1
|
Li X, Basak B, Tanpure RS, Zheng X, Jeon BH. Unraveling the genetic basis of microbial metal resistance: Shift from mendelian to systems biology. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138350. [PMID: 40280066 DOI: 10.1016/j.jhazmat.2025.138350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/01/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Microbial metal resistance, a trait that enables microorganisms to withstand high levels of toxic metals, has been studied for over a century. The significance of uncovering these mechanisms goes beyond basic science as they have implications for human health through their connection to microbial pathogenesis, metal bioremediation, and biomining. Recent advances in analytical chemistry and molecular biology have accelerated the discovery and understanding of genetic mechanisms underlying microbial metal resistance, identifying specific metal resistance genes and their operons. The emergence of omics tools has further propelled research towards a comprehensive understanding of how cells respond to metal stress at the systemic level, revealing the complex regulatory networks and evolutionary dynamics that drive microbial adaptation to metal-rich environments. In this article, we present a historical overview of the evolving understanding of the genetic determinants of metal resistance in microbes. Through multiple narrative threads, we illustrate how our knowledge of microbial metal resistance and genetics has interacted with genetic tools and concept development. This review also discusses how our understanding of microbial metal resistance has progressed from the Mendelian perspective to the current systems biology viewpoint, particularly as omics approaches have considerably enhanced our understanding. This system-level understanding has opened new possibilities for genetically engineered microorganisms to regulate metal homeostasis.
Collapse
Affiliation(s)
- Xiaofang Li
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Bikram Basak
- Center for Creative Convergence Education, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; Petroleum and Mineral Research Institute, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Rahul S Tanpure
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Xin Zheng
- Centre for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Yu Z, Zhou M, Zhang H, Yuan L, Lv P, Wang L, Zhang J. Changes in Cd forms and Cd resistance genes in municipal sludge during coupled earthworm and biochar composting. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117179. [PMID: 39405965 DOI: 10.1016/j.ecoenv.2024.117179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/26/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
There is a close relationship between microbial activity and the bioavailability of heavy metals, and heavy metal resistance genes can affect the activity of heavy metals. To evaluate the effects of coupled earthworm and biochar composting on Cd forms and Cd resistance genes in sludge, the BCR continuous extraction method was applied to classify the Cd forms, and Cd resistance genes were quantitatively determined with heavy metal gene chip technology. The results showed that the changes in earthworm biomass during composting were sufficiently fitted by logistic models and that adding biochar effectively increased earthworm biomass. The coupled treatment of earthworms and biochar promoted the degradation of sludge. The coupled treatment of earthworms and biochar reduced the proportion of acid-extractable and reducible Cd relative to total Cd, increased the proportion of oxidized and residual Cd relative to total Cd, transformed Cd forms from active to inert, and reduced the gene copy number of Cd resistance genes (czcA, czcB, czcC, czcD, czcS, czrA, czrR, cadA, and zntA). czcB was identified as a key gene that affected acid-extractable Cd and residual Cd contents; czcA, czcB, czcD, and czcS were identified as key genes that affected the reducible Cd content; czrR and cadA were identified as key genes that affected the oxidized Cd content; and czcC was identified as a key gene that affected the total Cd content. Cd resistance genes could directly affect the Cd form or indirectly affect Cd form through their interactions with each other.
Collapse
Affiliation(s)
- Zhimin Yu
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Meng Zhou
- State Key Laboratory f Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| | - Hongwei Zhang
- Beidahuang Agricultural Reclamation Group Co., Ltd, Harbin 150000, PR China.
| | - Lei Yuan
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Pin Lv
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Limin Wang
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| | - Jizhou Zhang
- Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, National and Provincial Joint Engineering Laboratory of Wetlands and Ecological Conservation, Collaborative Innovation Center for Development and Utilization of Forest Resource, Harbin 150040, PR China.
| |
Collapse
|
3
|
Gao Y, Zhang X, Wang L, Guan E, Zhu L, Wang J, Kim YM, Wang J. Contribution of Cd passivating functional bacterium H27 to tobacco growth under Cd stress. CHEMOSPHERE 2024; 362:142552. [PMID: 38849098 DOI: 10.1016/j.chemosphere.2024.142552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024]
Abstract
The cadmium (Cd) embedded in tobacco not only affects yield and quality but also harms human health. Microbial remediation has attracted widespread attention due to its low cost and minimal risk of secondary pollution. Therefore, researching microbes capable of inhibiting crop absorption of heavy metals or removing heavy metals from the environment has significant practical implications. This study screened a strain named H27 with a Cd immobilization efficiency of up to 76.60%. Static cultivation experiments showed that immobilization of Cd by H27 is achieved through intracellular absorption, hydroxyl, carboxyl, and phosphate group reactions on the cell wall. The bacterium can also secrete extracellular substances to adsorb Cd and increase the environmental pH, reducing the bioavailability of Cd. H27 reduced the accumulation of Cd in the stems of hydroponically grown tobacco by 55.23% and decreased the expression of three Cd transport genes, HAM2, IRT1, and NRAMP1, in the roots. Additionally, H27 increased the mineralization rate of organic matter, increased the content of humic acid in the soil, promoted the formation of smaller soil particles, and enhanced the adsorption and fixation of Cd by soil components while simultaneously raising the pH of rhizosphere and non-rhizosphere soils in tobacco growth environments. Both hydroponic and potted experiments showed that H27 alleviated the inhibitory effect of Cd on tobacco growth, significantly reducing Cd accumulation in various parts of tobacco and lowering the transfer coefficient of Cd within the tobacco plant. This study aims to effectively reduce the Cd content in tobacco using microbes, mitigate the harm of heavy metals in cigarettes to human health, and provide theoretical and practical basis for the application of microbial techniques to control heavy metal absorption in tobacco.
Collapse
Affiliation(s)
- Yuanfei Gao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Xingtao Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Ensen Guan
- Shandong Weifang Tobacco Company Limited, Weifang, 261000, China.
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
4
|
Sharma M, Sharma S, Paavan, Gupta M, Goyal S, Talukder D, Akhtar MS, Kumar R, Umar A, Alkhanjaf AAM, Baskoutas S. Mechanisms of microbial resistance against cadmium - a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:13-30. [PMID: 38887775 PMCID: PMC11180082 DOI: 10.1007/s40201-023-00887-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/15/2023] [Indexed: 06/20/2024]
Abstract
The escalating cadmium influx from industrial activities and anthropogenic sources has raised serious environmental concerns due to its toxic effects on ecosystems and human health. This review delves into the intricate mechanisms underlying microbial resistance to cadmium, shedding light on the multifaceted interplay between microorganisms and this hazardous heavy metal. Cadmium overexposure elicits severe health repercussions, including renal carcinoma, mucous membrane degradation, bone density loss, and kidney stone formation in humans. Moreover, its deleterious impact extends to animal and plant metabolism. While physico-chemical methods like reverse osmosis and ion exchange are employed to mitigate cadmium contamination, their costliness and incomplete efficacy necessitate alternative strategies. Microbes, particularly bacteria and fungi, exhibit remarkable resilience to elevated cadmium concentrations through intricate resistance mechanisms. This paper elucidates the ingenious strategies employed by these microorganisms to combat cadmium stress, encompassing metal ion sequestration, efflux pumps, and enzymatic detoxification pathways. Bioremediation emerges as a promising avenue for tackling cadmium pollution, leveraging microorganisms' ability to transform toxic cadmium forms into less hazardous derivatives. Unlike conventional methods, bioremediation offers a cost-effective, environmentally benign, and efficient approach. This review amalgamates the current understanding of microbial cadmium resistance mechanisms, highlighting their potential for sustainable remediation strategies. By unraveling the intricate interactions between microorganisms and cadmium, this study contributes to advancing our knowledge of bioremediation approaches, thereby paving the way for safer and more effective cadmium mitigation practices.
Collapse
Affiliation(s)
- Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Paavan
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala, 133101 Haryana India
| | - Mahiti Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Soniya Goyal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Daizee Talukder
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Mohd. Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, 242001 Uttar Pradesh India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and ArtsPromising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001 Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Abdulrab Ahmed M. Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 11001 Najran, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500 Patras, Greece
| |
Collapse
|
5
|
Motta-Romero HA, Perez-Donado CE, Auchtung JM, Rose DJ. Toxicity of cadmium on dynamic human gut microbiome cultures and the protective effect of cadmium-tolerant bacteria autochthonous to the gut. CHEMOSPHERE 2023; 338:139581. [PMID: 37474038 DOI: 10.1016/j.chemosphere.2023.139581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
Cadmium (Cd) is a heavy metal toxic to the gut microbiome. In this study, we cultivated two human gut microbiomes (A and B) in bioreactors with Cd at 0 and 20 ppm for 7 days to investigate effects of Cd on the gut microbiome and to isolate Cd-tolerant bacteria autochthonous to the gut. Cd showed profound toxicity, abolishing butyrate production, depleting microbes in microbiome B, and simplifying microbiome A to a small Cd-tolerant community after 2 d of incubation. When spiked into the Cd-sensitive microbiome B, the Cd-tolerant community from microbiome A and isolates from that community worked synergistically with microbiome B to enhance butyrate production and maintained this synergism at Cd concentrations up to 5 ppm. Bacteria isolated from this Cd-tolerant community included Enterococcus faecium, Enterobacter cloacae, Lactococcus lactis, and Lactobacillus taiwanensis species. This work demonstrates a straightforward method for identifying Cd-tolerant bacteria autochthonous to the human gut that synergize with the microbiome to protect against Cd-related loss of butyrate production.
