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Cluster Analysis
- DNA Primers/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, Bacterial
- Genetic Variation
- Geologic Sediments/microbiology
- Lakes
- Phylogeny
- Polymerase Chain Reaction/methods
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Shenghui Wang
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| | - Yanjun Liu
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Guofu Liu
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Yaru Huang
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Yu Zhou
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| |
Collapse
|
29
|
Deng Y, Liu Y, Dumont M, Conrad R. Salinity Affects the Composition of the Aerobic Methanotroph Community in Alkaline Lake Sediments from the Tibetan Plateau. MICROBIAL ECOLOGY 2017; 73:101-110. [PMID: 27878346 DOI: 10.1007/s00248-016-0879-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/12/2016] [Indexed: 06/06/2023]
Abstract
Lakes are widely distributed on the Tibetan Plateau, which plays an important role in natural methane emission. Aerobic methanotrophs in lake sediments reduce the amount of methane released into the atmosphere. However, no study to date has analyzed the methanotroph community composition and their driving factors in sediments of these high-altitude lakes (>4000 m). To provide new insights on this aspect, the abundance and composition in the sediments of six high-altitude alkaline lakes (including both freshwater and saline lakes) on the Tibetan Plateau were studied. The quantitative PCR, terminal restriction fragment length polymorphism, and 454-pyrosequencing methods were used to target the pmoA genes. The pmoA gene copies ranged 104-106 per gram fresh sediment. Type I methanotrophs predominated in Tibetan lake sediments, with Methylobacter and uncultivated type Ib methanotrophs being dominant in freshwater lakes and Methylomicrobium in saline lakes. Combining the pmoA-pyrosequencing data from Tibetan lakes with other published pmoA-sequencing data from lake sediments of other regions, a significant salinity and alkalinity effect (P = 0.001) was detected, especially salinity, which explained ∼25% of methanotroph community variability. The main effect was Methylomicrobium being dominant (up to 100%) in saline lakes only. In freshwater lakes, however, methanotroph composition was relatively diverse, including Methylobacter, Methylocystis, and uncultured type Ib clusters. This study provides the first methanotroph data for high-altitude lake sediments (>4000 m) and shows that salinity is a driving factor for the community composition of aerobic methanotrophs.
Collapse
Affiliation(s)
- Yongcui Deng
- College of Geographic Sciences, Nanjing Normal University, 1 Wenyuan Road, 210023, Nanjing, China
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, 1 Wenyuan Road, 210023, Nanjing, China
| | - Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China.
| | - Marc Dumont
- Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Ralf Conrad
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043, Marburg, Germany
| |
Collapse
|
30
|
Hu Z, Ma R. Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China. PeerJ 2016; 4:e2766. [PMID: 27994974 PMCID: PMC5160924 DOI: 10.7717/peerj.2766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/07/2016] [Indexed: 11/20/2022] Open
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered biological process which has been arousing global attention because of its potential in minimizing greenhouse gases emissions. In this study, molecular biological techniques and potential n-damo activity batch experiments were conducted to investigate the presence and diversity of M. oxyfera bacteria in paddy field, corn field, and wastewater treatment plant (WWTP) sites in northern China, as well as lab-scale n-damo enrichment culture. N-damo enrichment culture showed the highest abundance of M. oxyfera bacteria, and positive correlation was observed between potential n-damo rate and abundance of M. oxyfera bacteria. Both paddy field and corn field sites were believed to be better inoculum than WWTP for the enrichment of M. oxyfera bacteria due to their higher abundance and the diversity of M. oxyfera bacteria. Comparative analysis revealed that long biomass retention time, low NH\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{4}^{+}$\end{document}4+ and high NO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{2}^{-}$\end{document}2− content were suitable for the growth of M. oxyfera bacteria.
Collapse
Affiliation(s)
- Zhen Hu
- School of Environmental Science and Engineering, Shandong University , Jinan , China
| | - Ru Ma
- School of Environmental Science and Engineering, Shandong University , Jinan , China
| |
Collapse
|
31
|
The Distribution Pattern of Sediment Archaea Community of the Poyang Lake, the Largest Freshwater Lake in China. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:9278929. [PMID: 28070167 PMCID: PMC5187460 DOI: 10.1155/2016/9278929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/23/2016] [Accepted: 08/09/2016] [Indexed: 11/17/2022]
Abstract
Archaea plays an important role in the global geobiochemical circulation of various environments. However, much less is known about the ecological role of archaea in freshwater lake sediments. Thus, investigating the structure and diversity of archaea community is vital to understand the metabolic processes in freshwater lake ecosystems. In this study, sediment physicochemical properties were combined with the results from 16S rRNA clone library-sequencing to examine the sediment archaea diversity and the environmental factors driving the sediment archaea community structures. Seven sites were chosen from Poyang Lake, including two sites from the main lake body and five sites from the inflow river estuaries. Our results revealed high diverse archaea community in the sediment of Poyang Lake, including Bathyarchaeota (45.5%), Euryarchaeota (43.1%), Woesearchaeota (3.6%), Pacearchaeota (1.7%), Thaumarchaeota (1.4%), suspended Lokiarchaeota (0.7%), Aigarchaeota (0.2%), and Unclassified Archaea (3.8%). The archaea community compositions differed among sites, and sediment property had considerable influence on archaea community structures and distribution, especially total organic carbon (TOC) and metal lead (Pb) (p < 0.05). This study provides primary profile of sediment archaea distribution in freshwater lakes and helps to deepen our understanding of lake sediment microbes.
