1
|
Zhang QH, Wang Z, Wang YQ, Liu ML, Su HJ. Enhancement of menaquinone- 7 production through immobilization with hydrogel-based porous membranes. Appl Microbiol Biotechnol 2025; 109:121. [PMID: 40360785 PMCID: PMC12075279 DOI: 10.1007/s00253-025-13493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
The industrial production of menaquinone-7 (MK-7) by Bacillus subtilis has been historically constrained by significant challenges in bioprocess efficiency. To address these limitations, we explored an innovative immobilization strategy utilizing a porous thin-film hydrogel system. Specifically, we developed a novel porous thin-film PVA + B@Ca hydrogel immobilization method that fundamentally transforms cell encapsulation and fermentation dynamics. The comparison between PVA + B@Ca hydrogel immobilized cells and free cells in fermentation demonstrated a significant increase in MK-7 yield from 32.76 ± 1.92 to 48.33 ± 2.92 mg/L, as well as a reduction of the fermentation duration from 48 to 24 h. Additionally, the immobilized cells demonstrated good stability during continuous fermentation, resulting in a space-time yield of MK-7 that increased to 2.0 mg/L·h, which was five times higher than that achieved with free-cell fermentation. Mechanistic insights revealed through microscopic analysis highlight the transformative nature of the hydrogel immobilization: The PVA + B@Ca hydrogel's porous structure creates a protective microenvironment that mitigates cellular stress and maintains optimal metabolic conditions. These findings represent a paradigm shift in understanding cellular immobilization, demonstrating how strategic encapsulation can fundamentally enhance MK-7 fermentation biotechnology. KEY POINTS: • A novel hydrogel immobilization method was developed for MK- 7 production. • The use of immobilized cells gave a fivefold improvement in the space-time yield.
Collapse
Affiliation(s)
- Qiu-Hua Zhang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Brother Research Center, Jiangxi Brother Pharmaceutical Co.,LTD, Jiujiang, 332700, People's Republic of China
| | - Zheng Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yao-Qiang Wang
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Man-Lu Liu
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hai-Jia Su
- Beijing Key Laboratory of Bioprocess, and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Praveen K, Abinandan S, Venkateswarlu K, Megharaj M. Acid-tolerant microalgae-based winery wastewater treatment: performance evaluation and techno-economic analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125335. [PMID: 40267807 DOI: 10.1016/j.jenvman.2025.125335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
This study evaluates the potential of two acid-tolerant microalgal strains, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, for winery wastewater treatment (WWT) by including laboratory- and pilot-scale investigations, and techno-economic analysis (TEA). Laboratory experiments revealed significant growth in strain MAS1, especially in photobioreactors (PBRs), outpacing strain MAS3 with >125 % increase in biomass after four days. Both the strains showed lower but consistent growth in aquaria whereas biomass production was significantly higher in PBR. Nutrient removal in PBR was superior for organic carbon while it varied for nitrogen and phosphates, indicating system-specific advantages. Transitioning to pilot-scale high-rate algal pond with semi-continuous operations showcased higher growth rates in strain MAS1, achieving 1110 mg L-1 biomass yields and improved specific nutrient removal rates for organic carbon, nitrogen, and phosphates as compared to strain MAS3. When considered three processing capacities of 10, 50, and 100 m3 over 15 years, TEA revealed a positive net present value and internal rate of return based on the revenue generated from biomass, thus confirming the economic viability of microalgae-based WWT. Our study highlights the potential of microalgal systems for sustainable wastewater management, stressing the importance of system design and scaling for environmental and economic efficiency.
Collapse
Affiliation(s)
- Kuppan Praveen
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, ATC Building, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, ATC Building, University of Newcastle, Callaghan, NSW, 2308, Australia; crc for Contamination Assessment and Remediation of Environment (crcCARE), ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, ATC Building, University of Newcastle, Callaghan, NSW, 2308, Australia; crc for Contamination Assessment and Remediation of Environment (crcCARE), ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
3
|
Yang G, Zhang J, Abdullah R, Cheah WY, Zhao D, Ling TC. Comprehensive Advancements in Hydrogel, and Its Application in Microalgae Cultivation and Wastewater Treatment. J Microbiol Biotechnol 2024; 35:e2407038. [PMID: 39639489 PMCID: PMC11813343 DOI: 10.4014/jmb.2407.07038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
Microalgae are recognized as a sustainable resource to produce biofertilizers, biofuels, and pigments, with the added benefits of environmental sustainability, such as carbon sequestration and pollutant removal. However, traditional cultivation methods face challenges like low biomass productivity and high operational costs. This review focuses on the innovative use of hydrogels as a medium for microalgae cultivation, which addresses these challenges by enhancing nutrient permeability, light distribution, and overall growth efficiency. Hydrogels provide a three-dimensional matrix that not only supports higher biomass yields but also facilitates the removal of pollutants from wastewater, contributing to circular economy goals. The review also explores the environmental benefits, challenges, and prospects of integrating hydrogel technology into microalgae cultivation systems. By highlighting influencing factors through which hydrogels improve microalgal productivity and environmental outcomes, this work aims to provide insights into the potential of hydrogel-based systems for sustainable development.
