1
|
Sajnaga E, Kazimierczak W, Karaś MA, Jach ME. Exploring Xenorhabdus and Photorhabdus Nematode Symbionts in Search of Novel Therapeutics. Molecules 2024; 29:5151. [PMID: 39519791 PMCID: PMC11547657 DOI: 10.3390/molecules29215151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Xenorhabdus and Photorhabdus bacteria, which live in mutualistic symbiosis with entomopathogenic nematodes, are currently recognised as an important source of bioactive compounds. During their extraordinary life cycle, these bacteria are capable of fine regulation of mutualism and pathogenesis towards two different hosts, a nematode and a wide range of insect species, respectively. Consequently, survival in a specific ecological niche favours the richness of biosynthetic gene clusters and respective metabolites with a specific structure and function, providing templates for uncovering new agrochemicals and therapeutics. To date, numerous studies have been published on the genetic ability of Xenorhabdus and Photorhabdus bacteria to produce biosynthetic novelty as well as distinctive classes of their metabolites with their activity and mechanism of action. Research shows diverse techniques and approaches that can lead to the discovery of new natural products, such as extract-based analysis, genetic engineering, and genomics linked with metabolomics. Importantly, the exploration of members of the Xenorhabdus and Photorhabdus genera has led to encouraging developments in compounds that exhibit pharmaceutically important properties, including antibiotics that act against Gram- bacteria, which are extremely difficult to find. This article focuses on recent advances in the discovery of natural products derived from these nematophilic bacteria, with special attention paid to new valuable leads for therapeutics.
Collapse
Affiliation(s)
- Ewa Sajnaga
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Waldemar Kazimierczak
- Department of Biomedicine and Environmental Research, John Paul II Catholic University of Lublin, Konstantynów 1J, 20-708 Lublin, Poland;
| | - Magdalena Anna Karaś
- Department of Genetics and Microbiology, Institute of Biological Science, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Monika Elżbieta Jach
- Department of Molecular Biology, John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland;
| |
Collapse
|
2
|
Khan A, Singh AV, Gautam SS, Agarwal A, Punetha A, Upadhayay VK, Kukreti B, Bundela V, Jugran AK, Goel R. Microbial bioformulation: a microbial assisted biostimulating fertilization technique for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1270039. [PMID: 38148858 PMCID: PMC10749938 DOI: 10.3389/fpls.2023.1270039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/28/2023]
Abstract
Addressing the pressing issues of increased food demand, declining crop productivity under varying agroclimatic conditions, and the deteriorating soil health resulting from the overuse of agricultural chemicals, requires innovative and effective strategies for the present era. Microbial bioformulation technology is a revolutionary, and eco-friendly alternative to agrochemicals that paves the way for sustainable agriculture. This technology harnesses the power of potential microbial strains and their cell-free filtrate possessing specific properties, such as phosphorus, potassium, and zinc solubilization, nitrogen fixation, siderophore production, and pathogen protection. The application of microbial bioformulations offers several remarkable advantages, including its sustainable nature, plant probiotic properties, and long-term viability, positioning it as a promising technology for the future of agriculture. To maintain the survival and viability of microbial strains, diverse carrier materials are employed to provide essential nourishment and support. Various carrier materials with their unique pros and cons are available, and choosing the most appropriate one is a key consideration, as it substantially extends the shelf life of microbial cells and maintains the overall quality of the bioinoculants. An exemplary modern bioformulation technology involves immobilizing microbial cells and utilizing cell-free filters to preserve the efficacy of bioinoculants, showcasing cutting-edge progress in this field. Moreover, the effective delivery of bioformulations in agricultural fields is another critical aspect to improve their overall efficiency. Proper and suitable application of microbial formulations is essential to boost soil fertility, preserve the soil's microbial ecology, enhance soil nutrition, and support crop physiological and biochemical processes, leading to increased yields in a sustainable manner while reducing reliance on expensive and toxic agrochemicals. This manuscript centers on exploring microbial bioformulations and their carrier materials, providing insights into the selection criteria, the development process of bioformulations, precautions, and best practices for various agricultural lands. The potential of bioformulations in promoting plant growth and defense against pathogens and diseases, while addressing biosafety concerns, is also a focal point of this study.