Collapse
|
32
|
Long Y, Guo Q, Li N, Li B, Tong T, Xie S. Spatial change of reservoir nitrite-dependent methane-oxidizing microorganisms. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1247-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Vegetation type and layer depth influence nitrite-dependent methane-oxidizing bacteria in constructed wetland. Arch Microbiol 2016; 199:505-511. [DOI: 10.1007/s00203-016-1328-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
34
|
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, Jetten MSM, Lüke C, Reimann J. Nitrate- and nitrite-dependent anaerobic oxidation of methane. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:941-955. [PMID: 27753265 DOI: 10.1111/1758-2229.12487] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to Methanosarcina methanogens. They were named 'Candidatus Methanoperedens nitroreducens' and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium 'Candidatus Methylomirabilis oxyfera' that probably utilizes an intra-aerobic pathway through the dismutation of NO to N2 and O2 for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved.
Collapse
Affiliation(s)
- Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Annika Vaksmaa
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Arslan Arshad
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Claudia Lüke
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| |
Collapse
|
35
|
Oswald K, Jegge C, Tischer J, Berg J, Brand A, Miracle MR, Soria X, Vicente E, Lehmann MF, Zopfi J, Schubert CJ. Methanotrophy under Versatile Conditions in the Water Column of the Ferruginous Meromictic Lake La Cruz (Spain). Front Microbiol 2016; 7:1762. [PMID: 27891115 PMCID: PMC5104750 DOI: 10.3389/fmicb.2016.01762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 11/13/2022] Open
Abstract
Lakes represent a considerable natural source of methane to the atmosphere compared to their small global surface area. Methanotrophs in sediments and in the water column largely control methane fluxes from these systems, yet the diversity, electron accepting capacity, and nutrient requirements of these microorganisms have only been partially identified. Here, we investigated the role of electron acceptors alternative to oxygen and sulfate in microbial methane oxidation at the oxycline and in anoxic waters of the ferruginous meromictic Lake La Cruz, Spain. Active methane turnover in a zone extending well below the oxycline was evidenced by stable carbon isotope-based rate measurements. We observed a strong methane oxidation potential throughout the anoxic water column, which did not vary substantially from that at the oxic/anoxic interface. Both in the redox-transition and anoxic zones, only aerobic methane-oxidizing bacteria (MOB) were detected by fluorescence in situ hybridization and sequencing techniques, suggesting a close coupling of cryptic photosynthetic oxygen production and aerobic methane turnover. Additions of nitrate, nitrite and to a lesser degree iron and manganese oxides also stimulated bacterial methane consumption. We could not confirm a direct link between the reduction of these compounds and methane oxidation and we cannot exclude the contribution of unknown anaerobic methanotrophs. Nevertheless, our findings from Lake La Cruz support recent laboratory evidence that aerobic methanotrophs may be able to utilize alternative terminal electron acceptors under oxygen limitation.
