1
|
Escaray FJ, Valeri MC, Damiani F, Ruiz OA, Carrasco P, Paolocci F. Multiple bHLH/MYB-based protein complexes regulate proanthocyanidin biosynthesis in the herbage of Lotus spp. PLANTA 2023; 259:10. [PMID: 38041705 PMCID: PMC10693531 DOI: 10.1007/s00425-023-04281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/04/2023] [Indexed: 12/03/2023]
Abstract
MAIN CONCLUSION The complexes involving MYBPA2, TT2b, and TT8 proteins are the critical regulators of ANR and LAR genes to promote the biosynthesis of proanthocyanidins in the leaves of Lotus spp. The environmental impact and health of ruminants fed with forage legumes depend on the herbage's concentration and structure of proanthocyanidins (PAs). Unfortunately, the primary forage legumes (alfalfa and clover) do not contain substantial levels of PAs. No significant progress has been made to induce PAs to agronomically valuable levels in their edible organs by biotechnological approaches thus far. Building this trait requires a profound knowledge of PA regulators and their interplay in species naturally committed to accumulating these metabolites in the target organs. Against this background, we compared the shoot transcriptomes of two inter-fertile Lotus species, namely Lotus tenuis and Lotus corniculatus, polymorphic for this trait, to search for differentially expressed MYB and bHLH genes. We then tested the expression of the above-reported regulators in L. tenuis x L. corniculatus interspecific hybrids, several Lotus spp., and different L. corniculatus organs with contrasting PA levels. We identified a novel MYB activator and MYB-bHLH-based complexes that, when expressed in Nicotiana benthamiana, trans-activated the promoters of L. corniculatus anthocyanidin reductase and leucoanthocyanidin reductase 1 genes. The last are the two critical structural genes for the biosynthesis of PAs in Lotus spp. Competition between MYB activators for the transactivation of these promoters also emerged. Overall, by employing Lotus as a model genus, we refined the transcriptional network underlying PA biosynthesis in the herbage of legumes. These findings are crucial to engineering this trait in pasture legumes.
Collapse
Affiliation(s)
- Francisco José Escaray
- Instituto de Biología Molecular de Plantas (IBMCP) Universitat Politécnica de València - C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022, Valencia, Spain
| | - Maria Cristina Valeri
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy
| | - Francesco Damiani
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto Tecnológico de Chascomús (INTECh), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Avenida Intendente Marino KM 8.2, 7130, Chascomús, Buenos Aires, Argentina
| | - Pedro Carrasco
- Biotecmed, Department of Biochemistry and Molecular Biology, University of València, 46100, Burjassot, Valencia, Spain
| | - Francesco Paolocci
- Institute of Biosciences and BioResources (IBBR), Consiglio Nazionale Delle Ricerche, Via Madonna Alta, 130, 06128, Perugia, Italy.
| |
Collapse
|
2
|
Chen J, Tang W, Li C, Kuang D, Xu X, Gong Y, Liu F, Gao S. Multi-omics analysis reveals the molecular basis of flavonoid accumulation in fructus of Gardenia (Gardenia jasminoides Ellis). BMC Genomics 2023; 24:588. [PMID: 37794356 PMCID: PMC10548582 DOI: 10.1186/s12864-023-09666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/10/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The fruits of Gardenia are rich in flavonoids and geniposides, which have various pharmacological effects such as antioxidant, anti-inflammatory and anticancer. In this study, we analyzed the transcriptome and metabolome of gardenia peel and kernel at different growth stages, revealed the regulatory network related to flavonoid synthesis, and identified the key regulatory genes. RESULTS The results showed that in terms of flavonoid metabolic pathways, gardenia fruits mainly synthesized cinnamic acid through the phenylpropanoid pathway, and then synthesized flavonoids through the action of catalytic enzymes such as 4-coumaroyl-CoA ligase, chalcone synthase, chalcone isomerase and flavanol synthase, respectively. In addition, we found that the metabolomics data showed a certain spatial and temporal pattern in the expression of genes related to the flavonoid metabolism pathway and the relative content of metabolites, which was related to the development and ripening process of the fruit. CONCLUSIONS In summary, this study successfully screened out the key genes related to the biosynthesis metabolism of flavonoids in gardenia through the joint analysis of transcriptome and metabolome. This is of certain significance to the in-depth study of the formation mechanism of gardenia efficacy components and the improvement of quality.