Collapse
Affiliation(s)
- Hollman A Motta-Romero
- Department of Food Science and Technology, University of Nebraska Lincoln, NE, USA; Nebraska Food for Health Center, University of Nebraska Lincoln, NE, USA
| | - Carmen E Perez-Donado
- Department of Food Science and Technology, University of Nebraska Lincoln, NE, USA; Nebraska Food for Health Center, University of Nebraska Lincoln, NE, USA
| | - Jennifer M Auchtung
- Department of Food Science and Technology, University of Nebraska Lincoln, NE, USA; Nebraska Food for Health Center, University of Nebraska Lincoln, NE, USA
| | - Devin J Rose
- Department of Food Science and Technology, University of Nebraska Lincoln, NE, USA; Nebraska Food for Health Center, University of Nebraska Lincoln, NE, USA; Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
6
|
Idrees M, Ali S, Rehman A, Zajif Hussain S, Abbas Bukhari D. Uptake of lead by bacteria isolated from industrial effluents and their potential use in bioremediation of wastewater. Saudi J Biol Sci 2023; 30:103740. [PMID: 37538349 PMCID: PMC10393803 DOI: 10.1016/j.sjbs.2023.103740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023] Open
Abstract
Due to rising populations and human activities, heavy metals (HM) toxicity has become a serious problem for all life forms. The present study deals with isolating and identifying lead-resistant bacteria from contaminated wastewater of tanneries effluents. Two isolated strains were identified as Bacillus cereus (ID1), and Bacillus sp. (ID3), and both strains resisted a 25 mM concentration of Lead nitrate (Pb (NO3)2). After four days of treatment, Bacillus cereus (ID1) showed 80% lead uptake, and Bacillus sp. (ID3) showed 88%. Lead uptake was confirmed by Energy dispersive X-Ray (EDX) analysis. Fourier transform infrared spectroscopy (FTIR) showed that structural alterations had occurred in functional groups of the treated samples compared to the controls. Our research indicates that these Bacillus strains may be useful in bioremediating heavy metals from polluted environments. Further investigation into the processes involved in the uptake and homeostasis of heavy metals by these strains is required, as is the identification of the genes and enzymes responsible for Pb-bioremediation.
Collapse
Affiliation(s)
- Muhammad Idrees
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shakir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Syed Zajif Hussain
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt 54792, Pakistan
| | | |
Collapse
|
7
|
Li Y, Wei S, Chen X, Dong Y, Zeng M, Yan C, Hou L, Jiao R. Isolation of cadmium-resistance and siderophore-producing endophytic bacteria and their potential use for soil cadmium remediation. Heliyon 2023; 9:e17661. [PMID: 37539295 PMCID: PMC10395048 DOI: 10.1016/j.heliyon.2023.e17661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 08/05/2023] Open
Abstract
Endophyte-assisted phytoremediation is an emerging technique for soil heavy metals (HMs) remediation and has become a research focus in the world because of the benefits of endophytes on plant growth and uptake of HMs. In this study, multifunctional endophytic bacteria strains were isolated and screened, and the feasibility of these strains for soil cadmium (Cd) remediation was investigated by soil incubation experiments and pot experiments. All endophytic bacteria were isolated from the roots of woody plants grown on Cd-contaminated soil. Seven endophytic bacteria strains had capacities to tolerate Cd toxicity and produce siderophores, and sequence analysis of the 16S rRNA gene classified these strains as belonging to the genera Burkholderia, Pseudomonas, Pantoea, and Herbaspirillum. All strains were able to produce hydroxamate siderophores (32.40%-91.49%) and had three or more plant growth promoting properties such as phosphorus solubilization, nitrogen fixation, indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production. They were all strongly resistant to Cd2+ toxicity, with the minimum inhibitory concentration in LB medium ranging from 1.5 mM to 9.0 mM. Except for strain Burkholderia contaminans JLS17, other strains showed decreasing removal rates within continuously elevated Cd2+ concentration of 10-100 mg L-1. Compared with the uninoculated treatment, the inoculation of strains B.contaminans JLS17, Pseudomonas lurida JLS32, and Pantoea endophytica JLS50 effectively increased the concentration of acid-soluble Cd and decreased the concentration of reducible, oxidizable, and residual Cd in the soils of different Cd contamination levels. In pot experiments, inoculation of strains JLS17 and YTG72 significantly (p < 0.05) promoted the growth of above-ground parts and root system of slash pine (Pinus elliottii) under Cd stress. This study provides a valuable biological resource for endophyte-assisted phytoremediation and a theoretical basis for the application of endophytic bacteria for remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yanglong Li
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Shumeng Wei
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiangteng Chen
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Yuhong Dong
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Mansheng Zeng
- Experimental Center of Subtropical Forestry, Chinese Academy of Forestry, Fenyi 336600, China
| | - Chaowu Yan
- Forestry Bureau of Xinyu City, Jiangxi Province, Xinyu 338000, China
| | - Lingyu Hou
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Ruzhen Jiao
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
8
|
Xing SF, Tian HF, Yan Z, Song C, Wang SG. Stability and biomineralization of cadmium sulfide nanoparticles biosynthesized by the bacterium Rhodopseudomonas palustris under light. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131937. [PMID: 37421856 DOI: 10.1016/j.jhazmat.2023.131937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cadmium (Cd) pollution is regarded as a potent problem due to its hazard risks to the environment, making it crucial to be removed. Compared to the physicochemical techniques (e.g., adsorption, ion exchange, etc.), bioremediation is a promising alternative technology for Cd removal, due to its cost-effectiveness, and eco-friendliness. Among them, microbial-induced cadmium sulfide mineralization (Bio-CdS NPs) is a process of great significance for environmental protection. In this study, microbial cysteine desulfhydrase coupled with cysteine acted as a strategy for Bio-CdS NPs by Rhodopseudomonas palustris. The synthesis, activity, and stability of Bio-CdS NPs-R. palustris hybrid was explored under different light conditions. Results show that low light (LL) intensity could promote cysteine desulfhydrase activities to accelerate hybrid synthesis, and facilitated bacterial growth by the photo-induced electrons of Bio-CdS NPs. Additionally, the enhanced cysteine desulfhydrase activity effectively alleviated high Cd-stress. However, the hybrid rapidly dissolved under changed environmental factors, including light intensity and oxygen. The factors affecting the dissolution were ranked as follows: darkness/microaerobic ≈ darkness/aerobic < LL/microaerobic < high light (HL)/microaerobic < LL/aerobic < HL/aerobic. The research provides a deeper understanding of Bio-CdS NPs-bacteria hybird synthesis and its stability in Cd-polluted water, allowing advanced bioremediation treatment of heavy metal pollution in water.
Collapse
Affiliation(s)
- Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Hui-Fang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China.
| |
Collapse
|
9
|
Zhang S, Ke C, Jiang M, Li Y, Huang W, Dang Z, Guo C. S(-II) reactivates Cd 2+-stressed Shewanella oneidensis via promoting low-molecular-weight thiols synthesis and activating antioxidant defense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121516. [PMID: 36972810 DOI: 10.1016/j.envpol.2023.121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 06/18/2023]
Abstract
Efficient remedies for living organisms including bacteria to counteract cadmium (Cd2+) toxicity are still highly needed. Plant toxicity studies have showed that exogenous S(-II) (including hydrogen sulfide and its ionic forms, i.e., H2S, HS-, and S2-) application can effectively alleviate adverse effects of Cd stress, but whether S(-II) could mitigate bacterial Cd toxicity remains unclear. In this study, S(-II) was applied exogenously to Cd-stressed Shewanella oneidensis MR-1 and the results showed that S(-II) can significantly reactivate impaired physiological processes including growth arrest and enzymatic ferric (Fe(III) reduction inhibition. The efficacy of S(-II) treatment is negatively correlated with the concentration and time length of Cd exposure. Energy-dispersive X-ray (EDX) analysis suggested the presence of cadmium sulfide inside cells treated with S(-II). Both compared proteomic analysis and RT-qPCR showed that enzymes associated with sulfate transport, sulfur assimilation, methionine, and glutathione biosynthesis were up-regulated in both mRNA and protein levels after the treatment, indicating S(-II) may induce the biosynthesis of functional low-molecular-weight (LMW) thiols to counteract Cd toxicity. Meanwhile, the antioxidant enzymes were positively modulated by S(-II) and thus the activity of intracellular reactive oxygen species was attenuated. The study demonstrated that exogenous S(-II) can effectively alleviate Cd stress for S. oneidensis likely through inducing intracellular trapping mechanisms and modulating cellular redox status. It suggested that S(-II) may be a highly effective remedy for bacteria such as S. oneidensis under Cd-polluted environments.
Collapse
Affiliation(s)
- Siyu Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Changdong Ke
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Mengge Jiang
- Guangzhou Metro Group Co., Ltd., Guangzhou, 510335, China
| | - Yuancheng Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Anand S, Singh A, Kumar V. Recent advancements in cadmium-microbe interactive relations and their application for environmental remediation: a mechanistic overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17009-17038. [PMID: 36622611 DOI: 10.1007/s11356-022-25065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023]
Abstract
The toxic and persistent nature of cadmium (Cd) in the environment has become a matter of concern with its drastic increase in the concentrations over past few decades. Among the various techniques, the microbial remediation has been accepted as an effective decontamination tool for environmental applications, which is sustainable over a period of time. The Cd decontamination potential of the microbes depends on various internal and external factors that play a crucial role in selection of the microbes for application in a particular environment. Thus, it is important to understand the role of these factors for optimal application of the microbes. This study provides an insight into the mechanisms involved between the microbes and the environmental Cd. The study also briefly reviews the mathematical models that have been used to predict the remediation potential of the microbes and the kinetics involved during the process. A critical analysis of the recent advancements in the techniques for use of bacteria, fungi, and algal cells to remove Cd has been also presented in the manuscript.
Collapse
Affiliation(s)
- Saumya Anand
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Ankur Singh
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004
| | - Vipin Kumar
- Laboratory of Applied Microbiology, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India, 826004.
| |
Collapse
|
11
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. Biotin pathway in novel Fodinibius salsisoli sp. nov., isolated from hypersaline soils and reclassification of the genus Aliifodinibius as Fodinibius. Front Microbiol 2023; 13:1101464. [PMID: 36777031 PMCID: PMC9909488 DOI: 10.3389/fmicb.2022.1101464] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hypersaline soils are extreme environments that have received little attention until the last few years. Their halophilic prokaryotic population seems to be more diverse than those of well-known aquatic systems. Among those inhabitants, representatives of the family Balneolaceae (phylum Balneolota) have been described to be abundant, but very few members have been isolated and characterized to date. This family comprises the genera Aliifodinibius and Fodinibius along with four others. A novel strain, designated 1BSP15-2V2T, has been isolated from hypersaline soils located in the Odiel Saltmarshes Natural Area (Southwest Spain), which appears to represent a new species related to the genus Aliifodinibius. However, comparative genomic analyses of members of the family Balneolaceae have revealed that the genera Aliifodinibius and Fodinibius belong to a single genus, hence we propose the reclassification of the species of the genus Aliifodinibius into the genus Fodinibius, which was first described. The novel strain is thus described as Fodinibius salsisoli sp. nov., with 1BSP15-2V2T (=CCM 9117T = CECT 30246T) as the designated type strain. This species and other closely related ones show abundant genomic recruitment within 80-90% identity range when searched against several hypersaline soil metagenomic databases investigated. This might suggest that there are still uncultured, yet abundant closely related representatives to this family present in these environments. In-depth in-silico analysis of the metabolism of Fodinibius showed that the biotin biosynthesis pathway was present in the genomes of strain 1BSP15-2V2T and other species of the family Balneolaceae, which could entail major implications in their community role providing this vitamin to other organisms that depend on an exogenous source of this nutrient.