Collapse
Affiliation(s)
- Guangtao Yang
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Jinglin Zhang
- Graduate School of Life Sciences and Health, Faculté des Sciences, Université Paris-Saclay, 91400, Orsay, France
| | - Rosazlin Abdullah
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Wai Yan Cheah
- Centre for Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Dehua Zhao
- Department of Civil Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Tau Chuan Ling
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Bedane DT, Asfaw SL. Microalgae and co-culture for polishing pollutants of anaerobically treated agro-processing industry wastewater: the case of slaughterhouse. BIORESOUR BIOPROCESS 2023; 10:81. [PMID: 38647578 PMCID: PMC10992203 DOI: 10.1186/s40643-023-00699-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/23/2023] [Indexed: 04/25/2024] Open
Abstract
Anaerobically treated slaughterhouse effluent is rich in nutrients, organic matter, and cause eutrophication if discharged to the environment without proper further treatment. Moreover, phosphorus and nitrogen in agro-processing industry wastewaters are mainly removed in the tertiary treatment phase. The objective of this study is to evaluate the pollutant removal efficiency of Chlorella and Scenedesmus species as well as their co-culture treating two-phase anaerobic digester effluent through microalgae biomass production. The dimensions of the rectangular photobioreactor used to conduct the experiment are 15 cm in height, 20 cm in width, and 30 cm in length. Removal efficiencies between 86.74-93.11%, 96.74-97.47%, 91.49-92.91%, 97.94-99.46%, 89.22-94.28%, and 91.08-95.31% were attained for chemical oxygen demand, total nitrogen, nitrate, ammonium, total phosphorous, and orthophosphate by Chlorella species, Scenedesmus species, and their co-culture, respectively. The average biomass productivity and biomass yield of Chlorella species, Scenedesmus species, and their co-culture were 1.4 ± 0.1, 1.17 ± 0.12, 1.5 ± 0.13 g/L, and 0.18, 0.21, and 0.23 g/L*day, respectively. The final effluent quality in terms of chemical oxygen demand, total nitrogen, and total phosphorous attained by Chlorella species and the co-culture were below the permissible discharge limit for slaughterhouse effluent standards in the country (Ethiopia). The results of the study showed that the use of microalgae as well as their co-culture for polishing the nutrients and residual organic matter in the anaerobically treated agro-processing industry effluent offers a promising result for wastewater remediation and biomass production. In general, Chlorella and Scenedesmus species microalgae and their co-culture can be applied as an alternative for nutrient removal from anaerobically treated slaughterhouse wastewater as well as biomass production that can be used for bioenergy.
Collapse
Affiliation(s)
- Dejene Tsegaye Bedane
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia.
| | - Seyoum Leta Asfaw
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Tong CY, Honda K, Derek CJC. A review on microalgal-bacterial co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. ENVIRONMENTAL RESEARCH 2023; 228:115872. [PMID: 37054838 DOI: 10.1016/j.envres.2023.115872] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/16/2023]
Abstract
Mass microalgal-bacterial co-cultures have come to the fore of applied physiological research, in particularly for the optimization of high-value metabolite from microalgae. These co-cultures rely on the existence of a phycosphere which harbors unique cross-kingdom associations that are a prerequisite for the cooperative interactions. However, detailed mechanisms underpinning the beneficial bacterial effects onto microalgal growth and metabolic production are rather limited at the moment. Hence, the main purpose of this review is to shed light on how bacteria fuels microalgal metabolism or vice versa during mutualistic interactions, building upon the phycosphere which is a hotspot for chemical exchange. Nutrients exchange and signal transduction between two not only increase the algal productivity, but also facilitate in the degradation of bio-products and elevate the host defense ability. Main chemical mediators such as photosynthetic oxygen, N-acyl-homoserine lactone, siderophore and vitamin B12 were identified to elucidate beneficial cascading effects from the bacteria towards microalgal metabolites. In terms of applications, the enhancement of soluble microalgal metabolites is often associated with bacteria-mediated cell autolysis while bacterial bio-flocculants can aid in microalgal biomass harvesting. In addition, this review goes in depth into the discussion on enzyme-based communication via metabolic engineering such as gene modification, cellular metabolic pathway fine-tuning, over expression of target enzymes, and diversion of flux toward key metabolites. Furthermore, possible challenges and recommendations aimed at stimulating microalgal metabolite production are outlined. As more evidence emerges regarding the multifaceted role of beneficial bacteria, it will be crucial to incorporate these findings into the development of algal biotechnology.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
6
|
Fard MB, Wu D. Potential interactive effect on biomass and bio-polymeric substances of microalgal-bacterial aerobic granular sludge as a valuable resource for sustainable development. BIORESOURCE TECHNOLOGY 2023; 376:128929. [PMID: 36940876 DOI: 10.1016/j.biortech.2023.128929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
The algal/bacterial biomass and extracellular polymeric substances (EPSs) existing in microalgal-bacterial aerobic granular sludge (MB-AGS) offer a promising bioresource. The current review-based paper presents a systematic overview of the compositions and interactions (gene transfer, signal transduction, and nutrient exchange) of microalgal and bacteria consortia, the role of cooperative or competitive partnerships of MB-AGS in the treatment of wastewater and recovery of resource, and the environmental/operational factors affecting their interactions and EPS production. Moreover, a brief notes is given on the opportunities and major challenges of utilizing the microalgal-bacterial biomass and EPS for phosphorus and polysaccharides chemical recovery, renewable energy (i.e. biodiesel, hydrogen, electricity) production. Overall, this compact review will pave the way for developing MB-AGS future biotechnology.