Collapse
Affiliation(s)
- Jianrong Chen
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Weizhuo Tang
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Chunyan Li
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Ding Kuang
- Hunan Yangli Agriculture and Forestry Sci-Tech Co., Ltd, Yueyang, China
| | - Xiaojiang Xu
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Yuan Gong
- College of Biological and Chemical Engineering, Changsha University, Changsha, China
| | - Fang Liu
- College of Biological and Chemical Engineering, Changsha University, Changsha, China.
| | - Song Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Wu Z, Wang Z, Xie Y, Liu G, Shang X, Zhan N. Transcriptome and Metabolome Profiling Provide Insights into Flavonoid Synthesis in Acanthus ilicifolius Linn. Genes (Basel) 2023; 14:genes14030752. [PMID: 36981022 PMCID: PMC10048380 DOI: 10.3390/genes14030752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Acanthus ilicifolius is an important medicinal plant in mangrove forests, which is rich in secondary metabolites with various biological activities. In this study, we used transcriptomic analysis to obtain differentially expressed genes in the flavonoid metabolic pathway and metabolomic methods to detect changes in the types and content in the flavonoid metabolic synthesis pathway. The results showed that DEGs were identified in the mature roots vs. leaves comparison (9001 up-regulated and 8910 down-regulated), mature roots vs. stems comparison (5861 up-regulated and 7374 down-regulated), and mature stems vs. leaves comparison (10,837 up-regulated and 11,903 down-regulated). Furthermore, two AiCHS genes and four AiCHI genes were up-regulated in the mature roots vs. stems of mature A. ilicifolius, and were down-regulated in mature stems vs. leaves, which were highly expressed in the A. ilicifolius stems. A total of 215 differential metabolites were found in the roots vs. leaves of mature A. ilicifolius, 173 differential metabolites in the roots vs. stems, and 228 differential metabolites in the stems vs. leaves. The metabolomic results showed that some flavonoids in A. ilicifolius stems were higher than in the roots. A total of 18 flavonoid differential metabolites were detected in the roots, stems, and leaves of mature A. ilicifolius. In mature leaves, quercetin-3-O-glucoside-7-O-rhamnoside, gossypitrin, isoquercitrin, quercetin 3,7-bis-O-β-D-glucoside, and isorhamnetin 3-O-β-(2″-O-acetyl-β-D-glucuronide) were found in a high content, while in mature roots, di-O-methylquercetin and isorhamnetin were the major compounds. The combined analysis of the metabolome and transcriptome revealed that DEGs and differential metabolites were related to flavonoid biosynthesis. This study provides a theoretical basis for analyzing the molecular mechanism of flavonoid synthesis in A. ilicifolius and provides a reference for further research and exploitation of its medicinal value.
Collapse
Affiliation(s)
- Zhihua Wu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Zhen Wang
- School of Life Sciences, Langfang Normal University, Langfang 065000, China
| | - Yaojian Xie
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Guo Liu
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Xiuhua Shang
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Ni Zhan
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
- School of Life Sciences, Langfang Normal University, Langfang 065000, China
| |
Collapse
|
4
|
Target Discovery of Flavonoids from Elymus nutans Griseb Using Medium- and High-Pressure Liquid Chromatography Combined with Online High-Performance Liquid Chromatography–1,1-diphenyl-2-picrylhydrazyl Detection. SEPARATIONS 2022. [DOI: 10.3390/separations9120437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Forage-based nutrients constitute the main forage value of forage grass. Elymus nutans Griseb possesses a wide ecological adaptability, enhanced crude protein content, good palatability, and excellent genes. Herein, employing medium- (MPLC) and high-pressure liquid chromatography (HPLC), along with online HPLC-DPPH (OHD)-based identification, two primary radical scavenging compounds were extracted and identified from the methanolic extract of Elymus nutans Griseb. With a starting material of 300 g of Elymus nutans Griseb, 5.95 g of the target DPPH suppressors fraction (Fr6) was separated following one cycle of MCI GEL® CHP20P medium pressure liquid chromatography. A Kromasil 100-5-Phenyl column was subsequently employed for further purification of the fraction, which yielded 432.16 mg of Fr62 (7.26% recovery) and 489.01 mg of Fr63 (8.22% recovery). The target compounds were then assessed based on their structure and purity, and two compounds (salcolin A and tricin) were extracted with > 95% purity. This newly designed procedure was highly effective for the targeted flavonoids, and high-purity radical scavenger extraction from forage extracts. This methodology can potentially provide a scientific basis for their quality evaluation.