Collapse
|
12
|
Lu CW, Ho HC, Yao CL, Tseng TY, Kao CM, Chen SC. Bioremediation potential of cadmium by recombinant Escherichia coli surface expressing metallothionein MTT5 from Tetrahymenathermophila. CHEMOSPHERE 2023; 310:136850. [PMID: 36243083 DOI: 10.1016/j.chemosphere.2022.136850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/06/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a common heavy metal contaminant in industrial wastewater that causes many diseases in humans. Metallothionein (MT), a cysteine-rich metal-binding protein, is well known in chelate-heavy metals. In this study, we expressed MTT5 of Tetrahymena thermophila fused with Lpp-OmpA in the outer membrane of Escherichia coli to determine its ability to accumulate and adsorb Cd. Our results revealed that our recombinant E. coli had a 4.9-fold greater Cd adsorption compared to wild E. coli. Adsorption isothermic analysis demonstrated that the adsorption behavior for Cd in our recombinant bacteria was better fitted into the Freundlich isotherm model than Langmuir isotherm model. Fourier-transform infrared spectroscopy indicated that phosphate and organic phosphate groups were involved in the interaction between Cd and the bacterial surface. Using quantitative reverse transcription polymerase chain reaction, we further showed that the expression of metal-resistance genes (dnaK and clpB) was downregulated due to surface MTT5 protected our recombinant bacteria from Cd2+ adsorption. Furthermore, we showed that our recombinant bacteria could adsorb Cd from the contaminated wastewater containing other metals and were suggested to be applied in the field study.
Collapse
Affiliation(s)
- Che-Wei Lu
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Hsin-Cheng Ho
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
| | - Chao-Ling Yao
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Yu Tseng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan.
| |
Collapse
|
13
|
Khan Z, Elahi A, Bukhari DA, Rehman A. Cadmium sources, toxicity, resistance and removal by microorganisms-A potential strategy for cadmium eradication. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Yasmin R, Zafar MS, Tahir IM, Asif R, Asghar S, Raza SK. Biosorptive Potential of Pseudomonas species RY12 Toward Zinc Heavy Metal in Agriculture Soil Irrigated with Contaminated Waste Water. Dose Response 2022; 20:15593258221117352. [PMID: 36052270 PMCID: PMC9425902 DOI: 10.1177/15593258221117352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/22/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Industrial waste is mainly responsible for accumulating Zn (II) in the soil, which needs to be removed to avoid its bioaccumulation and hazardous effects on the environment. In a recent study, the potential of the RY12 strain was evaluated as a biosorbent of Zn (II) ions in an aqueous medium. Different microbiological techniques like biochemical, molecular characterization, and 16S rRNA gene sequencing were used for the identification of RY12. The impact of different parameters such as the initial zinc ion concentration, pH, temperature, and the removal of other metals such as manganese, lead, cobalt, silver, copper, mercury, and chromium was also evaluated on the reduction of Zn (II). Fourier Transform Infrared spectroscopy (FTIR) was also carried out to investigate the role of cellular surfaces in the sorption of Zn+2 ions. Both biochemical and phylogenetic analyses established that strain RY12 Pseudomonas sp. capable of reducing Zn+2 up to 89% at 28°C (pH = 6.5; initial Zn+2 concentration = 200 mg/L). The FTIR analysis revealed that the bacterial cell wall's amino, carboxyl, and phosphate groups were involved in the reaction with Zn (II). Our findings suggest that Pseudomonas sp. RY12 is a proficient bacterium for removing zinc from industrial waste and could be a valuable bioremediation agent.
Collapse
Affiliation(s)
- Riffat Yasmin
- Riphah College of Rehabilitation and Allied Health Sciences (RCRAHS), Riphah International University, Faisalabad, Pakistan
| | | | - Imtiaz Mahmood Tahir
- College of Allied Health Professionals, Government College University, Faisalabad, Pakistan
| | - Rizwan Asif
- Department of Eastern Medicine and Surgery, Qarshi University Lahore, Lahore, Pakistan
| | - Samra Asghar
- Riphah College of Rehabilitation and Allied Health Sciences (RCRAHS), Riphah International University, Faisalabad, Pakistan
| | - Syed Kashif Raza
- Riphah College of Rehabilitation and Allied Health Sciences (RCRAHS), Riphah International University, Faisalabad, Pakistan
| |
Collapse
|
15
|
Ali S, Bani Mfarrej MF, Rizwan M, Hussain A, Shahid MJ, Wang X, Nafees M, Waseem M, Alharby HF. Microbe-citric acid assisted phytoremediation of chromium by castor bean (Ricinus communis L.). CHEMOSPHERE 2022; 296:134065. [PMID: 35202665 DOI: 10.1016/j.chemosphere.2022.134065] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/09/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Chromium is one of the highly toxic heavy metals to plant growth and development especially hexavalent chromium (Cr+6) due to its readily available nature and mobility into the environment. The chelating agents and hyperaccumulator plant can contribute to remediating the heavy metals from the contaminated medium. This study was conducted to analyze the role of citric acid and chromium resistant bacteria in castor bean to remediate Cr+6 from the polluted soil. The soil was spiked with different levels of citric acid (0, 2.5, 5 mM) and chromium (0, 10, 20 mg kg-1). The ripened plants were harvested and analyzed for growth parameters, chlorophyll contents, gas exchange parameters, oxidative stress markers, antioxidant enzymes activities and chromium accumulation in different parts of plants. The high concentration of chromium 20 mg kg-1 drastically reduced the plant growth, decreased photosynthetic rate and increased oxidative stress. The application of CA improved the plant growth even at the highest concentration of chromium which was further boosted by the combined application of CA and chromium resistant bacteria. However, the performance of staphylococcus aureus was found significantly better than Bacillus subtilis due to its better ability to tolerate chromium toxicity even at high concentrations. The findings proved that castor bean has excellent potential to tolerate high chromium concentrations and can be effectively used to remediate metals contaminated soil. Further, CA and metal resistant bacteria can significantly enhance the phytoremediation potential of castor bean and other hyperaccumulator plants. The bacteria assisted phytoremediation coupled with the chelating agent can be a practical approach to remediate the metals contaminating soils.
Collapse
Affiliation(s)
- Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Afzal Hussain
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Munazzam Jawad Shahid
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, 716000, China
| | - Muhammad Nafees
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Muhammad Waseem
- Department of Microbiology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Chen J, Wang L, Li W, Zheng X, Li X. Genomic Insights Into Cadmium Resistance of a Newly Isolated, Plasmid-Free Cellulomonas sp. Strain Y8. Front Microbiol 2022; 12:784575. [PMID: 35154027 PMCID: PMC8832061 DOI: 10.3389/fmicb.2021.784575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Our current knowledge on bacterial cadmium (Cd) resistance is mainly based on the functional exploration of specific Cd-resistance genes. In this study, we carried out a genomic study on Cd resistance of a newly isolated Cellulomonas strain with a MIC of 5 mM Cd. Full genome of the strain, with a genome size of 4.47 M bp and GC-content of 75.35%, was obtained through high-quality sequencing. Genome-wide annotations identified 54 heavy metal-related genes. Four potential Cd-resistance genes, namely zntAY8, copAY8, HMTY8, and czcDY8, were subjected to functional exploration. Quantitative PCR determination of in vivo expression showed that zntAY8, copAY8, and HMTY8 were strongly Cd-inducible. Expression of the three inducible genes against time and Cd concentrations were further quantified. It is found that zntAY8 responded more strongly to higher Cd concentrations, while expression of copAY8 and HMTY8 increased over time at lower Cd concentrations. Heterologous expression of the four genes in Cd-sensitive Escherichia coli led to different impacts on hosts’ Cd sorption, with an 87% reduction by zntAY8 and a 3.7-fold increase by HMTY8. In conclusion, a Cd-resistant Cellulomonas sp. strain was isolated, whose genome harbors a diverse panel of metal-resistance genes. Cd resistance in the strain is not controlled by a dedicated gene alone, but by several gene systems collectively whose roles are probably time- and dose-dependent. The plasmid-free, high-GC strain Y8 may provide a platform for exploring heavy metal genomics of the Cellulomonas genus.
Collapse
Affiliation(s)
- Jinghao Chen
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Likun Wang
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Wenjun Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zheng
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, China
- *Correspondence: Xiaofang Li,
| |
Collapse
|
17
|
Cao X, Xu L, Chen YP, Decho AW, Cui Z, Lead JR. Contribution, Composition, and Structure of EPS by In Vivo Exposure to Elucidate the Mechanisms of Nanoparticle-Enhanced Bioremediation to Metals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:896-906. [PMID: 34983180 DOI: 10.1021/acs.est.1c05326] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bacterial extracellular polymeric substances (EPS) have been recently found to contribute most for metal removal in nanoenhanced bioremediation. However, the mechanism by which NPs affect EPS-metal interactions is not fully known. Here, Halomonas sp. was employed to explore the role of EPS after in vivo exposure to Cd/Pb and polyvinylpyrrolidone (PVP) coated iron oxide nanoparticles (IONPs, 20 mg L-1) for 72 h. Cd-IONPs produced the highest concentrations of EPS proteins (136.3 mg L-1), while Cd induced the most production of polysaccharides (241.0 mg L-1). IONPs increased protein/polysaccharides ratio from 0.2 (Cd) to 1.2 (Cd-IONPs). The increased protein favors the formation of protein coronas on IONPs surface, which would promote Cd adsorption during NP-metal-EPS interaction. FTIR analysis indicated that the coexistence of Cd and IONPs interacted with proteins more strongly than with polysaccharides. Glycosyl monomer analyses suggested mannose and glucose as target sugars for EPS complexation with metals, and IONPs reduced metal-induced changes in monosaccharide profiles. Protein secondary structures changed in all treatments, but we could not distinguish stresses induced by metals from those by IONPs. These findings provide greater understanding of the role of EPS in NP-metal-EPS interaction, providing a better underpinning knowledge for the application of NP-enhanced bioremediation.