Collapse
Affiliation(s)
- Moein Besharati Fard
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Di Wu
- Center for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium.
| |
Collapse
|
7
|
Akao PK, Kaplan A, Avisar D, Dhir A, Avni A, Mamane H. Removal of carbamazepine, venlafaxine and iohexol from wastewater effluent using coupled microalgal-bacterial biofilm. CHEMOSPHERE 2022; 308:136399. [PMID: 36099989 DOI: 10.1016/j.chemosphere.2022.136399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/08/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
We evaluated the removal capacity of a coupled microalgal-bacterial biofilm (CMBB) to eliminate three recalcitrant pharmaceuticals. The CMBB's efficiency, operating at different biofilm concentrations, with or without light, was compared and analyzed to correlate these parameters to pharmaceutical removal and their effect on the microorganism community. Removal rates changed with changing pharmaceutical and biofilm concentrations: higher biofilm concentrations presented higher removal. Removal of 82-94% venlafaxine and 18-51% carbamazepine was obtained with 5 days of CMBB treatment. No iohexol removal was observed. Light, microorganism composition, and dissolved oxygen concentration are essential parameters governing the removal of pharmaceuticals and ammonia. Chlorophyll concentration increased with time, even in the dark. Three bacterial phyla were dominant: Proteobacteria, Bacteroidetes and Firmicutes. The dominant eukaryotic supergroups were Archaeplastida, Excavata and SAR. A study of the microorganisms' community indicated that not only do the species in the biofilm play an important role; environment, concentration and interactions among them are also important. CMBB has the potential to provide low-cost and sustainable treatment for wastewater and recalcitrant pharmaceutical removal. The microenvironments on the biofilm created by the microalgae and bacteria improved treatment efficiency.
Collapse
Affiliation(s)
- Patricia K Akao
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel; The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Aviv Kaplan
- The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dror Avisar
- The Water Research Center, Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amit Dhir
- School of Energy and Environment, Thapar Institute of Engineering and Technology, Patiala, 69978, India
| | - Adi Avni
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
8
|
Goswami RK, Agrawal K, Verma P. An exploration of natural synergy using microalgae for the remediation of pharmaceuticals and xenobiotics in wastewater. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Ray A, Nayak M, Ghosh A. A review on co-culturing of microalgae: A greener strategy towards sustainable biofuels production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149765. [PMID: 34454141 DOI: 10.1016/j.scitotenv.2021.149765] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/15/2021] [Accepted: 08/15/2021] [Indexed: 05/27/2023]
Abstract
There is a growing global recognition that microalgae-based biofuel are environment-friendly and economically feasible options because they incur several advantages over traditional fossil fuels. Also, the microalgae can be manipulated for extraction of value-added compounds such as lipids (triacylglycerols), carbohydrates, polyunsaturated fatty acids, proteins, pigments, antioxidants, various antimicrobial compounds, etc. Recently, there is an increasing focus on the co-cultivation practices of microalgae with other microorganisms to enhance biomass and lipid productivity. In a co-cultivation strategy, microalgae grow symbiotically with other heterotrophic microbes such as bacteria, yeast, fungi, and other algae/microalgae. They exchange nutrients and metabolites; this helps to increase the productivity, therefore facilitating the commercialization of microalgal-based fuel. Co-cultivation also facilitates biomass harvesting and waste valorization, thereby help to build an algal biorefinery platform for bioenergy production along with multivariate high value bioproducts and simultaneous waste bioremediation. This article comprehensively reviews various microalgae cultivation practices utilizing co-culture approaches with other algae, fungi, bacteria, and yeast. The review mainly focuses on the impact of several binary culture strategies on biomass and lipid yield. The advantages and challenges associated with the procedure along with their respective cultivation modes have also been presented and discussed in detail.
Collapse
Affiliation(s)
- Ayusmita Ray
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Manoranjan Nayak
- Biorefinery and Bioenergy Research Laboratory, Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India.
| | - Amit Ghosh
- P.K. Sinha Centre for Bioenergy and Renewables, Indian Institute of Technology Kharagpur, West Bengal 721302, India; School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
10
|
Zhang C, Li S, Ho SH. Converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia: A critical review. BIORESOURCE TECHNOLOGY 2021; 342:126056. [PMID: 34601027 DOI: 10.1016/j.biortech.2021.126056] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment using activated sludge cannot efficiently eliminate nitrogen and phosphorus, thus engendering the risk of water eutrophication and ecosystem disruption. Fortunately, a new wastewater treatment process applying microalgae-bacteria consortia has attracted considerable interests due to its excellent performance of nutrients removal. Moreover, some bacteria facilitate the harvest of microalgal biomass through bio-flocculation. Additionally, while stimulating the functional bacteria, the improved biomass and enriched components also brighten bioenergy production from the perspective of practical applications. Thus, this review first summarizes the current development of nutrients removal and mutualistic interaction using microalgae-bacteria consortia. Then, advancements in bio-flocculation are completely described and the corresponding mechanisms are thoroughly revealed. Eventually, the recent advances of bioenergy production (i.e., biodiesel, biohydrogen, bioethanol, and bioelectricity) using microalgae-bacteria consortia are comprehensively discussed. Together, this review will provide the ongoing challenges and future developmental directions for better converting nitrogen and phosphorus wastewater into bioenergy using microalgae-bacteria consortia.