Collapse
|
5
|
Kato-Noguchi H, Kurniadie D. Allelopathy and Allelochemicals of Leucaenaleucocephala as an Invasive Plant Species. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131672. [PMID: 35807624 PMCID: PMC9269122 DOI: 10.3390/plants11131672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 05/30/2023]
Abstract
Leucaena leucocephala (Lam.) de Wit is native to southern Mexico and Central America and is now naturalized in more than 130 countries. The spread of L. leucocephala is probably due to its multipurpose use such as fodder, timber, paper pulp, shade trees, and soil amendment. However, the species is listed in the world's 100 worst invasive alien species, and an aggressive colonizer. It forms dense monospecific stands and threatens native plant communities, especially in oceanic islands. Phytotoxic chemical interactions such as allelopathy have been reported to play an important role in the invasion of several invasive plant species. Possible evidence for allelopathy of L. leucocephala has also been accumulated in the literature over 30 years. The extracts, leachates, root exudates, litter, decomposing residues, and rhizosphere soil of L. leucocephala increased the mortality and suppressed the germination and growth of several plant species, including weeds and woody plants. Those observations suggest that L. leucocephala is allelopathic and contains certain allelochemicals. Those allelochemicals may release into the rhizosphere soil during decomposition process of the plant residues and root exudation. Several putative allelochemicals such as phenolic acids, flavonoids, and mimosine were identified in L. leucocephala. The species produces a large amount of mimosine and accumulates it in almost all parts of the plants, including leaves, stems, seeds, flowers, roots, and root nodules. The concentrations of mimosine in these parts were 0.11 to 6.4% of their dry weight. Mimosine showed growth inhibitory activity against several plant species, including some woody plants and invasive plants. Mimosine blocked cell division of protoplasts from Petunia hybrida hort. ex E. Vilm. between G1 and S phases, and disturbed the enzyme activity such as peroxidase, catalase, and IAA oxidase. Some of those identified compounds in L. leucocephala may be involved in its allelopathy. Therefore, the allelopathic property of L. leucocephala may support its invasive potential and formation of dense monospecific stands. However, the concentrations of mimosine, phenolic acids, and flavonoids in the vicinity of L. leucocephala, including its rhizosphere soil, have not yet been reported.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan
| | - Denny Kurniadie
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Jl. Raya, Bandung Sumedang Km 21, Jatinangor, Sumedang 45363, Indonesia;
| |
Collapse
|
6
|
Mora J, Pott DM, Osorio S, Vallarino JG. Regulation of Plant Tannin Synthesis in Crop Species. Front Genet 2022; 13:870976. [PMID: 35586570 PMCID: PMC9108539 DOI: 10.3389/fgene.2022.870976] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Plant tannins belong to the antioxidant compound family, which includes chemicals responsible for protecting biological structures from the harmful effects of oxidative stress. A wide range of plants and crops are rich in antioxidant compounds, offering resistance to biotic, mainly against pathogens and herbivores, and abiotic stresses, such as light and wound stresses. These compounds are also related to human health benefits, offering protective effects against cardiovascular and neurodegenerative diseases in addition to providing anti-tumor, anti-inflammatory, and anti-bacterial characteristics. Most of these compounds are structurally and biosynthetically related, being synthesized through the shikimate-phenylpropanoid pathways, offering several classes of plant antioxidants: flavonoids, anthocyanins, and tannins. Tannins are divided into two major classes: condensed tannins or proanthocyanidins and hydrolysable tannins. Hydrolysable tannin synthesis branches directly from the shikimate pathway, while condensed tannins are derived from the flavonoid pathway, one of the branches of the phenylpropanoid pathway. Both types of tannins have been proposed as important molecules for taste perception of many fruits and beverages, especially wine, besides their well-known roles in plant defense and human health. Regulation at the gene level, biosynthesis and degradation have been extensively studied in condensed tannins in crops like grapevine (Vitis vinifera), persimmon (Diospyros kaki) and several berry species due to their high tannin content and their importance in the food and beverage industry. On the other hand, much less information is available regarding hydrolysable tannins, although some key aspects of their biosynthesis and regulation have been recently discovered. Here, we review recent findings about tannin metabolism, information that could be of high importance for crop breeding programs to obtain varieties with enhanced nutritional characteristics.