Collapse
Affiliation(s)
- Xiufeng Cao
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Liang Xu
- Shandong Taixing Advanced Material Co., LTD., Shandong Energy Group, Jinan, 250204, PR China
| | - Yung Pin Chen
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jamie R Lead
- Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
18
|
Arshad H, Sadaf S, Hassan U. De-novo fabrication of sunlight irradiated silver nanoparticles and their efficacy against E. coli and S. epidermidis. Sci Rep 2022; 12:676. [PMID: 35027620 PMCID: PMC8758773 DOI: 10.1038/s41598-021-04674-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/28/2021] [Indexed: 01/26/2023] Open
Abstract
Silver nanoparticles (AgNPs) gained significant attention due to their activity against microbial pathogens, cancer cells, and viral particles etc. Traditional fabrication methods require hazardous chemicals as reducing agents and their usage and disposal pose a significant hazard to environmental ecosystem. Here, a de novo, robust, cost effective and an eco-friendly method is reported to fabricate AgNPs irradiated with sunlight (SL) while using Salvadora persica root extract (SPE) as reducing agent. Sunlight (SL) irradiated S. persica silver nanoparticles (SpNPs) i.e., SL-SpNPs were characterized using multiple techniques and their antibacterial efficacy was evaluated. The SL-SpNPs were synthesized in 10 min. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) analysis revealed their spherical morphology with a size range of 4.5-39.7 nm, while surface plasmon resonance (SPR) peaked at 425 nm. Fourier transform infrared spectroscopy (FTIR) analysis suggested that the reduction of SL-SpNPs was due to the presence of phytochemicals in the SPE. Furthermore, X-ray powder diffraction (P-XRD) pattern depicted the crystal structure of SL-SpNPs, hence proving the presence of AgNPs. Further the antibacterial studies were carried out against Escherichia coli (ATCC 11229) and Staphylococcus epidermidis (ATCC 12228) using Kirby Bauer method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for E. coli were determined to be 1.5 μg/mL and 3.0 μg/mL respectively while MIC and MBC values for S. epidermidis were found to be 12.5 μg/mL and 25 μg/mL respectively. The solar irradiation-based fabrication method and resulting SL-SpNPs can find their utility in many biomedical and environmental applications.
Collapse
Affiliation(s)
- Hammad Arshad
- Department of Electrical and Computer Engineering, School of Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- School of Biochemistry and Biotechnology, University of the Punjab, 54590, Lahore, Pakistan
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, 54590, Lahore, Pakistan
| | - Umer Hassan
- Department of Electrical and Computer Engineering, School of Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Global Health Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
19
|
Costa WF, Giambiagi-deMarval M, Laport MS. Antibiotic and Heavy Metal Susceptibility of Non-Cholera Vibrio Isolated from Marine Sponges and Sea Urchins: Could They Pose a Potential Risk to Public Health? Antibiotics (Basel) 2021; 10:1561. [PMID: 34943773 PMCID: PMC8698511 DOI: 10.3390/antibiotics10121561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Vibrio is an important human and animal pathogen that can carry clinically relevant antibiotic resistance genes and is present in different aquatic environments. However, there is a knowledge gap between antibiotic and heavy metal resistance and virulence potential when it is part of the microbiota from marine invertebrates. Here, we aimed to evaluate these characteristics and the occurrence of mobile genetic elements. Of 25 non-cholera Vibrio spp. from marine sponges and sea urchins collected at the coastlines of Brazil and France analyzed in this study, 16 (64%) were non-susceptible to antibiotics, and two (8%) were multidrug-resistant. Beta-lactam resistance (blaSHV) and virulence (vhh) genes were detected in sponge-associated isolates. The resistance gene for copper and silver (cusB) was detected in one sea urchin isolate. Plasmids were found in 11 (44%) of the isolates. This new information allows a better comprehension of antibiotic resistance in aquatic environments, since those invertebrates host resistant Vibrio spp. Thus, Vibrio associated with marine animals may pose a potential risk to public health due to carrying these antibiotic-resistant genes.
Collapse
Affiliation(s)
| | | | - Marinella Silva Laport
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-902, Brazil; (W.F.C.); (M.G.-d.)
| |
Collapse
|
20
|
Comparative Transcriptomic Analysis of Root Cadmium Responses in Two Chinese Rice Cultivars Yuzhenxiang and Xiangwanxian 12. J CHEM-NY 2021. [DOI: 10.1155/2021/2166775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadmium (Cd) pollution in paddy soil is an increasingly serious issue in rice production. It has been reported that there is a higher or lower grain Cd accumulation in the rice cultivars Yuzhenxiang (YZX) or Xiangwanxian 12 (XWX), respectively. To better manage the Cd pollution problem, the genes that might play vital roles in governing the difference in root Cd responses between these two rice cultivars were examined. In this study, the results of RNA sequencing (RNA-seq) showed that there were 341 and 161 differentially expressed genes in the roots of YZX and XWX after Cd exposure, respectively. Among these genes, 7 genes, such as Os06g0196300 (OsJ_019618), Os07g0570700 (OsJ_24808), ADI1, GDCSH, HSFB2C, PEX11-4, and CLPB1, possessed higher degree nodes with each other, through interaction analysis by the STRING (search tool for the retrieval of interacting genes/proteins) software, suggesting that they might play vital roles in Cd response. Based on GO enrichment analysis, 41 differently expressed genes after Cd treatment in YZX or XWX were identified to be related to Cd response. Through comparative transcriptomic analysis, 257 genes might be associated with the root Cd response difference between YZX and XWX. Furthermore, we supposed that ADI1, CFBP1, PEX11-4, OsJ_019618, OsJ_24808, GDCSH, CLPB1, LAC6, and WNK3 might be implicated in Cd response based on the combined analysis of RT-qPCR, interaction, and GO annotation analysis. In conclusion, the numerous genes that might be related to Cd stress response and root Cd response difference between YZX and XWX at the booting stage may be of benefit for the development of rice varieties with low Cd consumption.
Collapse
|
21
|
Proteomics and transcriptomic analysis of Micrococcus luteus strain AS2 under arsenite stress and its potential role in arsenic removal. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100020. [PMID: 34841312 PMCID: PMC8610323 DOI: 10.1016/j.crmicr.2021.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 11/24/2022] Open
Abstract
M. luteus strain AS2 showed hyper-tolerance against arsenite upto 50 mM. Thioredoxin reductase, involved in As-resistance, upregulated 2.8 folds under arsenite stress. The maximum metal oxidizing processing ability of the strain AS2 was 90%.
The proteomics and transcriptomic analysis of Micrococcus luteus strain AS2 was carried out through 2D gel electrophoresis and RT-PCR. Seven protein spots were selected randomly from the gel and identified through mass spectrometry. Four proteins including putative metal-dependent hydrolase TatD, thioredoxin reductase, DNA-directed RNA polymerase subunit alpha and chaperone protein DnaK were upregulated while superoxide dismutase [Mn], 3-oxoacyl-[acyl-carrier-protein] reductase FabG, and putative alkyl/aryl-sulfatase YjcS were down-regulated under arsenite stress. No significant difference was observed in aioB gene expression analysis in the presence and absence of arsenite. The optimum arsenite processing ability was determined at 37°C (90%) and at pH 7 (92%). The maximum metal processing ability was determined at 250 mM arsenite/L (90%) while the minimum was estimated at 1250 mM arsenite/L (42%). The maximum arsenite removal ability of strain AS2 determined after 8 days was 68 and 82% from wastewater and distilled water, and the organism can be a good bioresource for green chemistry to eradicate environmental arsenite.
Collapse
|
22
|
Huang J, Liu C, Price GW, Li Y, Wang Y. Identification of a novel heavy metal resistant Ralstonia strain and its growth response to cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125942. [PMID: 34492869 DOI: 10.1016/j.jhazmat.2021.125942] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/02/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
A novel Ralstonia Bcul-1 strain was isolated from soil samples that was closest to Ralstonia pickettii. Broad-spectrum resistance was identified to a group of heavy metal ions and tolerance to concentrations of Cd2+ up to 400 mg L-1. Low concentrations of heavy metal ions did not have distinctive impact on heavy metal resistance genes and appeared to induce greater expression. Under exposure to Cd2+, cell wall components were significantly enhanced, and some proteins were also simultaneously expressed allowing the bacteria to adapt to the high Cd2+ living environment. The maximum removal rate of Cd2+ by the Ralstonia Bcul-1 strain was 78.97% in the culture medium supplemented with 100 mg L-1 Cd2+. Ralstonia Bcul-1 was able to survive and grow in a low nutrient and cadmium contaminated (0.42 mg kg-1) vegetable soil, and the cadmium removal rate was up to 65.76% in 9th growth. Ralstonia Bcul-1 mixed with biochar could maintain sustainable growth of this strain in the soil up to 75 d and the adsorption efficiency of cadmium increased by 16.23-40.80% as compared to biochar application alone. Results from this work suggests that Ralstonia Bcul-1 is an ideal candidate for bioremediation of nutrient deficient heavy metal contaminated soil.
Collapse
Affiliation(s)
- Jiaqing Huang
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Cenwei Liu
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - G W Price
- Department of Engineering, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Yanchun Li
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China
| | - Yixiang Wang
- Agricultural Ecology Institute, Fujian Academy of Agricultural Sciences (FAAS), Fuzhou 350013, China; Fujian Key Laboratory of Agricultural Ecological Process of Red Soil Mountain, Fuzhou 350013, China.
| |
Collapse
|
23
|
Cui D, Wang J, Wang H, Yang Y, Zhao M. The cytotoxicity of endogenous CdS and Cd 2+ ions during CdS NPs biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124485. [PMID: 33229266 DOI: 10.1016/j.jhazmat.2020.124485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In the present study, cadmium-based nanoparticles (NPs) were biosynthesized by incubating their precursor salts with E. coli CD-2. Transmission electron microscopy (TEM) revealed the morphology of the NPs and confirmed that the NPs were formed via an intracellular growth. Energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) determined the elemental composition of the NPs and identified the NPs as CdS. The contents of extracellular Cd2+, intracellular Cd2+ and intracellular CdS NPs were determined during the whole CdS biosynthetic process. The results demonstrated that the contents of Cd2+ and CdS NPs changed during the biosynthetic process. The colony-forming capability test showed that strain CD-2 could maintain its growth during CdS biosynthesis. Protein oxidation levels confirmed that the E. coli cells faced oxidative stress induced both by Cd2+ and CdS. Both Cd2+ and CdS NPs affected the cellular antioxidative system by upregulating related gene expression. However, different pathways might be involved to eliminate ROS induced by Cd2+ ions or CdS NPs, respectively. The expression levels of ef-tu, ftsZ, mutS and dnaK were enhanced together with CdS accumulation, indicating that the cells had to overexpress certain related genes to respond to the NPs-induced stress.