Collapse
Affiliation(s)
- Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
11
|
Scognamiglio V, Giardi MT, Zappi D, Touloupakis E, Antonacci A. Photoautotrophs-Bacteria Co-Cultures: Advances, Challenges and Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3027. [PMID: 34199583 PMCID: PMC8199690 DOI: 10.3390/ma14113027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 01/18/2023]
Abstract
Photosynthetic microorganisms are among the fundamental living organisms exploited for millennia in many industrial applications, including the food chain, thanks to their adaptable behavior and intrinsic proprieties. The great multipotency of these photoautotroph microorganisms has been described through their attitude to become biofarm for the production of value-added compounds to develop functional foods and personalized drugs. Furthermore, such biological systems demonstrated their potential for green energy production (e.g., biofuel and green nanomaterials). In particular, the exploitation of photoautotrophs represents a concrete biorefinery system toward sustainability, currently a highly sought-after concept at the industrial level and for the environmental protection. However, technical and economic issues have been highlighted in the literature, and in particular, challenges and limitations have been identified. In this context, a new perspective has been recently considered to offer solutions and advances for the biomanufacturing of photosynthetic materials: the co-culture of photoautotrophs and bacteria. The rational of this review is to describe the recently released information regarding this microbial consortium, analyzing the critical issues, the strengths and the next challenges to be faced for the intentions attainment.
Collapse
Affiliation(s)
- Viviana Scognamiglio
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Maria Teresa Giardi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
- Biosensor S.r.l., Via Olmetti 44, 00060 Formello, Italy
| | - Daniele Zappi
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| | - Eleftherios Touloupakis
- Research Institute on Terrestrial Ecosystems, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| | - Amina Antonacci
- Institute of Crystallography, National Research Council, Via Salaria Km 29.300, Monterotondo, 00015 Rome, Italy; (V.S.); (M.T.G.); (D.Z.)
| |
Collapse
|
12
|
Hu X, Meneses YE, Stratton J, Lau SK, Subbiah J. Integration of ozone with co-immobilized microalgae-activated sludge bacterial symbiosis for efficient on-site treatment of meat processing wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112152. [PMID: 33609974 DOI: 10.1016/j.jenvman.2021.112152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/06/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Direct discharge of high concentration meat processing wastewater (MPW) into municipal sewage system will cause serious shock loading and reduce wastewater treatment efficiency, thus, efficient on-site pretreatment is usually required. Purpose of this study is to integrate ozone with microalgal biotreatment to achieve effective removal of both organic compounds and nutrients with one-step biodegradation and obtain high quality effluent dischargeable to municipal sewage system. Results showed that ozone pretreatment removed 35.0-90.2% color and inactivated 1.8-4.7 log CFU/mL bacteria in MPW. In post biotreatment using microalgae co-immobilized with activated sludge (ACS) bacteria, bacterial growth in ozone pretreated wastewater (7.1-8.1 log CFU/mL) were higher than non-pretreated control (6.0 log CFU/mL) due to enhanced biodegradability of wastewater pollutants. Algal biomass growth in wastewater pretreated with 0.5 (2489.3 mg/L) and 1 (2582.0 mg/L) minute's ozonation were improved and higher than control (2297.1 mg/L). Ozone pretreatment significantly improved nutrients removal. Following ozone pretreatment of 0.5 min, microalgal biotreatment removed 60.1% soluble chemical oxygen demand (sCOD), 79.5% total nitrogen (TN) and 91.9% total phosphate (PO43-) which were higher than control (34.4% sCOD, 63.4% TN, 77.6% total PO43-). Treated effluent contained 342.3 mg/L sCOD, 28.8 mg/L TN, 9.9 mg/L total PO43- and could be discharged into municipal sewage system. However, excessive ozone pretreatment displayed adverse impact on algal growth and sCOD removal. Therefore, integration of 0.5 min's ozone pretreatment with microalgae-based biotreatment is an efficient on-site treatment to simultaneously remove organic compounds and nutrients with one-step biodegradation.
Collapse
Affiliation(s)
- Xinjuan Hu
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA
| | - Yulie E Meneses
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA; Daugherty Water for Food Global Institute, Nebraska Innovation Campus, University of Nebraska-Lincoln, Lincoln, NE, 68588-6204, USA.