Collapse
Affiliation(s)
- Amir Khan
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Ajay Veer Singh
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Shiv Shanker Gautam
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Aparna Agarwal
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Arjita Punetha
- School of Environmental Science and Natural Resource, Dehradun, Uttarakhand, India
| | - Viabhav Kumar Upadhayay
- Department of Microbiology, College of Basic Sciences and Humanities, Dr. Rajendra Prasad Central Agriculture University, Samastipur, India
| | - Bharti Kukreti
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Vindhya Bundela
- Biofortification Lab, Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, U.S. Nagar, Uttarakhand, India
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Garhwal Regional Centre, Srinager, Uttarakhand, India
| | - Reeta Goel
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
Shi Y, Wolf CA, Lotfy R, Sharma SS, Tesfa AF, Wolber G, Bureik M, Clark BR. Deciphering the biotransformation mechanism of dialkylresorcinols by CYP4F11. Bioorg Chem 2023; 131:106330. [PMID: 36565673 DOI: 10.1016/j.bioorg.2022.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cytochrome P450 enzymes (CYPs) are one of the most important classes of oxidative enzymes in the human body, carrying out metabolism of various exogenous and endogenous substrates. In order to expand the knowledge of these enzymes' specificity and to obtain new natural product derivatives, CYP4F11, a cytochrome P450 monooxygenase, was used in the biotransformation of dialkylresorcinols 1 and 2, a pair of antibiotic microbial natural products. This investigation resulted in four biotransformation products including two oxidative products: a hydroxylated derivative (3) and a carboxylic acid derivative (4). In addition, acetylated (5) and esterified products (6) were isolated, formed by further metabolism by endogenous yeast enzymes. Oxidative transformations were highly regioselective, and took place exclusively at the ω-position of the C-5 alkyl chain. Homology modeling studies revealed that optimal hydrogen bonding between 2 and the enzyme can only be established with the C-5 alkyl chain pointing towards the heme. The closely-related CYP4F12 was not capable of oxidizing the dialkylresorcinol 2. Modeling experiments rationalize these differences by the different shapes of the binding pockets with respect to the non-oxidized alkyl chain. Antimicrobial testing indicated that the presence of polar groups on the side-chains reduces the antibiotic activity of the dialkylresorcinols.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Clemens A Wolf
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Rowaa Lotfy
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Sangeeta S Sharma
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Abel Fekadu Tesfa
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Gerhard Wolber
- Molecular Design Lab, Freie Universität Berlin, Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Königin-Luise-Straße, 2 + 4, 14195 Berlin, Germany
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology, Tianjin University, 92, Weijin Road, Tianjin 300092, People's Republic of China.
| |
Collapse
|
4
|
Astafyeva Y, Gurschke M, Streit WR, Krohn I. Interplay between the microalgae Micrasterias radians and its symbiont Dyadobacter sp. HH091. Front Microbiol 2022; 13:1006609. [PMID: 36312980 PMCID: PMC9606717 DOI: 10.3389/fmicb.2022.1006609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Based on previous research, related to detailed insight into mutualistic collaboration of microalga and its microbiome, we established an artificial plant-bacteria system of the microalga Micrasterias radians MZCH 672 and the bacterial isolate Dyadobacter sp. HH091. The bacteria, affiliated with the phylum Bacteroidota, strongly stimulated growth of the microalga when it was added to axenic algal cultures. For further advances, we studied the isolate HH091 and its interaction with the microalga M. radians using transcriptome and extensive genome analyses. The genome of HH091 contains predicted polysaccharide utilizing gene clusters co-working with the type IX secretion system (T9SS) and conceivably involved in the algae-bacteria liaison. Here, we focus on characterizing the mechanism of T9SS, implementing the attachment and invasion of microalga by Dyadobacter sp. HH091. Omics analysis exposed T9SS genes: gldK, gldL, gldM, gldN, sprA, sprE, sprF, sprT, porU and porV. Besides, gld genes not considered as the T9SS components but required for gliding motility and protein secretion (gldA, gldB, gldD, gldF, gldG, gldH, gldI, gldJ), were also identified at this analysis. A first model of T9SS apparatus of Dyadobacter was proposed in a course of this research. Using the combination of fluorescence labeling of Dyadobacter sp. HH091, we examined the bacterial colonisation and penetration into the cell wall of the algal host M. radians MZCH 672.