Collapse
Affiliation(s)
| | | | | | - José G. Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”—Consejo Superior de Investigaciones Científicas-Universidad de Málaga- (IHSM-CSIC-UMA), Málaga, Spain
| |
Collapse
|
7
|
Peng T, Wang Y, Yang T, Wang F, Luo J, Zhang Y. Physiological and Biochemical Responses, and Comparative Transcriptome Profiling of Two Angelica sinensis Cultivars Under Enhanced Ultraviolet-B Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:805407. [PMID: 34975996 PMCID: PMC8718920 DOI: 10.3389/fpls.2021.805407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
In this study, we explored the adaptive mechanism of two varieties of Angelica sinensis exposed to enhanced Ultraviolet-B (UV-B) radiation. The radiation had different effects on the biomass, photosynthetic performance, oxidative damage, antioxidant defense system, and levels of bioactive compounds of Mingui 1 (C1) and Mingui 2 (C2). C2 outperformed C1 under enhanced UV-B radiation, compared to natural light. Using the Illumina RNA-seq, we obtained 6,326 and 2,583 DEGs in C1 and C2, respectively. Under enhanced UV-B radiation, the mRNA levels of genes involved in photosynthesis, antennae protein synthesis, carbon fixation, chlorophyll synthesis, and carotenoid synthesis were decreased in C1 but stable in C2, involving few DEGs. TFs were widely involved in the response of C1 to enhanced UV-B radiation; almost all bHLH and MYB coding genes were downregulated whereas almost all genes encoded WRKY22, WRKY50, WRKY72, NCF, and HSF were upregulated. These results indicate that enhanced UV-B radiation was not conducive to the synthesis of flavonoids, while disease resistance was enhanced. Regarding the ROS scavenging system, upregulated DEGs were mainly found in the AsA-GSH cycle and PrxR/Trx pathways. Remarkably, DEGs that those encoding biosynthetic key enzymes, including ferulic acid (CHS, CHI, DFR, and ANS) and flavonoid (CHS, CHI, DFR, and ANS), most upregulation in C2, leading to increased accumulation of ferulic acid and flavonoids and adversely affecting C1. Genes encoding key enzymes involved in the synthesis of lactone components (ACX, PXG) were mostly up-regulated in C1, increasing the content of lactone components. Our results reveal the DEGs present between C1 and C2 under enhanced UV-B radiation and are consistent with the observed differences in physiological and biochemical indexes. C1 was more sensitive to enhanced UV-B radiation, and C2 was more tolerant to it under moderate enhanced UV-B radiation stress. In addition, the large amount of A. sinensis transcriptome data generated here will serve as a source for finding effective ways to mitigate UV-B enhancement, and also contribute to the well-established lack of genetic information for non-model plant species.
Collapse
Affiliation(s)
- Tong Peng
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yinquan Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
- Northwest Chinese and Tibetan Medicine Collaborative Innovation Center, Lanzhou, China
| | - Tao Yang
- Key Laboratory of Microbial Resources Exploitation and Application, Institute of Biology, Gansu Academy of Sciences, Lanzhou, China
| | - Fusheng Wang
- Dingxi Academy of Agricultural Sciences, Dingxi, China
| | - Jun Luo
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yali Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
8
|
Tan L, Ijaz U, Salih H, Cheng Z, Ni Win Htet N, Ge Y, Azeem F. Genome-Wide Identification and Comparative Analysis of MYB Transcription Factor Family in Musa acuminata and Musa balbisiana. PLANTS 2020; 9:plants9040413. [PMID: 32230872 PMCID: PMC7238746 DOI: 10.3390/plants9040413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022]
Abstract
MYB transcription factors (TFs) make up one of the most important TF families in plants. These proteins play crucial roles in processes related to development, metabolism, and stimulus-response; however, very few studies have been reported for the characterization of MYB TFs from banana. The current study identified 305 and 251 MYB genes from Musa acuminata and Musa balbisiana, respectively. Comprehensive details of MYBs are reported in terms of gene structure, protein domain, chromosomal localization, phylogeny, and expression patterns. Based on the exon-intron arrangement, these genes were classified into 12 gene models. Phylogenetic analysis of MYBs involving both species of banana, Oryza sativa, and Arabidopsis thaliana distributed these genes into 27 subfamilies. This highlighted not only the conservation, but also the gain/loss of MYBs in banana. Such genes are important candidates for future functional investigations. The MYB genes in both species exhibited a random distribution on chromosomes with variable densities. Estimation of gene duplication events revealed that segmental duplications represented the major factor behind MYB gene family expansion in banana. Expression profiles of MYB genes were also explored for their potential involvement in acetylene response or development. Collectively, the current comprehensive analysis of MYB genes in both species of banana will facilitate future functional studies.