| | - Jayne Stratton
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA
| | - Soon Kiat Lau
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0726, USA
| | - Jeyamkondan Subbiah
- Department of Food Science and Technology, Food Processing Center, University of Nebraska-Lincoln, Lincoln, NE, 68588-6205, USA; Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68583-0726, USA; Department of Food Science, University of Arkansas System, Fayetteville, AR, 72701, USA
| |
Collapse
|
13
|
Zhuang LL, Li M, Hao Ngo H. Non-suspended microalgae cultivation for wastewater refinery and biomass production. BIORESOURCE TECHNOLOGY 2020; 308:123320. [PMID: 32284252 DOI: 10.1016/j.biortech.2020.123320] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 05/05/2023]
Abstract
Non-suspended microalgae cultivation technology coupled with wastewater purification has received more scientific attention in recent decades. Since the non-suspended microalgae cultivation is quite different from the suspended ones, the following issues are compared in this study such as advantages and disadvantages, pollutant removal mechanisms and regulations, influential factors, and microalgae biomass accumulation. The analysis aims to support the further application of this technology. The median removal rates of COD, TN, TP, NH4+-N and NO3--N were 91.6%, 78.2%, 87.5%, 93.2% and 81.7%, respectively, by non-suspended microalgae under the TN & TP load rates up to 150 mg·L-1·d-1. The main pathway for TN & TP removal is microalgae cell absorbance. Light intensity, pollutant composition and microalgae metabolic types are the major factors that influence pollutant removal and the lipid content of microalgae. Meanwhile the mechanism concerning how macro-outer conditions influence the micro-environment and further growth of non-suspended microalgae requires more investigation.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Mengting Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Huu Hao Ngo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
14
|
Beji O, Adouani N, Poncin S, Hamdi M, Li HZ. Mineral pollutants removal through immobilized microalgae-bacterial flocs in a multitrophic microreactor. ENVIRONMENTAL TECHNOLOGY 2020; 41:1912-1922. [PMID: 30465731 DOI: 10.1080/09593330.2018.1551939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
Microalgae-bacterial flocs (MaB-flocs) immobilization technique using polyvinyl alcohol (PVA) crosslinked with sodium alginate represent a novel approach for sustainable pollutants removal. The present work was performed to evaluate the performance of a multitrophic batch reactor at microscale for treating two synthetic wastewater solutions prepared with two different initial Chemical Oxygen Demand (COD): 200 mg.L-1 and 450 mg.L-1, respectively. Three MaB-flocs concentrations were entrapped into PVA-alginate beads: C1 (2%, v/v), C2 (5%, v/v) and C3 (10%, v/v), without O2 supply, during three periods 2, 4 and 6 days of batch incubation. PVA-alginate beads containing the highest concentration C3 of MaB-flocs improved the performance of the microreactor to remove significantly NH4+ and PO43- of about 61% and 82%, respectively, from wastewater more than two other concentrations used. This result confirms that C3 of MaB-flocs displays not only a good potential for nutrients removals but also the highest MaB-flocs morphological progression after 6 days of treatment with the highest COD of 450 mg.L-1. The feasibility of the PVA-alginate for cells immobilization, investigated through microscopy analysis, reveals that the evolution of multicellularity in MaB-flocs, for all experiments.
Collapse
Affiliation(s)
- Olfa Beji
- Laboratory of Reactions and Process Engineering, University of Lorraine, Nancy, France
- Laboratory of Microbial Ecology and Technology, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Nouceiba Adouani
- Laboratory of Reactions and Process Engineering, University of Lorraine, Nancy, France
| | - Souhila Poncin
- Laboratory of Reactions and Process Engineering, University of Lorraine, Nancy, France
| | - Moktar Hamdi
- Laboratory of Microbial Ecology and Technology, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Huai Z Li
- Laboratory of Reactions and Process Engineering, University of Lorraine, Nancy, France
| |
Collapse
|
15
|
Rossi S, Casagli F, Mantovani M, Mezzanotte V, Ficara E. Selection of photosynthesis and respiration models to assess the effect of environmental conditions on mixed microalgae consortia grown on wastewater. BIORESOURCE TECHNOLOGY 2020; 305:122995. [PMID: 32105843 DOI: 10.1016/j.biortech.2020.122995] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
This study aimed at evaluating the effects of different environmental conditions (irradiance, temperature, pH and dissolved oxygen) on a microalgae-bacteria consortium cultivated in a pilot-scale open pond and fed on the liquid fraction of anaerobic digestate. A standardized photo-respirometry protocol was followed to evaluate the activity of microalgae under different conditions. Two datasets (specific photosynthetic oxygen production rates and respiratory oxygen consumption rates) were obtained for each environmental parameter, throughout the entire range of conditions found in the outdoor cultivation system. Different kinetic models available in literature were fitted to experimental data and the resulting outputs were compared through model selection estimators, in order to select the most appropriate equations. The proposed set of equations constitute a modelling tool for the prediction of algal growth rates in algae-bacteria systems, as a function of environmental conditions.
Collapse
Affiliation(s)
- S Rossi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - F Casagli
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - M Mantovani
- Università Degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milan, Italy
| | - V Mezzanotte
- Università Degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milan, Italy
| | - E Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy.
| |
Collapse
|
16
|
Salmean C, Bonilla S, Azimi Y, Aitchison JS, Allen DG. Design and testing of an externally-coupled planar waveguide photobioreactor. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Goswami G, Makut BB, Das D. Sustainable production of bio-crude oil via hydrothermal liquefaction of symbiotically grown biomass of microalgae-bacteria coupled with effective wastewater treatment. Sci Rep 2019; 9:15016. [PMID: 31628372 PMCID: PMC6802377 DOI: 10.1038/s41598-019-51315-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/29/2019] [Indexed: 01/26/2023] Open
Abstract
The study demonstrates a sustainable process for production of bio-crude oil via hydrothermal liquefaction of microbial biomass generated through co-cultivation of microalgae and bacteria coupled with wastewater remediation. Biomass concentration and wastewater treatment efficiency of a tertiary consortium (two microalgae and two bacteria) was evaluated on four different wastewater samples. Total biomass concentration, total nitrogen and COD removal efficiency was found to be 3.17 g L−1, 99.95% and 95.16% respectively when consortium was grown using paper industry wastewater in a photobioreactor under batch mode. Biomass concentration was enhanced to 4.1 g L−1 through intermittent feeding of nitrogen source and phosphate. GC-MS and FTIR analysis of bio-crude oil indicates abundance of the hydrocarbon fraction and in turn, better oil quality. Maximum distillate fraction of 30.62% lies within the boiling point range of 200–300 °C depicting suitability of the bio-crude oil for conversion into diesel oil, jet fuel and fuel for stoves.