Collapse
Affiliation(s)
- Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jianqi Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - He Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yue Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
24
|
Arshad H, Sami MA, Sadaf S, Hassan U. Salvadora persica mediated synthesis of silver nanoparticles and their antimicrobial efficacy. Sci Rep 2021; 11:5996. [PMID: 33727607 PMCID: PMC7966387 DOI: 10.1038/s41598-021-85584-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/03/2021] [Indexed: 12/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) exhibit strong antimicrobial properties against many pathogens. Traditionally employed chemical methods for AgNPs synthesis are toxic for the environment. Here, we report a quicker, simpler, and environmentally benign process to synthesize AgNPs by using an aqueous 'root extract' of Salvadora persica (Sp) plant as a reducing agent. The synthesized Salvadora persica nano particles (SpNPs) showed significantly higher antimicrobial efficacy compared to earlier reported studies. We characterized SpNPs using UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), Dynamic Light Scattering (DLS) and X-ray powder diffraction (P-XRD). UV-Vis spectrum showed the highest absorbance at 420 nm. FTIR analysis depicts presence of bond stretching including OH- (3300 cm-1), C=N- (2100 cm-1) and NH- (1630 cm-1) which are attributed in the involvement of phenolics, proteins or nitrogenous compounds in reduction and stabilization of AgNPs. TEM, FE-SEM and DLS analysis revealed the spherical and rod nature of SpNPs and an average size of particles as 37.5 nm. XRD analysis showed the presence of the cubic structure of Ag which confirmed the synthesis of silver nanoparticles. To demonstrate antimicrobial efficacy, we evaluated SpNPs antimicrobial activity against two bacterial pathogens (Escherichia coli (ATCC 11229) and Staphylococcus epidermidis (ATCC 12228)). SpNPs showed a significantly high inhibition for both pathogens and minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were found to be 0.39 µg/mL and 0.78 µg/mL for E. coli while 0.19 µg/mL and 0.39 µg/mL for S. epidermidis respectively. Further, Syto 16 staining of bacterial cells provided a supplemental confirmation of the antimicrobial efficacy as the bacterial cells treated with SpNPs stop to fluoresce compared to the untreated bacterial cells. Our highly potent SpNPs will likely have a great potential for many antimicrobial applications including wound healing, water purification, air filtering and other biomedical applications.
Collapse
Affiliation(s)
- Hammad Arshad
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Department of Electrical and Computer Engineering, School of Engineering, Rutgers The State University of New Jersey, Piscataway, NJ, USA
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| | - Muhammad A Sami
- Department of Electrical and Computer Engineering, School of Engineering, Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Saima Sadaf
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Umer Hassan
- Department of Electrical and Computer Engineering, School of Engineering, Rutgers The State University of New Jersey, Piscataway, NJ, USA.
- Global Health Institute, Rutgers The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
25
|
Gallardo-Benavente C, Campo-Giraldo JL, Castro-Severyn J, Quiroz A, Pérez-Donoso JM. Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Genes (Basel) 2021; 12:187. [PMID: 33514061 PMCID: PMC7912247 DOI: 10.3390/genes12020187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/23/2022] Open
Abstract
Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.
Collapse
Affiliation(s)
- Carla Gallardo-Benavente
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, 4780000 Temuco, Chile;
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - Jessica L. Campo-Giraldo
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| | - Juan Castro-Severyn
- Laboratorio de Microbiología Aplicada y Extremófilos, Facultad de Ingeniería y Ciencias Geológicas, Universidad Católica del Norte, 1240000 Antofagasta, Chile;
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4780000 Temuco, Chile
| | - José M. Pérez-Donoso
- BioNanotechnology and Microbiology Lab, Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8320000 Santiago, Chile;
| |
Collapse
|
26
|
Applications of Myconanoparticles in Remediation: Current Status and Future Challenges. Fungal Biol 2021. [DOI: 10.1007/978-3-030-68260-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Gu R, Gao J, Dong L, Liu Y, Li X, Bai Q, Jia Y, Xiao H. Chromium metabolism characteristics of coexpression of ChrA and ChrT gene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111060. [PMID: 32768747 DOI: 10.1016/j.ecoenv.2020.111060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Serratia sp. S2 is a wild strain with chromium resistance and reduction ability. Chromium(VI) metabolic-protein-coding gene ChrA and ChrT were cloned from Serratia sp. S2, and ligated with prokaryotic expression vectors pET-28a (+) and transformed into E. coli BL21 to construct ChrA, ChrT and ChrAT engineered bacteria. By studying the characteristics of Cr(VI) metabolism in engineered bacteria, the function and mechanism of the sole expression and coexpression of ChrA and ChrT genes were studied. METHODS Using Serratia sp. S2 genome as template, ChrA and ChrT genes were amplified by PCR, and prokaryotic expression vectors was ligated to form the recombinant plasmid pET-28a (+)-ChrA, pET-28a (+)-ChrT and pET-28a (+)-ChrAT, and transformed into E. coli BL21 to construct ChrA, ChrT, ChrAT engineered bacteria. The growth curve, tolerance, and reduction of Cr(VI), the distribution of intracellular and extracellular Cr, activity of chromium reductase and intracellular oxidative stress in engineered bacteria were measured to explore the metabolic characteristics of Cr(VI) in ChrA, ChrT, ChrAT engineered bacteria. RESULTS ChrA, ChrT and ChrAT engineered bacteria were successfully constructed by gene recombination technology. The tolerance to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrA > ChrT > Control (P < 0.05), and the reduction ability to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrT > ChrA (P < 0.05). The chromium distribution experiments confirmed that Cr(VI) and Cr(III) were the main valence states. Effect of electron donors on chromium reductase activity was NADPH > NADH > non-NAD(P)H (P < 0.05). The activity of chromium reductase increased significantly with NAD(P)H (P < 0.05). The Glutathione and NPSH (Non-protein Sulfhydryl) levels of ChrA, ChrAT engineered bacteria increased significantly (P < 0.05) under the condition of Cr(VI), but there was no significant difference in the indexes of ChrT engineered bacteria (P > 0.05). CONCLUSION ChrAT engineered bacteria possesses resistance and reduction abilities of Cr(VI). ChrA protein endows the strain with the ability to resist Cr(VI). ChrT protein reduces Cr(VI) to Cr(III) by using NAD(P)H as electronic donor. The reduction process promotes the production of GSH, GSSG and NPSH to maintain the intracellular reduction state, which further improves the Cr(VI) tolerance and reduction ability of ChrAT engineered bacteria.
Collapse
Affiliation(s)
- Ruijia Gu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China; Center for Disease Control and Prevention of Fucheng District, No.116 north section of Changhong Avenue, Fucheng District, Mianyang City, 621000, China
| | - Jieying Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lanlan Dong
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China; Food and Drugs Authority of Nanchong, No.535 Jinyuling Road, Shunqing District, Nanchong City, 637000, China
| | - Yuan Liu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xinglong Li
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qunhua Bai
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yan Jia
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Hong Xiao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, No.1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
28
|
Kepenek ES, Severcan M, Gozen AG, Severcan F. Discrimination of heavy metal acclimated environmental strains by chemometric analysis of FTIR spectra. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110953. [PMID: 32800227 DOI: 10.1016/j.ecoenv.2020.110953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal acclimated bacteria are profoundly the preferred choice for bioremediation studies. Bacteria get acclimated to toxic concentrations of heavy metals by induction of specific enzymes and genetic selection favoring new metabolic abilities leading to activation of one or several of resistance mechanisms creating bacterial populations with differences in resistance profile and/or level. Therefore, to use in bioremediation processes, it is important to discriminate acclimated bacterial populations and choose a more resistant strain. In this study, we discriminated heavy metal acclimated bacteria by using Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy and multivariate analysis methods namely Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA). Two acclimation methods, acute and gradual, were used which cause differences in molecular changes resulting in bacterial populations with different molecular and resistance profiles. Brevundimonas sp., Gordonia sp., and Microbacterium oxydans were exposed to the toxic concentrations of Cd (30 μg/ml) or Pb (90 μg/ml) by using broth medium as a growth media. Our results revealed that PCA and HCA clearly discriminated the acute-acclimated, gradual-acclimated, and control bacteria from each other in protein, carbohydrate, and whole spectral regions. Furthermore, we classified acclimated (acute and gradual) and control bacteria more accurately by using SIMCA with 99.9% confidence. This study demonstrated that heavy metal acclimated and control group bacteria can be discriminated by using chemometric analysis of FTIR spectra in a powerful, cost-effective, and handy way. In addition to the determination of the most appropriate acclimation procedure, this approach can be used in the detection of the most resistant bacterial strains to be used in bioremediation studies.
Collapse
Affiliation(s)
- Eda Seyma Kepenek
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Mete Severcan
- Department of Electrical and Electronics Engineering, School of Engineering and Natural Sciences, Altinbas University, Istanbul, Turkey.
| | - Ayse Gul Gozen
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Feride Severcan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey; Department of Biophysics, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| |
Collapse
|
29
|
Bischofberger AM, Baumgartner M, Pfrunder‐Cardozo KR, Allen RC, Hall AR. Associations between sensitivity to antibiotics, disinfectants and heavy metals in natural, clinical and laboratory isolates of Escherichia coli. Environ Microbiol 2020; 22:2664-2679. [PMID: 32162766 PMCID: PMC7384044 DOI: 10.1111/1462-2920.14986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 01/03/2023]
Abstract
Bacteria in nature often encounter non-antibiotic antibacterials (NAAs), such as disinfectants and heavy metals, and they can evolve resistance via mechanisms that are also involved in antibiotic resistance. Understanding whether susceptibility to different types of antibacterials is non-randomly associated across natural and clinical bacteria is therefore important for predicting the spread of resistance, yet there is no consensus about the extent of such associations or underlying mechanisms. We tested for associations between susceptibility phenotypes of 93 natural and clinical Escherichia coli isolates to various NAAs and antibiotics. Across all compound combinations, we detected a small number of non-random associations, including a trio of positive associations among chloramphenicol, triclosan and benzalkonium chloride. We investigated genetic mechanisms that can explain such associations using genomic information, genetic knockouts and experimental evolution. This revealed some mutations that are selected for by experimental exposure to one compound and confer cross-resistance to other compounds. Surprisingly, these interactions were asymmetric: selection for chloramphenicol resistance conferred cross-resistance to triclosan and benzalkonium chloride, but selection for triclosan resistance did not confer cross-resistance to other compounds. These results identify genetic changes involved in variable cross-resistance across antibiotics and NAAs, potentially contributing to associations in natural and clinical bacteria.