Collapse
Affiliation(s)
- Lin Tan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Usman Ijaz
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Haron Salih
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Zhihao Cheng
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Nwe Ni Win Htet
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Yu Ge
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
| | - Farrukh Azeem
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS)-Hainan Key Laboratory of Banana Genetic Improvement, Haikou 571101, Hainan, China; (L.T.); (H.S.); (Z.C.); (N.N.W.H.); (Y.G.)
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
- Correspondence:
| |
Collapse
|
9
|
Singer SD, Weselake RJ, Acharya S. Molecular Enhancement of Alfalfa: Improving Quality Traits for Superior Livestock Performance and Reduced Environmental Impact. CROP SCIENCE 2018; 58:55-71. [PMID: 0 DOI: 10.2135/cropsci2017.07.0434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Stacy D. Singer
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| | - Randall J. Weselake
- Dep. of Agricultural, Food and Nutritional Science; Univ. of Alberta; Edmonton AB Canada T6G 2P5
| | - Surya Acharya
- Agriculture and Agri-Food Canada; Lethbridge Research and Development Centre; Lethbridge AB Canada T1J 4B1
| |
Collapse
|
10
|
Fresquet-Corrales S, Roque E, Sarrión-Perdigones A, Rochina M, López-Gresa MP, Díaz-Mula HM, Bellés JM, Tomás-Barberán F, Beltrán JP, Cañas LA. Metabolic engineering to simultaneously activate anthocyanin and proanthocyanidin biosynthetic pathways in Nicotiana spp. PLoS One 2017; 12:e0184839. [PMID: 28902886 PMCID: PMC5597232 DOI: 10.1371/journal.pone.0184839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
Proanthocyanidins (PAs), or condensed tannins, are powerful antioxidants that remove harmful free oxygen radicals from cells. To engineer the anthocyanin and proanthocyanidin biosynthetic pathways to de novo produce PAs in two Nicotiana species, we incorporated four transgenes to the plant chassis. We opted to perform a simultaneous transformation of the genes linked in a multigenic construct rather than classical breeding or retransformation approaches. We generated a GoldenBraid 2.0 multigenic construct containing two Antirrhinum majus transcription factors (AmRosea1 and AmDelila) to upregulate the anthocyanin pathway in combination with two Medicago truncatula genes (MtLAR and MtANR) to produce the enzymes that will derivate the biosynthetic pathway to PAs production. Transient and stable transformation of Nicotiana benthamiana and Nicotiana tabacum with the multigenic construct were respectively performed. Transient expression experiments in N. benthamiana showed the activation of the anthocyanin pathway producing a purple color in the agroinfiltrated leaves and also the effective production of 208.5 nmol (-) catechin/g FW and 228.5 nmol (-) epicatechin/g FW measured by the p-dimethylaminocinnamaldehyde (DMACA) method. The integration capacity of the four transgenes, their respective expression levels and their heritability in the second generation were analyzed in stably transformed N. tabacum plants. DMACA and phoroglucinolysis/HPLC-MS analyses corroborated the activation of both pathways and the effective production of PAs in T0 and T1 transgenic tobacco plants up to a maximum of 3.48 mg/g DW. The possible biotechnological applications of the GB2.0 multigenic approach in forage legumes to produce "bloat-safe" plants and to improve the efficiency of conversion of plant protein into animal protein (ruminal protein bypass) are discussed.