Collapse
Affiliation(s)
- Gargi Goswami
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Bidhu Bhusan Makut
- Center for Energy, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India. .,Center for Energy, Indian Institute of Technology, Guwahati, Assam, 781039, India.
| |
Collapse
|
18
|
Praveen P, Xiao W, Lamba B, Loh KC. Low-retention operation to enhance biomass productivity in an algal membrane photobioreactor. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
19
|
Production of microbial biomass feedstock via co-cultivation of microalgae-bacteria consortium coupled with effective wastewater treatment: A sustainable approach. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Parakh SK, Praveen P, Loh KC, Tong YW. Wastewater treatment and microbial community dynamics in a sequencing batch reactor operating under photosynthetic aeration. CHEMOSPHERE 2019; 215:893-903. [PMID: 30408885 DOI: 10.1016/j.chemosphere.2018.10.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/18/2018] [Accepted: 10/14/2018] [Indexed: 05/27/2023]
Abstract
A sequencing batch bioreactor (SBR) treating municipal wastewater was photosynthetically aerated using microalgae cultivated in a photobioreactor (PBR). Symbiotic interactions and CO2/O2 exchange were established between activated sludge in the SBR and microalgae in the PBR through hydrophobic hollow fiber membranes. Photosynthetic aeration enhanced COD removal in the SBR from 52.2% (without external aeration) to 90.3%, whereas N-NH4+ and P-PO43- removal increased by 63.5% and 90.4%, respectively. The SBR performance under photosynthetic aeration was comparable to that under mechanical aeration. However, no nitrification was observed in the SBR, indicating oxygen limitation and poor growth condition for nitrifiers. In the PBR, there was a rapid increase in biomass concentration and it stabilized at 3.0 g/L after 22 days of operation. High nitrogen demand in the PBR indicated the steady flow of inorganic carbon from the SBR through the membranes. Prolonged oxygen limitation and massive sludge attachment on the membranes resulted in low suspended sludge concentration in the SBR. Microbial community analysis indicated gradual enrichment of facultative and strictly anaerobic microorganisms in the SBR. These results highlight the potential of microalgae in lowering the cost of wastewater aeration and underline the challenges in sustaining symbiotic gas exchange during long-term.
Collapse
Affiliation(s)
- Sheetal Kishor Parakh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore
| | | | - Kai-Chee Loh
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore
| | - Yen Wah Tong
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore.
| |
Collapse
|
21
|
Nguyen DTT, Praveen P, Loh KC. Zymomonas mobilis immobilization in polymeric membranes for improved resistance to lignocellulose-derived inhibitors in bioethanol fermentation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Ruan B, Wu P, Chen M, Lai X, Chen L, Yu L, Gong B, Kang C, Dang Z, Shi Z, Liu Z. Immobilization of Sphingomonas sp. GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:103-111. [PMID: 29990721 DOI: 10.1016/j.ecoenv.2018.06.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/19/2018] [Accepted: 06/20/2018] [Indexed: 05/17/2023]
Abstract
In this study, batch experiments were carried out to evaluate the biodegradation of phenol by Sphingomonas sp. GY2B, which were immobilized in polyvinyl alcohol (PVA)-sodium alginate-kaolin beads under different conditions. The optimal degradation performance was achieved by GY2B immobilized in beads containing 1.0% (w/v) of kaolin, 10% (w/v) of PVA, 0.3% (w/v) of sodium alginate, 10% (v/v) of biomass dosage, and exposed to an initial phenol concentration of 100 mg/L. The experimental results indicated that PVA-sodium alginate-kaolin beads can accelerate the degradation rate of phenol by reducing the degradation time and also improve degradation rate. The biodegradation rate of phenol by immobilized cells (16.79 ± 0.81 mg/(L·h)) was significantly higher than that of free cells (11.49 ± 1.29 mg/(L·h)) under the above optimal conditions. GY2B immobilized on beads was more competent than free GY2B in degradation under conditions with high phenol concentrations (up to 300 mg/L) and in strong acidic (pH = 1) and alkaline (pH = 12) environments. Higher phenol concentrations inhibit the biomass and reduce the biodegradation rate, while the lower biodegradation rate at low initial phenol concentrations is attributed to mass transfer limitations. The Haldane inhibitory model was in agreement with the experimental data well, revealing that phenol showed a considerable inhibitory effect on the biodegradation by Sphingomonas sp. GY2B, especially at concentrations higher than 90 mg/L. Intra-particle diffusion model analysis suggests that adsorption of phenol by immobilized beads was controlled by both rapid surface adsorption as well as pore diffusion mechanism. It's worth noting that the presence of 1 mg/L Cr(VI) enhanced the biodegradation of phenol by free cells, while Cr(VI) showed no obvious impact on the removal of phenol by immobilized cells. In addition, immobilized cells were reused 16 times and removed 99.5% phenol, and when stored at 4 °C for 90 days, more than 99% phenol was removed. These results showed that immobilized cells can significantly improve the microbial degradation performance, and protect microorganisms against unfavorable environment. It is implied that PVA -sodium alginate-kaolin beads have great potential to be applied in a practical and economical phenolic wastewater treatment system.