Collapse
Affiliation(s)
- Anna M. Bischofberger
- Institute of Integrative BiologyDepartment of Environmental Systems ScienceETH ZurichSwitzerland
| | - Michael Baumgartner
- Institute of Integrative BiologyDepartment of Environmental Systems ScienceETH ZurichSwitzerland
| | | | - Richard C. Allen
- Institute of Integrative BiologyDepartment of Environmental Systems ScienceETH ZurichSwitzerland
| | - Alex R. Hall
- Institute of Integrative BiologyDepartment of Environmental Systems ScienceETH ZurichSwitzerland
| |
Collapse
|
30
|
Wang X, Zhang X, Liu X, Huang Z, Niu S, Xu T, Zeng J, Li H, Wang T, Gao Y, Huang M, Cao L, Zhu Y. Physiological, biochemical and proteomic insight into integrated strategies of an endophytic bacterium Burkholderia cenocepacia strain YG-3 response to cadmium stress. Metallomics 2020; 11:1252-1264. [PMID: 31173023 DOI: 10.1039/c9mt00054b] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An endophytic bacterium YG-3 with high cadmium (Cd) resistance was isolated from poplar grown in a composite mine tailing. It was identified as Burkholderia cenocepacia based on genomic, physiological and biochemical analyses. The Cd removal rate by YG-3 could reach about 60.0% in Cd aqueous solution with high concentrations of both 100 and 500 mg L-1. Meanwhile, various absorption and adsorption strategies were found in the two different Cd concentrations. The global resistance mechanisms of YG-3 were investigated in several levels, i.e., physiological observation, such as scanning electron microscopy and transmission electron microscopy; biochemical detection for active compound production and infrared spectroscopy; label-free quantitative proteomic profile analysis. The results indicated that YG-3 possesses a complex mechanism to adapt to Cd stress: (1) binding of Cd to prevent it from entering the cell by the cell wall components, as well as secreted siderophores and exopolysaccharides; (2) intracellular sequestration of Cd by metalloproteins; (3) excretion of Cd from the cell by efflux pumps; (4) alleviation of Cd toxicity by antioxidants. Our results demonstrate that endophyte YG-3 is well adjusted to largely remove Cd and has potential to cooperate with its host to improve phytoremediation efficiency in heavy metal-contaminated sites.
Collapse
Affiliation(s)
- Xiang Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Xuan Zhang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | | | - Shuqi Niu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Hui Li
- Hunan Academy of Forestry, Changsha 410000, Hunan, P. R. China
| | - Tengfei Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Mei Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Lidan Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, Hunan, P. R. China.
| |
Collapse
|
31
|
Li D, Li R, Ding Z, Ruan X, Luo J, Chen J, Zheng J, Tang J. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. CHEMOSPHERE 2020; 241:125039. [PMID: 31606568 DOI: 10.1016/j.chemosphere.2019.125039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal removal from contaminated soils is a long-term challenging problem important for global economics, environment, and human health. Marine and freshwater-originated Mn(II)-oxidizing bacteria are considered as the promising bioremediation agents for environmental applications. However, practical application of soil-originated Mn(II)-oxidizing bacteria remains to be developed for contaminated soil remediation. In this work, the Mn(II) biosorption/oxidation mechanism of a new soil-originated bacterium and its bioleaching efficiency of heavy metals from soils was studied in detail. First, we found, isolated and identified a new highly Mn(II)-tolerant bacterial strain Providencia sp. LLDRA6 from heavy metal-contaminated soils. Next, strain LLDRA6 demonstrated its high Mn(II) biosorption capacity in aqueous solution. Then, Mn(II) adsorption by LLDRA6 was largely proven to be a synergistic effect of (i) Mn(II) precipitation on the cell surface, (ii) oxidation of Mn(II) into BioMnOx on the cell surface, and (iii) intracellular accumulation of insoluble MnCO3. Finally, combination bioleaching by the bacterium of Providencia sp. LLDRA6 and its formed BioMnOx was proposed to develop a potential environment-friendly and cost-effective technique to remediate severely heavy metal-contaminated soils. The bioleaching tests demonstrated that the combination of Providencia sp. LLDRA6 and BioMnOx exhibited an excellent removal efficiency for heavy metals of Pb (81.72%), Cr (88.29%), Cd (90.34%), Cu (91.25%), Mn (56.13%), and Zn (59.83%) from contaminated soils, resulting in an increase of removal efficiency in the range of 1.68-26.4% compared to Providencia sp. LLDRA6 alone. Moreover, the bacterial leachate facilitated the residual fraction of metals to transform into the easily migratory fractions in soils. These findings have demonstrated that strain LLDRA6 has high adsorption ability to remove heavy metals from contaminated soils, thus providing a promising bio-adsorbent for environmental bioremediation.
Collapse
Affiliation(s)
- Ding Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China; State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Ruyi Li
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhexu Ding
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiaofang Ruan
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jun Luo
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jinyuan Chen
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Jianxin Tang
- School of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| |
Collapse
|
32
|
Yu X, Ding Z, Ji Y, Zhao J, Liu X, Tian J, Wu N, Fan Y. An operon consisting of a P-type ATPase gene and a transcriptional regulator gene responsible for cadmium resistances in Bacillus vietamensis 151-6 and Bacillus marisflavi 151-25. BMC Microbiol 2020; 20:18. [PMID: 31964334 PMCID: PMC6975044 DOI: 10.1186/s12866-020-1705-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Cadmium (Cd) is a severely toxic heavy metal to most microorganisms. Many bacteria have developed Cd2+ resistance. RESULTS In this study, we isolated two different Cd2+ resistance Bacillus sp. strains, Bacillus vietamensis 151-6 and Bacillus marisflavi 151-25, which could be grown in the presence of Cd2+ at concentration up to 0.3 mM and 0.8 mM, respectively. According to the genomic sequencing, transcriptome analysis under cadmium stress, and other related experiments, a gene cluster in plasmid p25 was found to be a major contributor to Cd2+ resistance in B. marisflavi 151-25. The cluster in p25 contained orf4802 and orf4803 which encodes an ATPase transporter and a transcriptional regulator protein, respectively. Although 151-6 has much lower Cd2+ resistance than 151-25, they contained similar gene cluster, but in different locations. A gene cluster on the chromosome containing orf4111, orf4112 and orf4113, which encodes an ATPase transporter, a cadmium efflux system accessory protein and a cadmium resistance protein, respectively, was found to play a major role on the Cd2+ resistance for B. vietamensis 151-6. CONCLUSIONS This work described cadmium resistance mechanisms in newly isolated Bacillus vietamensis 151-6 and Bacillus marisflavi 151-25. Based on homologies to the cad system (CadA-CadC) in Staphylococcus aureus and analysis of transcriptome under Cd2+ induction, we inferred that the mechanisms of cadmium resistance in B. marisflavi 151-25 was as same as the cad system in S. aureus. Although Bacillus vietamensis 151-6 also had the similar gene cluster to B. marisflavi 151-25 and S. aureus, its transcriptional regulatory mechanism of cadmium resistance was not same. This study explored the cadmium resistance mechanism for B. vietamensis 151-6 and B. marisflavi 151-25 and has expanded our understanding of the biological effects of cadmium.
Collapse
Affiliation(s)
- Xiaoxia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zundan Ding
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangyang Ji
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Jintong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yunliu Fan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Tariq M, Waseem M, Rasool MH, Zahoor MA, Hussain I. Isolation and molecular characterization of the indigenous Staphylococcus aureus strain K1 with the ability to reduce hexavalent chromium for its application in bioremediation of metal-contaminated sites. PeerJ 2019; 7:e7726. [PMID: 31616584 PMCID: PMC6791339 DOI: 10.7717/peerj.7726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/22/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Urbanization and industrialization are the main anthropogenic activities that are adding toxic heavy metals to the environment. Among these, chromium (in hexavalent: Cr+6 and/or trivalent Cr+3) is being released abundantly in wastewater due to its uses in different industrial processes. It becomes highly mutagenic and carcinogenic once it enters the cell through sulfate uptake pathways after interacting with cellular proteins and nucleic acids. However, Cr+6 can be bio-converted into more stable, less toxic and insoluble trivalent chromium using microbes. Hence in this study, we have made efforts to utilize chromium tolerant bacteria for bio-reduction of Cr+6 to Cr+3. METHODS Bacterial isolate, K1, from metal contaminated industrial effluent from Kala Shah Kaku-Lahore Pakistan, which tolerated up to 22 mM of Cr6+ was evaluated for chromate reduction. It was further characterized biochemically and molecularly by VITEK®2 system and 16S rRNA gene sequencing respectively. Other factors affecting the reduction of chromium such as initial chromate ion concentration, pH, temperature, contact-time were also investigated. The role of cellular surface in sorption of Cr6+ ion was analyzed by FTIR spectroscopy. RESULTS Both biochemical and phylogenetic analyses confirmed that strain K1 was Staphylococcusaureus that could reduce 99% of Cr6+ in 24 hours at 35 °C (pH = 8.0; initial Cr6+ concentration = 100 mg/L). FTIR results assumed that carboxyl, amino and phosphate groups of cell wall were involved in complexation with chromium. Our results suggested that Staphylococcusaureus K1 could be a promising gram-positive bacterium that might be utilized to remove chromium from metal polluted environments.
Collapse
Affiliation(s)
- Muhammad Tariq
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | - Muhammad Waseem
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | | | - Muhammad Asif Zahoor
- Department of Microbiology, Government College University, Faisalabad, Punjab, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, The Lahore University of Management Sciences (LUMS), Lahore, Punjab, Pakistan
| |
Collapse
|
34
|
Khan Z, Nisar MA, Muzammil S, Zafar S, Zerr I, Rehman A. Cadmium induces GAPDH- and- MDH mediated delayed cell aging and dysfunction in Candida tropicalis 3Aer. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 191:490. [PMID: 31297613 DOI: 10.1007/s10661-019-7631-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotes employ various mechanisms to survive environmental stress conditions. Multicellular organisms eliminate permanently damaged cells by apoptosis, while unicellular eukaryotes like yeast react by decelerating cell aging. In the present study, transcriptomic and proteomic approaches were employed to elucidate the underlying mechanism of delayed apoptosis. Our findings suggest that Candida tropicalis 3Aer has a set of tightly controlled genes that are activated under Cd+2 exposition. Acute exposure to Cd+2 halts the cell cycle at the G2/M phase checkpoint and activates multiple cytoplasmic proteins that overcome effects of Cd+2-induced reactive oxygen species. Prolonged Cd+2 stress damages DNA and initiates GAPDH amyloid formation. This is the first report that Cd+2 challenge initiates dynamic redistribution of GAPDH and MDH and alters various metabolic pathways including the pentose phosphate pathway. In conclusion, the intracellular redistribution of GAPDH and MDH induced by prolonged cadmium stress modulates various cellular reactions, which facilitate delayed aging in the yeast cell.