Collapse
Affiliation(s)
| | - Edelín Roque
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Alejandro Sarrión-Perdigones
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Maricruz Rochina
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - María P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Huertas M. Díaz-Mula
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Research Group on Quality, Safety and Bioactivity of Plant Foods, Murcia, Spain
| | - José M. Bellés
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Francisco Tomás-Barberán
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Research Group on Quality, Safety and Bioactivity of Plant Foods, Murcia, Spain
| | - José P. Beltrán
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Luis A. Cañas
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| |
Collapse
|
11
|
Poutaraud A, Michelot-Antalik A, Plantureux S. Grasslands: A Source of Secondary Metabolites for Livestock Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6535-6553. [PMID: 28704611 DOI: 10.1021/acs.jafc.7b00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The need for environmentally friendly practices in animal husbandry, in conjunction with the reduction of the use of synthetic chemicals, leads us to reconsider our agricultural production systems. In that context, grassland secondary metabolites (GSMs) could offer an alternative way to support to livestock health. In fact, grasslands, especially those with high dicotyledonous plant species, present a large, pharmacologically active reservoir of secondary metabolites (e.g., phenolic compounds, alkaloids, saponins, terpenoids, carotenoids, and quinones). These molecules have activities that could improve or deteriorate health and production. This Review presents the main families of GSMs and uses examples to describe their known impact on animal health in husbandry. Techniques involved for their study are also described. A particular focus is put on anti-oxidant activities of GSMs. In fact, numerous husbandry pathologies, such as inflammation, are linked to oxidative stress and can be managed by a diet rich in anti-oxidants. The different approaches and techniques used to evaluate grassland quality for livestock health highlight the lack of efficient and reliable technics to study the activities of this complex phytococktail. Better knowledge and management of this animal health resource constitute a new multidisciplinary research field and a challenge to maintain and valorize grasslands.
Collapse
Affiliation(s)
- Anne Poutaraud
- Laboratoire Agronomie et Environnement, INRA , UMR 1121, Colmar, 29 rue de Herrlisheim, F-68021 Colmar Cedex, France
| | - Alice Michelot-Antalik
- Laboratoire Agronomie et Environnement, Université de Lorraine , UMR 1121, 2 Avenue de la forêt de Haye - TSA 40602, F-54518 Vandœuvre-lès-Nancy Cedex, France
| | - Sylvain Plantureux
- Laboratoire Agronomie et Environnement, Université de Lorraine , UMR 1121, 2 Avenue de la forêt de Haye - TSA 40602, F-54518 Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
12
|
Escaray FJ, Passeri V, Perea-García A, Antonelli CJ, Damiani F, Ruiz OA, Paolocci F. The R2R3-MYB TT2b and the bHLH TT8 genes are the major regulators of proanthocyanidin biosynthesis in the leaves of Lotus species. PLANTA 2017; 246:243-261. [PMID: 28429079 DOI: 10.1007/s00425-017-2696-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 05/26/2023]
Abstract
By exploiting interspecific hybrids and their progeny, we identified key regulatory and transporter genes intimately related to proanthocyanidin biosynthesis in leaves of Lotus spp. Proanthocyanidins (PAs), known as condensed tannins, are polymeric flavonoids enriching forage legumes of key nutritional value to prevent bloating in ruminant animals. Unfortunately, major forage legumes such as alfalfa and clovers lack PAs in edible tissues. Therefore, engineering the PA trait in herbage of forage legumes is paramount to improve both ecological and economical sustainability of cattle production system. Progresses on the understanding of genetic determinants controlling PA biosynthesis and accumulation have been mainly made studying mutants of Arabidopsis, Medicago truncatula and Lotus japonicus, model species unable to synthesize PAs in the leaves. Here, we exploited interspecific hybrids between Lotus corniculatus, with high levels of PAs in the leaves, and Lotus tenuis, with no PAs in these organs, and relative F2 progeny, to identify among candidate PA regulators and transporters the genes mainly affecting this trait. We found that the levels of leaf PAs significantly correlate with the expression of MATE1, the putative transporter of glycosylated PA monomers, and, among the candidate regulatory genes, with the expression of the MYB genes TT2a, TT2b and MYB14 and the bHLH gene TT8. The expression levels of TT2b and TT8 also correlated with those of all key structural genes of the PA pathways investigated, MATE1 included. Our study unveils a different involvement of the three Lotus TT2 paralogs to the PA trait and highlights differences in the regulation of this trait in our Lotus genotypes with respect to model species. This information opens new avenues for breeding bloat safe forage legumes.