Collapse
Affiliation(s)
- Bo Ruan
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Meiqing Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiaolin Lai
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Liya Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Langfeng Yu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Beini Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Chunxi Kang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhenqing Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China
| | - Zehua Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| |
Collapse
|
23
|
Muys M, Coppens J, Boon N, Vlaeminck SE. Photosynthetic oxygenation for urine nitrification. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:183-194. [PMID: 30101801 DOI: 10.2166/wst.2018.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human urine accounts for only a fraction of the sewage volume, but it contains the majority of valuable nutrient load in wastewater. In this study, synthetic urine was nitrified in a closed photo-bioreactor through photosynthetic oxygenation by means of a consortium of microalgae and nitrifying bacteria. In situ production of oxygen by photosynthetic organisms has the potential to reduce the energy costs linked to conventional aeration. This energy-efficient strategy results in stable urine for further nutrient recovery, while part of the nutrients are biologically recovered in the form of valuable biomass. In this study, urine was nitrified for the first time without conventional aeration at a maximum photosynthetic oxygenation rate of 160 mg O2 gVSS-1 d-1 (VSS: volatile suspended solids). A maximum volumetric nitrification rate of 67 mg N L-1 d-1 was achieved on 12% diluted synthetic urine. Chemical oxygen demand (COD) removal efficiencies were situated between 44% and 83% at a removal rate of 24 mg COD gVSS-1 d-1. After 180 days, microscopic observations revealed that Scenedesmus sp. was the dominant microalga. Overall, photosynthetic oxygenation for urine nitrification is promising as a highly electricity efficient approach for further nutrient recovery.
Collapse
Affiliation(s)
- Maarten Muys
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium E-mail:
| | - Joeri Coppens
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium E-mail: ; Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium
| |
Collapse
|
24
|
Qi W, Mei S, Yuan Y, Li X, Tang T, Zhao Q, Wu M, Wei W, Sun Y. Enhancing fermentation wastewater treatment by co-culture of microalgae with volatile fatty acid- and alcohol-degrading bacteria. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
Limayem A, Micciche A, Nayak B, Mohapatra S. Prokaryotic community profiling of local algae wastewaters using advanced 16S rRNA gene sequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:704-711. [PMID: 29063392 DOI: 10.1007/s11356-017-0078-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
Algae biomass-fed wastewaters are a promising source of lipid and bioenergy manufacture, revealing substantial end-product investment returns. However, wastewaters would contain lytic pathogens carrying drug resistance detrimental to algae yield and environmental safety. This study was conducted to simultaneously decipher through high-throughput advanced Illumina 16S ribosomal RNA (rRNA) gene sequencing, the cultivable and uncultivable bacterial community profile found in a single sample that was directly recovered from the local wastewater systems. Samples were collected from two previously documented sources including anaerobically digested (AD) municipal wastewater and swine wastewater with algae namely Chlorella spp. in addition to control samples, swine wastewater, and municipal wastewater without algae. Results indicated the presence of a significant level of Bacteria in all samples with an average of approximately 95.49% followed by Archaea 2.34%, in local wastewaters designed for algae cultivation. Taxonomic genus identification indicated the presence of Calothrix, Pseudomonas, and Clostridium as the most prevalent strains in both local municipal and swine wastewater samples containing algae with an average of 17.37, 12.19, and 7.84%, respectively. Interestingly, swine wastewater without algae displayed the lowest level of Pseudomonas strains < 0.1%. The abundance of some Pseudomonas species in wastewaters containing algae indicates potential coexistence between these strains and algae microenvironment, suggesting further investigations. This finding was particularly relevant for the earlier documented adverse effects of some nosocomial Pseudomonas strains on algae growth and their multidrug resistance potential, requiring the development of targeted bioremediation with regard to the beneficial flora.
Collapse
Affiliation(s)
- Alya Limayem
- Department of Graduate Studies and Pharmaceutical Sciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, 33620, USA.
- Division of Translational Medicine, Center for Education in Nanobioengineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, USA.
- College of Pharmacy, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, USA.
| | - Andrew Micciche
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, USA
| | - Bina Nayak
- Pinellas County Utilities, Water Quality Division, Largo, FL, USA
| | - Shyam Mohapatra
- Division of Translational Medicine, Center for Education in Nanobioengineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, USA
- College of Pharmacy, University of South Florida, 4202 East Fowler Avenue, Tampa, FL, USA
| |
Collapse
|
26
|
Padmaperuma G, Kapoore RV, Gilmour DJ, Vaidyanathan S. Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Crit Rev Biotechnol 2017; 38:690-703. [PMID: 29233009 DOI: 10.1080/07388551.2017.1390728] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monocultures have been the preferred production route in the bio-industry, where contamination has been a major bottleneck. In nature, microorganisms usually exist as part of organized communities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously increase productivity and product diversity. The feasibility of extending the natural phenomenon of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and systematic consideration of several aspects. This article will critically examine and review current work on microbial co-cultures, with the intent of examining the concept and proposing a design pipeline that can be developed in a biomanufacturing context.