Collapse
Affiliation(s)
- Zaman Khan
- University Institute of Medical Laboratory Technology (UIMLT), Faculty of Allied Health Sciences (FAHS), The University of Lahore, Lahore, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad (GCUF), Jhang Road, Faisalabad, Pakistan
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
35
|
Sher S, Rehman A. Use of heavy metals resistant bacteria-a strategy for arsenic bioremediation. Appl Microbiol Biotechnol 2019; 103:6007-6021. [PMID: 31209527 DOI: 10.1007/s00253-019-09933-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 01/26/2023]
Abstract
A large number of industries release their untreated wastes in the environment causing an increase in the concentration of toxic pollutants including heavy metal ions in ground and drinking water which is above the WHO limit. The presence of toxic pollutants in the industrial wastes pollutes our environment. Arsenic (As) is a ubiquitous toxic metalloid. Its amount varies in different parts on the earth, and its concentration is increasing in our environment day by day both by natural and anthropogenic activities. It is found in two forms; one is arsenate (As5+) and other is arsenite (As3+) and the latter is more toxic due to high mobility across the cell membrane. The long-term use of arsenic-containing water causes arsenicosis. High arsenic consumption, revealed by skin harms, color change, and spots on hands and feet, may cause skin cancer and affect lungs and kidneys. Hypertension, a state of high blood pressure, and lack of insulin which causes diabetes and many other disorders which relate to reproduction are the consequences of arsenic contamination. Several methods have been employed to decontaminate arsenic pollution, but the bioremediation by using biomass of bacteria, algae, fungi, and yeasts is the most compromising approach and has gained much attention from researchers in the last few decades. The microbial detoxification of arsenic can be achieved by reduction, oxidation, and methylation. High bioremediation potential and feasibility of the process make bacteria an impending foundation for green chemistry to exterminate arsenic in the environment.
Collapse
Affiliation(s)
- Shahid Sher
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore, 54590, Pakistan.
| |
Collapse
|
36
|
Liu C, Lin H, Dong Y, Li B, Wang L. Identification and characterization of plant growth-promoting endophyte RE02 from Trifolium repens L. in mining smelter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17236-17247. [PMID: 31012069 DOI: 10.1007/s11356-019-04904-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
Endophyte-assisted phytoremediation is considered to be an effective approach for bioremediation of heavy metal-contaminated soil; however, few information is available on Trifolium repens L. and its endophytes to remediate heavy metal-polluted soils. In this study, heavy metal-resistant endophytes were isolated from T. repens growing in mining smelter and identified by BIOLOG system. The isolate was also evaluated for promoting plant growth in heavy metal-contaminated soils in pot experiments. A total of eight Cd2+-resistant endophytes were isolated and these isolates preferred to grow on L-aspartic acid and α-D-glucose. All the isolates had at least two plant growth-promoting properties including siderophore production, phosphate solubilization activity, indole acetic acid (IAA) production, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity. Strain RE02, identified as Pseudomonas putida by Biolog system, showed the highest Cd tolerance and could reduce Cd concentration from 20 to 1.84 mg L-1 in about 49 h in liquid medium, amounting to about 90.8%. Among the five endophytes which have positive effect on the growth of T. repens, RE02, whose IAA production ability was 7.06 mg L-1 and phosphate solubilization was 134.76 mg L-1, could improve T. repens root and shoot biomass by 25.9% and 37.7% in cadmium-contained soil, respectively. Our research may provide a new microbial-enhanced phytoremediation of heavy metal-polluted soils and improve the remediation efficiency.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liang Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
37
|
Liu SH, Zeng ZT, Niu QY, Xiao R, Zeng GM, Liu Y, Cheng M, Hu K, Jiang LH, Tan XF, Tao JJ. Influence of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of Cd(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:1279-1287. [PMID: 30577120 DOI: 10.1016/j.scitotenv.2018.11.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/17/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Suspended microbes gradually lost advantages in practical applications of PAHs and heavy metals bioremediation. Therefore this study investigated the effect of immobilization on phenanthrene degradation by Bacillus sp. P1 in the presence of different Cd(II) concentrations. Condensed Bacillus sp. P1 was immobilized with polyvinyl alcohol and sodium alginate and PVA-SA-cell cryogel beads were prepared. The results indicated that the use of gel beads increased the number of adsorption sites thus accelerating phenanthrene degradation. In addition, changes in detoxification indices, including superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), were determined to elucidate the immobilization mechanisms related to cells protection from Cd(II) when degrading phenanthrene. By protecting the gel membrane, oxidative damage was minimized, while SOD activity increased from 55.72 to 81.33 U/mgprot as Cd(II) increased from 0 to 200 mg/L but later dropped to 44.29 U/mgprot as Cd(II) increased to 300 mg/L for the non-immobilized system. On the other hand, the SOD activity kept increasing from 52.23 to 473.35 U/mgprot for the immobilized system exposed to Cd(II) concentration between 0 and 300 mg/L. For CAT and GSH, immobilization only slowed down the depletion process without any change on the variation trends. The changes in surface properties and physiological responses of microbes caused the differences of immobilization effect on phenanthrene biodegradation in the presence of Cd(II), which is a novel finding.
Collapse
Affiliation(s)
- Shao-Heng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| | - Zhuo-Tong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Kai Hu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu-Huang Jiang
- School of Minerals Processing and Bioengineering and Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, PR China
| | - Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jian-Jun Tao
- College of Chemistry and Material Engineering, Hunan University of Arts and Science, Changde 415000, Hunan, PR China
| |
Collapse
|
38
|
Biliuta G, Coseri S. Cellulose: A ubiquitous platform for ecofriendly metal nanoparticles preparation. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Qin W, Zhao J, Yu X, Liu X, Chu X, Tian J, Wu N. Improving Cadmium Resistance in Escherichia coli Through Continuous Genome Evolution. Front Microbiol 2019; 10:278. [PMID: 30842762 PMCID: PMC6391850 DOI: 10.3389/fmicb.2019.00278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 01/29/2023] Open
Abstract
Cadmium (Cd) is a heavy metal that is extremely toxic to many organisms; however, microbes are highly adaptable to extreme conditions, including heavy metal contamination. Bacteria can evolve in the natural environment, generating resistant strains that can be studied to understand heavy-metal resistance mechanisms, but obtaining such adaptive strains usually takes a long time. In this study, the genome replication engineering assisted continuous evolution (GREACE) method was used to accelerate the evolutionary rate of the Escherichia coli genome to screen for E. coli mutants with high resistance to cadmium. As a result, a mutant (8mM-CRAA) with a minimum inhibitory concentration (MIC) of 8 mM cadmium was generated; this MIC value was approximately eightfold higher than that of the E. coli BL21(DE3) wild-type strain. Sequencing revealed 329 single nucleotide polymorphisms (SNPs) in the genome of the E. coli mutant 8mM-CRAA. These SNPs as well as RNA-Seq data on gene expression induced by cadmium were used to analyze the genes related to cadmium resistance. Overexpression, knockout and mutation of the htpX (which encodes an integral membrane heat shock protein) and gor (which encodes glutathione reductase) genes revealed that these two genes contribute positively to cadmium resistance in E. coli. Therefore, in addition to the previously identified cadmium resistance genes zntA and capB, many other genes are also involved in bacterial cadmium resistance. This study assists us in understanding the mechanism of microbial cadmium resistance and facilitating the application of heavy-metal remediation.
Collapse
Affiliation(s)
- Weitong Qin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jintong Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxia Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyu Chu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
40
|
Pereira EJ, Damare S, Furtado B, Ramaiah N. Response to chromate challenge by marine Staphylococcus sp. NIOMR8 evaluated by differential protein expression. 3 Biotech 2018; 8:500. [PMID: 30498673 DOI: 10.1007/s13205-018-1522-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/17/2018] [Indexed: 11/28/2022] Open
Abstract
Liquid Chromatography-Mass Spectrometry-Quadrupole Time of Flight (LC/MS QToF) protein profiling of marine-derived Staphyloccous gallinarum NIOMR8 was carried out to evaluate proteins conferring chromate (Cr6+) resistance and possible metabolic pathways that were altered as a result. Expressional (up or down-regulation) responses to varying Cr6+ (0, 50, 100, 150, and 200 µg mL- 1) concentrations varied, with as many as 346 proteins identified. Most number of proteins-their numbers in parentheses-were up-regulated when grown in medium with 50 µg mL- 1 (162) and, down-regulated in medium with 100 (281) or 200 µg mL- 1 Cr6+ (280). Among these, eight proteins were commonly up-regulated, while 58 were commonly down-regulated across all conditions of Cr6+. Expression of protein moieties in metabolic pathways like translation (38), transcription (14), replication (18) and repair (4), metabolism of carbohydrates (26), amino acids (27), nucleotides (17), and membrane transport (21) was evidenced. Up-regulation patterns suggest that reduction of molecular oxygen (5), DNA repair (4) and peptide misfolding (7) were the potential protective mechanisms employed to counter Cr6+ stress. Additionally, proteins associated with biofilm and cell wall biogenesis highlight their hypothetical involvement in toxicity tolerance. Results also indicate that at higher concentrations of Cr6+, down-regulation of functional proteins impedes normal cellular functions.