Collapse
Affiliation(s)
- Francisco José Escaray
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valentina Passeri
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Ana Perea-García
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Cristian Javier Antonelli
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Francesco Damiani
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | | |
Collapse
|
13
|
Zou J, Qi F, Ye L, Yao S. Protective Role of Grape Seed Proanthocyanidins Against Ccl4 Induced Acute Liver Injury in Mice. Med Sci Monit 2016; 22:880-9. [PMID: 26986029 PMCID: PMC4801141 DOI: 10.12659/msm.895552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background We investigated the effect of grape seed proanthocyanidins (GSPs) on carbon tetrachloride (CCl4)-induced acute liver injury. Material/Methods Sixty SPF KM mice were randomly divided into 6 groups: the control group, CCl4-model group, bifendate group (DDB group), and low-, moderate-, and high-dose GSP groups. The following parameters were measured: serum levels of alanine aminotransferase (ALT); aspartate aminotransferase (AST); tumor necrosis factor (TNF)-α; interleukin-6 (IL-6); high-mobility group box (HMGB)-1; body weight; liver, spleen, and thymus indexes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity; HMGB1 mRNA; malondialdehyde (MDA) content; hepatocyte proliferation; and changes in liver histology. Results Compared to the CCl4-model group, decreases in liver index and increases in thymus index significantly increased SOD and GSH-Px activities and reduced MDA content, and higher hepatocyte proliferative activity was found in all GSP dose groups and the DDB group (all P<0.001). Compared with the CCl4-model group, serum TNF-α and IL-6 levels and HMGB 1 mRNA and protein expressions decreased significantly in the high GSP dose group (all P<0.05). Conclusions Our results provide strong evidence that administration of GSPs might confer significant protection against CCl4-induced acute liver injury in mice.
Collapse
Affiliation(s)
- Jinfa Zou
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, China (mainland)
| | - Fengjie Qi
- Department of Pathology, Liaoning Medical University, Jinzhou, China (mainland)
| | - Liping Ye
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, China (mainland)
| | - Suyan Yao
- Department of Pathophysiology, Liaoning Medical University, Jinzhou, China (mainland)
| |
Collapse
|
14
|
Zhou M, Memelink J. Jasmonate-responsive transcription factors regulating plant secondary metabolism. Biotechnol Adv 2016; 34:441-449. [PMID: 26876016 DOI: 10.1016/j.biotechadv.2016.02.004] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/24/2023]
Abstract
Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies.
Collapse
Affiliation(s)
- Meiliang Zhou
- Institute of Biology, Leiden University, Sylvius Laboratory, P.O. Box 9505, 2300 RA, Leiden, The Netherlands; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Johan Memelink
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
15
|
Zhou M, Sun Z, Wang C, Zhang X, Tang Y, Zhu X, Shao J, Wu Y. Changing a conserved amino acid in R2R3-MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:395-403. [PMID: 26332741 DOI: 10.1111/tpj.13008] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/16/2015] [Accepted: 08/20/2015] [Indexed: 05/11/2023]
Abstract
Sub-group 4 R2R3-type MYB transcription factors, including MYB3, MYB4, MYB7 and MYB32, act as repressors in phenylpropanoid metabolism. These proteins contain the conserved MYB domain and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) repression domain. Additionally, MYB4, MYB7 and MYB32 possess a putative zinc-finger domain and a conserved GY/FDFLGL motif in their C-termini. The protein 'sensitive to ABA and drought 2' (SAD2) recognizes the nuclear pore complex, which then transports the SAD2-MYB4 complex into the nucleus. Here, we show that the conserved GY/FDFLGL motif contributes to the interaction between MYB factors and SAD2. The Asp → Asn mutation in the GY/FDFLGL motif abolishes the interaction between MYB transcription factors and SAD2, and therefore they cannot be transported into the nucleus and cannot repress their target genes. We found that MYB4(D261N) loses the capacity to repress expression of the cinnamate 4-hydroxylase (C4H) gene and biosynthesis of sinapoyl malate. Our results indicate conservation among MYB transcription factors in terms of their interaction with SAD2. Therefore, the Asp → Asn mutation may be used to engineer transcription factors.
Collapse
Affiliation(s)
- Meiliang Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanmin Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenglong Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- School of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China
| | - Xinquan Zhang
- Grassland Science Department, Sichuan Agriculture University, Chengdu, 611130, Sichuan, China
| | - Yixiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuemei Zhu
- School of Resources and Environment, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jirong Shao
- School of Life Science, Sichuan Agricultural University, Yaan, 625014, Sichuan, China
| | - Yanmin Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|