Collapse
Affiliation(s)
- Gloria Padmaperuma
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| | - Rahul Vijay Kapoore
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| | - Daniel James Gilmour
- b Department of Molecular Biology and Biotechnology , The University of Sheffield , Sheffield , UK
| | - Seetharaman Vaidyanathan
- a ChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering , The University of Sheffield , Sheffield , UK
| |
Collapse
|
27
|
Shen Y, Gao J, Li L. Municipal wastewater treatment via co-immobilized microalgal-bacterial symbiosis: Microorganism growth and nutrients removal. BIORESOURCE TECHNOLOGY 2017; 243:905-913. [PMID: 28738545 DOI: 10.1016/j.biortech.2017.07.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/01/2017] [Accepted: 07/06/2017] [Indexed: 05/20/2023]
Abstract
A symbiotic microalgal-bacterial system may be an optional technology for wastewater treatment. In this study, co-immobilized of a bacterium isolated from a municipal wastewater treatment plant (Pseudomonas putida) and a microalgae Chlorella vulgaris was used in the study of cell growth and nutrient removal during wastewater treatment under batch and continuous culture conditions. Under batch culture conditions, co-immobilization treatment significantly increased the cell density of C. vulgaris and P. putida compared with other treatments. The co-immobilized treatment also showed higher removal of ammonium, phosphate and COD than any single treatment, indicating that the nutrient uptake capability of C. vulgaris and P. Putida was mutually enhanced mutually. When tested in continuous mode, the treatment with a hydraulic retention time of 24h at the organic load rate of 1159.2mgCODL-1d-1 was most appropriate for wastewater treatment.
Collapse
Affiliation(s)
- Yu Shen
- Research Institute of Environmental Sciences, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jingqing Gao
- School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China.
| | - Linshuai Li
- Zhengzhou University Multi-Functional Design and Research Academy Co, Zhengzhou 450001, China
| |
Collapse
|
28
|
Chen Y, Xu C, Vaidyanathan S. Microalgae: a robust "green bio-bridge" between energy and environment. Crit Rev Biotechnol 2017; 38:351-368. [PMID: 28764567 DOI: 10.1080/07388551.2017.1355774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.
Collapse
Affiliation(s)
- Yimin Chen
- a Third Institute of Oceanography, State Oceanic Administration , Xiamen , People's Republic of China
| | - Changan Xu
- a Third Institute of Oceanography, State Oceanic Administration , Xiamen , People's Republic of China
| | - Seetharaman Vaidyanathan
- b Department of Chemical and Biological Engineering, ChELSI Institute, Advanced Biomanufacturing Centre , The University of Sheffield , Sheffield , UK
| |
Collapse
|
29
|
Ganjian E, Peyravi M, Asqar Qoreyshi A, Jahanshahi M, Shokuhi Rad A. Adsorption photobioreactor as a co-treatment system for ammonium and phosphate removal by the response surface method. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2017; 35:766-775. [PMID: 28580848 DOI: 10.1177/0734242x17708051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The co-treatment system of photosynthetic microalgae Chlorella vulgaris and adsorption was investigated as a possible combination of symbiotic mixed culture for the simultaneous removal of nutrients (ammonium and phosphate) and organic contaminants. In this study, response surface methodology for experimental design and optimization was used. For experiment operation, two factorial designs containing five chemical oxygen demand influent (CODin) concentrations (100, 200, 400, 600 and 700 mg l-1) and hydraulic retention times (0.63, 1, 1.75, 2.5 and 2.88 d) were applied. The co-treatment system performed successfully in removing both nutrients (nitrogen and phosphate) and COD, showing around 88%, 75% and 48% removal for the maximum level, respectively. The adsorption-photobioreactor (APBR) displayed superior performance of the microalgae growth rate compared to the photobioreactor. Also, the adsorption capacity (the uptake of COD) has been analysed with the first-order equation. The results showed that the experimental data of the APBR fit well with the model.
Collapse
Affiliation(s)
- Etesam Ganjian
- 1 Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology, Iran
| | - Majid Peyravi
- 1 Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology, Iran
| | - Ali Asqar Qoreyshi
- 2 Department of Chemical Engineering, Babol Noshirvani University of Technology, Iran
| | - Mohsen Jahanshahi
- 1 Membrane Research Group, Nanotechnology Institute, Babol Noshirvani University of Technology, Iran
| | - Ali Shokuhi Rad
- 3 Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Iran
| |
Collapse
|
30
|
Praveen P, Heng JYP, Loh KC. Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration. BIORESOURCE TECHNOLOGY 2016; 222:448-457. [PMID: 27756022 DOI: 10.1016/j.biortech.2016.09.124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 06/06/2023]
Abstract
Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively. Based on the energy input, the total operating costs for OMPBR were 32-45% higher than that of the MPBR, and filtration cost for OMPBR was 3.5-4.5 folds higher than that of the MPBR. These results indicate that the integration of membrane filtration with photobioreactors is promising in microalgae-based tertiary wastewater treatment.
Collapse
Affiliation(s)
- Prashant Praveen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Jonathan Yun Ping Heng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Kai-Chee Loh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
31
|
Mutlu BR, Sakkos JK, Yeom S, Wackett LP, Aksan A. Silica ecosystem for synergistic biotransformation. Sci Rep 2016; 6:27404. [PMID: 27264916 PMCID: PMC4893658 DOI: 10.1038/srep27404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 01/07/2023] Open
Abstract
Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.
Collapse
Affiliation(s)
- Baris R Mutlu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonathan K Sakkos
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sujin Yeom
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lawrence P Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Alptekin Aksan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.,BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|