Collapse
Affiliation(s)
- Elroy Joe Pereira
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Samir Damare
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| | - Bliss Furtado
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
- Present Address: Department of Microbiology, Copernicus University, Toruń, Poland
| | - Nagappa Ramaiah
- 1Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004 India
| |
Collapse
|
41
|
Effect of rare codons in C-terminal of green fluorescent protein on protein production in Escherichia coli. Protein Expr Purif 2018; 149:23-30. [DOI: 10.1016/j.pep.2018.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/02/2018] [Accepted: 04/16/2018] [Indexed: 11/23/2022]
|
42
|
Rahman MT, Karim MM. Metallothionein: a Potential Link in the Regulation of Zinc in Nutritional Immunity. Biol Trace Elem Res 2018; 182:1-13. [PMID: 28585004 DOI: 10.1007/s12011-017-1061-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/22/2017] [Indexed: 01/03/2023]
Abstract
Nutritional immunity describes mechanisms for withholding essential transition metals as well as directing the toxicity of these metals against infectious agents. Zinc is one of these transition elements that are essential for both humans and microbial pathogens. At the same time, Zn can be toxic both for man and microbes if its concentration is higher than the tolerance limit. Therefore a "delicate" balance of Zn must be maintained to keep the immune cells surveilling while making the level of Zn either to starve or to intoxicate the pathogens. On the other hand, the invading pathogens will exploit the host Zn pool for its survival and replication. Apparently, different sets of protein in human and bacteria are involved to maintain their Zn need. Metallothionein (MT)-a group of low molecular weight proteins, is well known for its Zn-binding ability and is expected to play an important role in that Zn balance at the time of active infection. However, the differences in structural, functional, and molecular control of biosynthesis between human and bacterial MT might play an important role to determine the proper use of Zn and the winning side. The current review explains the possible involvement of human and bacterial MT at the time of infection to control and exploit Zn for their need.
Collapse
|
43
|
Zong L, Xing J, Liu S, Liu Z, Song F. Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:26-33. [PMID: 28822947 DOI: 10.1016/j.ecoenv.2017.08.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 06/07/2023]
Abstract
The heavy metals such as cadmium (Cd) can induce neurotoxicity. Extensive studies about the effects of Cd on human health have been reported, however, a systematic investigation on the molecular mechanisms of the effects of Cd on central nervous system is still needed. In this paper, the neuronal PC-12 cells were treated with a series of concentrations of CdCl2 for 48h. Then the cytotoxicity was evaluated by MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay. The IC15 value (15% inhibiting concentration) was selected for further mechanism studies. After PC-12 cells incubated with CdCl2 at a dose of IC15 for 48h, the intracellular and extracellular metabolites were profiled using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS)-based cell metabolomics approach. As found, the effects of the heavy metal Cd produced on the PC-12 cell viability were dose-dependent. The metabolic changes were involved in the glycolysis and gluconeogenesis, biopterin metabolism, tryptophan metabolism, tyrosine metabolism, glycerophospholipid metabolism, and fatty acids beta-oxidation. These could cause the perturbation of cell membrane, redox balance, energy supply, cellular detoxification, further affecting the cellular proliferation and apoptosis and other cellular activities.
Collapse
Affiliation(s)
- Li Zong
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
44
|
Efficient biosorption of Pb(II) from aqueous solutions by a PAH-degrading strain Herbaspirillum chlorophenolicum FA1. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Molecular basis of Cd +2 stress response in Candida tropicalis. Appl Microbiol Biotechnol 2017; 101:7715-7728. [PMID: 28920150 DOI: 10.1007/s00253-017-8503-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/10/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
This study examines the bioremediation potential and cadmium-induced cellular response on a molecular level in Candida tropicalis 3Aer. Spectroscopic analysis clearly illustrated the involvement of yeast cell wall components in biosorption. Cadmium bioaccumulation was confirmed by TEM, SEM, and EDX examination. TEM images revealed extracellular as well as cytoplasmic and vacuolar cadmium nanoparticle formation, further validated by presence of ycf1 gene and increased biosynthesis of GSH under cadmium stress. Fourteen proteins exhibited differential expression and during cellular redox homeostasis are found to involve in nitrogen metabolism, nucleotide biosynthesis, and carbohydrate catabolism. Interestingly, C. tropicalis 3Aer is equipped with nitrile hydratase enzyme, rarely been reported in yeast. It has the potential to remove nitriles from the environment. The Cd+2 toxicity not only caused growth stasis but also upregulated the cysteine biosynthesis, protein folding and cytoplasmic detoxification response elements. The present study suggests that C. tropicalis 3Aer is a potential candidate for bioremediating environmental pollution by Cd+2.
Collapse
|
46
|
Khan Z, Rehman A, Nisar MA, Zafar S, Zerr I. Biosorption behavior and proteomic analysis of Escherichia coli P4 under cadmium stress. CHEMOSPHERE 2017; 174:136-147. [PMID: 28161514 DOI: 10.1016/j.chemosphere.2017.01.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
Bacteria develop a variety of adaptations at transcriptomic, metabolomic and proteomic levels in order to survive potentially damaging environmental perturbations. Present study is exploring the fluctuations in proteome of E. coli P4 to knob Cd+2-induced cytotoxicity. An attempt was also made to integrate all these approaches to gain comprehensive insight of Cd+2 stress response in E. coli P4. This study is exposing the altered behavior of various proteins and their underlying metabolic pathways which have previously not been reported with reference to Cd+2 stress such as sulfoquinovose biosynthesis and degradation pathway. Some of the responses studied on all integrated levels followed same dynamics and strategies to conserve energy by down regulating carbohydrate metabolism (depicted by the repression of succinyl-CoA ligase) and growth stasis (down regulation of ftsZ). Moreover, proteomic analysis clearly revealed the affection of Cd+2 stress on various proteins expression including Rrf, MdaB, DapA, GpmA,Cdd, FabI, DsbA, ZnuA and YihW found modulating key cellular metabolic pathways enabling E. coli P4 to withstand Cd+2-induced toxic effects. Furthermore, over-expression of Mn-SOD provided evidence that Cd+2exposure induces superoxide free radicals mediated oxidative stress rather than hydrogen peroxide (H2O2). EnvZ/OmpR -a two component cell envelope regulatory system was observed operating to homeostat the cell's internal environment. Cd+2 bioremediation potential of E. coli P4 and its kinetic and thermodynamic basis were studied by applying different isotherm models which nominated E. coli P4 a good bioresource for green chemistry to eradicate environmental Cd+2.
Collapse
Affiliation(s)
- Zaman Khan
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
47
|
Liu SH, Zeng GM, Niu QY, Liu Y, Zhou L, Jiang LH, Tan XF, Xu P, Zhang C, Cheng M. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. BIORESOURCE TECHNOLOGY 2017; 224:25-33. [PMID: 27916498 DOI: 10.1016/j.biortech.2016.11.095] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 05/22/2023]
Abstract
In recent years, knowledge in regard to bioremediation of combined pollution of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by bacteria and fungi has been widely developed. This paper reviews the species of bacteria and fungi which can tackle with various types of PAHs and heavy metals entering into environment simultaneously or successively. Microbial activity, pollutants bioavailability and environmental factors (e.g. pH, temperature, low molecular weight organic acids and humic acids) can all affect the bioremediation of PAHs and heavy metals. Moreover, this paper summarizes the remediation mechanisms of PAHs and heavy metals by microbes via elucidating the interaction mechanisms of heavy metals with heavy metals, PAHs/PAHs metabolites with PAHs and PAHs with heavy metals. Based on the above reviews, this paper also discusses the potential research needs for this field.
Collapse
Affiliation(s)
- Shao-Heng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lu-Hua Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiao-Fei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
48
|
Khan Z, Rehman A, Hussain SZ. Resistance and uptake of cadmium by yeast, Pichia hampshirensis 4Aer, isolated from industrial effluent and its potential use in decontamination of wastewater. CHEMOSPHERE 2016; 159:32-43. [PMID: 27268792 DOI: 10.1016/j.chemosphere.2016.05.076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
Pichia hampshirensis 4Aer is first ever used yeast for the bioremediation of environmental cadmium (Cd(+2)) which could maximally remove 22 mM/g and 28 mM/g Cd(+2) from aqueous medium at lab and large scales, respectively. The biosorption was found to be the function of temperature, pH of solution, initial Cd(+2) concentration and biomass dosage. Competitive biosorption was investigated in binary and multi-metal system which indicated the decrease in Cd(+2) biosorption with increasing the competitive metal ions attributed to their higher electronegativity and larger radius. FTIR analysis revealed the active participation of amide and carbonyl moieties in Cd(+2) adsorption confirmed by EDX analysis. Electron micrographs summoned further surface adsorption and increased cell size due to intracellular Cd(+2) accumulation. Cd(+2) was the causative agent of some metal binding proteins as well as prodigious increase in glutathione and other non-protein thiols levels which is the crucial for the yeast to thrive oxidative stress generated by Cd(+2). Our experimental data were consistent with Langmuir as well as Freundlich isotherm models. The yeast obeyed pseudo second order kinetic model which makes it an effective biosorbent for Cd(+2). High bioremediation potential and spontaneity and feasibility of the process make P. hampshirensis 4Aer an impending foundation for green chemistry to exterminate environmental Cd(+2).
Collapse
Affiliation(s)
- Zaman Khan
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
| | - Abdul Rehman
- Department of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| | - Syed Z Hussain
- Department of Chemistry, SBA School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), DHA, Lahore Cantt 54792, Pakistan
| |
Collapse
|
49
|
Li LS, Meng YP, Cao QF, Yang YZ, Wang F, Jia HS, Wu SB, Liu XG. Type 1 Metallothionein (ZjMT) Is Responsible for Heavy Metal Tolerance in Ziziphus jujuba. BIOCHEMISTRY (MOSCOW) 2016; 81:565-73. [PMID: 27301284 DOI: 10.1134/s000629791606002x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich, metal-binding proteins that are able to make cells to uptake heavy metals from the environment. Molecular and functional characterization of this gene family improves understanding of the mechanisms underlying heavy metal tolerance in higher organisms. In this study, a cDNA clone, encoding 74-a.a. metallothionein type 1 protein (ZjMT), was isolated from the cDNA library of Ziziphus jujuba. At the N- and C-terminals of the deduced amino acid sequence of ZjMT, six cysteine residues were arranged in a CXCXXXCXCXXXCXC and CXCXXXCXCXXCXC structure, respectively, indicating that ZjMT is a type 1 MT. Quantitative PCR analysis of plants subjected to cadmium stress showed enhanced expression of ZjMT gene in Z. jujuba within 24 h upon Cd exposure. Escherichia coli cells expressing ZjMT exhibited enhanced metal tolerance and higher accumulation of metal ions compared with control cells. The results indicate that ZjMT contributes to the detoxification of metal ions and provides marked tolerance against metal stresses. Therefore, ZjMT may be a potential candidate for tolerance enhancement in vulnerable plants to heavy metal stress and E. coli cells containing the ZjMT gene may be applied to adsorb heavy metals in polluted wastewater.
Collapse
Affiliation(s)
- Lan-Song Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, 030024 Taiyuan, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Characterization and Sorptivity of the Plesiomonas shigelloides Strain and Its Potential Use to Remove Cd2+ from Wastewater. WATER 2016. [DOI: 10.3390/w8060241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|