Collapse
|
5
|
Lyalina S, Stepanauskas R, Wu F, Sanjabi S, Pollard KS. Single cell genome sequencing of laboratory mouse microbiota improves taxonomic and functional resolution of this model microbial community. PLoS One 2022; 17:e0261795. [PMID: 35417481 PMCID: PMC9007364 DOI: 10.1371/journal.pone.0261795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022] Open
Abstract
Laboratory mice are widely studied as models of mammalian biology, including the microbiota. However, much of the taxonomic and functional diversity of the mouse gut microbiome is missed in current metagenomic studies, because genome databases have not achieved a balanced representation of the diverse members of this ecosystem. Towards solving this problem, we used flow cytometry and low-coverage sequencing to capture the genomes of 764 single cells from the stool of three laboratory mice. From these, we generated 298 high-coverage microbial genome assemblies, which we annotated for open reading frames and phylogenetic placement. These genomes increase the gene catalog and phylogenetic breadth of the mouse microbiota, adding 135 novel species with the greatest increase in diversity to the Muribaculaceae and Bacteroidaceae families. This new diversity also improves the read mapping rate, taxonomic classifier performance, and gene detection rate of mouse stool metagenomes. The novel microbial functions revealed through our single-cell genomes highlight previously invisible pathways that may be important for life in the murine gastrointestinal tract.
Collapse
Affiliation(s)
- Svetlana Lyalina
- Gladstone Institutes, San Francisco, CA, United States of America
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States of America
| | - Frank Wu
- Gladstone Institutes, San Francisco, CA, United States of America
| | - Shomyseh Sanjabi
- Gladstone Institutes, San Francisco, CA, United States of America
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, CA, United States of America
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, CA, United States of America
- Chan-Zuckerberg Biohub, San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Shared in planta population and transcriptomic features of nonpathogenic members of endophytic phyllosphere microbiota. Proc Natl Acad Sci U S A 2022; 119:e2114460119. [PMID: 35344425 PMCID: PMC9168490 DOI: 10.1073/pnas.2114460119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Plants evolved in an environment colonized by a vast number of microbes, which collectively constitute the plant microbiota. The majority of microbiota taxa are nonpathogenic and may be beneficial to plants under certain ecological or environmental conditions. We conducted experiments to understand the features of long-term interactions of nonpathogenic microbiota members with plants. We found that a multiplication–death equilibrium explained the shared long-term static populations of nonpathogenic bacteria and that in planta bacterial transcriptomic signatures were characteristic of the stationary phase, a physiological state in which stress protection responses are induced. These results may have significant implications in understanding the bulk of “nonpathogenic” plant–microbiota interactions that occur in agricultural and natural ecosystems. Plants and animals are in constant association with a variety of microbes. Although much is known about how pathogenic and symbiotic microbes interact with plants, less is known about the population dynamics, adaptive traits, and transcriptional features of the vast number of microbes that make up the bulk of the plant microbiota. The majority of microbiota taxa are either commensal, natural mutants of pathogens, or pathogens that encounter strong immune responses due to plant recognition of pathogen effectors. How these “nonpathogenic” microbes interact with plants is poorly understood, especially during long-term, steady-state interactions, which are more reflective of plant–microbiota interactions in nature. In this study, we embarked upon long-term population and in planta transcriptomic studies of commensal endophytic bacteria and compared them to nonpathogenic or effector-triggered immunity-inducing strains of the bacterial pathogen Pseudomonas syringae. Our results led to the discovery of multiplication–death equilibrium as a common basis for the shared long-term static population densities of these bacteria. A comprehensive in planta transcriptomic analysis using multiple time points after inoculation revealed a striking similarity between the transcriptomic features of nonpathogenic P. syringae to that of bacteria in stationary phase in vitro, a metabolically active physiological state in which the production of adaptive secondary metabolites and stress responses are induced. We propose that the long-term population and transcriptomic features of nonpathogenic bacteria captured in this study likely reflect the physiological steady state encountered by the bulk of endophytic microbiota—excluding virulent pathogens—in their life-long interactions with plants in nature.