Collapse
Affiliation(s)
- Kirsten Oswald
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaum, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Swiss Federal Institute of TechnologyZurich, Switzerland
| | - Corinne Jegge
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaum, Switzerland; School of Architecture, Civil and Environmental Engineering, EPFL, Swiss Federal Institute of TechnologyLausanne, Switzerland
| | - Jana Tischer
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| | - Jasmine Berg
- Department of Biogeochemistry, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Andreas Brand
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaum, Switzerland; Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Swiss Federal Institute of TechnologyZurich, Switzerland
| | - María R Miracle
- Department of Microbiology and Ecology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia Burjassot, Spain
| | - Xavier Soria
- Department of Microbiology and Ecology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia Burjassot, Spain
| | - Eduardo Vicente
- Department of Microbiology and Ecology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia Burjassot, Spain
| | - Moritz F Lehmann
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| | - Jakob Zopfi
- Department of Environmental Sciences, University of Basel Basel, Switzerland
| | - Carsten J Schubert
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and Technology Kastanienbaum, Switzerland
| |
Collapse
|
36
|
Chen J, Dick R, Lin JG, Gu JD. Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments. Appl Microbiol Biotechnol 2016; 100:9845-9860. [DOI: 10.1007/s00253-016-7853-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
|
37
|
Long Y, Jiang X, Guo Q, Li B, Xie S. Sediment nitrite-dependent methane-oxidizing microorganisms temporally and spatially shift in the Dongjiang River. Appl Microbiol Biotechnol 2016; 101:401-410. [DOI: 10.1007/s00253-016-7888-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
|
38
|
Co-occurrence of nitrite-dependent anaerobic ammonium and methane oxidation processes in subtropical acidic forest soils. Appl Microbiol Biotechnol 2016; 100:7727-39. [DOI: 10.1007/s00253-016-7585-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 01/01/2023]
|
39
|
Yang Y, Zhao Q, Cui Y, Wang Y, Xie S, Liu Y. Spatio-temporal Variation of Sediment Methanotrophic Microorganisms in a Large Eutrophic Lake. MICROBIAL ECOLOGY 2016; 71:9-17. [PMID: 26318324 DOI: 10.1007/s00248-015-0667-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/18/2015] [Indexed: 06/04/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) play a crucial role in mitigating the methane emission from lake ecosystems to the atmosphere. However, the distribution of methanotrophic community in shallow and eutrophic lake and its influential factors remain essentially unclear. The present study investigated sediment methanotrophic microorganisms at different sites in eutrophic freshwater Dianchi Lake (China) in two different seasons. The abundance, diversity, and structure of sediment methanotrophic community showed a profound spatial and seasonal variation. The pmoA gene copy number in lake sediments ranged from 8.71 ± 0.49 × 10(4) to 2.09 ± 0.03 × 10(7) copies per gram of dry sediment. Sediment methanotrophic communities were composed of Methylococcus and Methylobacter (type I methanotrophs) and Methylosinus (type II methanotrophs), while type I MOB usually outnumbered type II MOB. Moreover, ammonia nitrogen was found to be a potential determinant of methanotrophic community structure in Dianchi Lake.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Qun Zhao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yahui Cui
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yilin Wang
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Yong Liu
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
40
|
Yan P, Li M, Wei G, Li H, Gao Z. Molecular Fingerprint and Dominant Environmental Factors of Nitrite-Dependent Anaerobic Methane-Oxidizing Bacteria in Sediments from the Yellow River Estuary, China. PLoS One 2015; 10:e0137996. [PMID: 26368535 PMCID: PMC4569144 DOI: 10.1371/journal.pone.0137996] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/25/2015] [Indexed: 11/18/2022] Open
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is performed by “Candidatus Methylomirabilis oxyfera” (M. oxyfera), which connects the carbon and nitrogen global nutrient cycles. In the present study, M. oxyfera-like bacteria sequences were successfully recovered from Yellow River Estuary sediments using specific primers for 16S rRNA and pmoA genes. A M. oxyfera-like sequences analysis based on the 16S rRNA gene revealed greater diversity compared with the pmoA gene; the 16S rRNA gene sequences retrieved from the Yellow River Estuary sediments belong to groups A as well as B and were mainly found in freshwater habitats. Quantitative PCR showed that 16S rRNA gene abundance varied from 9.28±0.11×103 to 2.10±0.13×105 copies g-1 (dry weight), and the pmoA gene abundance ranged from 8.63±0.50×103 to 1.83±0.18×105 copies g-1 (dry weight). A correlation analysis showed that the total organic carbon (TOC) and ammonium (NH4+) as well as the ratio of total phosphorus to total nitrogen (TP/TN) influenced the M. oxyfera-like bacteria distribution in the Yellow River Estuary sediments. These findings will aid in understanding the n-damo bacterial distribution pattern as well as their correlation with surrounding environmental factors in temperate estuarine ecosystems.
Collapse
Affiliation(s)
- Pengze Yan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Mingcong Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Guangshan Wei
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- * E-mail: (ZG); (HL)
| | - Zheng Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
- * E-mail: (ZG); (HL)
| |
Collapse
|
41
|
Methanotrophic community abundance and composition in plateau soils with different plant species and plantation ways. Appl Microbiol Biotechnol 2015; 99:9237-44. [PMID: 26142389 DOI: 10.1007/s00253-015-6782-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/11/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
Aerobic methane-oxidizing bacteria (MOB) play an important role in mitigating the methane emission in soil ecosystems to the atmosphere. However, the impact of plant species and plantation ways on the distribution of MOB remains unclear. The present study investigated MOB abundance and structure in plateau soils with different plant species and plantation ways (natural and managed). Soils were collected from unmanaged wild grassland and naturally forested sites, and managed farmland and afforested sites. A large variation in MOB abundance and structure was found in these studied soils. In addition, both type I MOB (Methylocaldum) and type II MOB (Methylocystis) were detected in these soils, while type II MOB usually outnumbered type I MOB. The distribution of soil MOB community was found to be collectively regulated by plantation way, plant species, the altitude of sampling site, and soil properties.
Collapse
|