Collapse
|
7
|
Jones CV, Jarboe BG, Majer HM, Ma AT, Beld J. Escherichia coli Nissle 1917 secondary metabolism: aryl polyene biosynthesis and phosphopantetheinyl transferase crosstalk. Appl Microbiol Biotechnol 2021; 105:7785-7799. [PMID: 34546406 DOI: 10.1007/s00253-021-11546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Escherichia coli Nissle 1917 (EcN) is a Gram-negative bacterium that is used to treat inflammatory bowel diseases. The probiotic character of EcN is not well-understood, but its ability to produce secondary metabolites plays an important role in its activity. The EcN genome encodes for an aryl polyene (APE) biosynthetic gene cluster (BGC), and APE products have a role in biofilm formation. We show here that this unusual polyketide assembly line synthase produces four APE molecules which are likely cis/trans isomers. Within the APE BGC, two acyl carrier proteins are involved in biosynthesis. Acyl carrier proteins require activation by post-translational modification with a phosphopantetheinyl transferase (PPTase). Through analysis of single, double, and triple mutants of three PPTases, the PPTase-BGC crosstalk relationship in EcN was characterized. Understanding PPTase-BGC crosstalk is important for the engineering of secondary metabolite production hosts and for targeting of PPTases with new antibiotics. KEY POINTS: • Escherichia coli Nissle 1917 biosynthesizes four aryl polyene isoforms. • Phosphopantetheinyl transferase crosstalk is important for biosynthesis.
Collapse
Affiliation(s)
- Courtney V Jones
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Brianna G Jarboe
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Haley M Majer
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Amy T Ma
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing and Center for Genomics Sciences, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
| |
Collapse
|
8
|
Li J, Shi Y, Clark BR. Semi-synthesis of antibacterial dialkylresorcinol derivatives. J Antibiot (Tokyo) 2020; 74:70-75. [DOI: 10.1038/s41429-020-0359-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/30/2022]
|
9
|
Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Appl Microbiol Biotechnol 2019; 104:1013-1034. [PMID: 31858191 DOI: 10.1007/s00253-019-10300-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The whole organisms can be packaged as biopesticides, but secondary metabolites secreted by microorganisms can also have a wide range of biological activities that either protect the plant against pests and pathogens or act as plant growth promotors which can be beneficial for the agricultural crops. In this review, we have compiled information about the most important secondary metabolites of three important bacterial genera currently used in agriculture pest and disease management.
Collapse
|
10
|
Martins TP, Rouger C, Glasser NR, Freitas S, de Fraissinette NB, Balskus EP, Tasdemir D, Leão PN. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat Prod Rep 2019; 36:1437-1461. [PMID: 30702733 PMCID: PMC6836626 DOI: 10.1039/c8np00080h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/18/2022]
Abstract
Covering: up to 2019 Alkylresorcinols are amphiphilic metabolites, well-known for their diverse biological activities, produced by both prokaryotes and eukaryotes. A few classes of alkylresorcinol scaffolds have been reported from the photoautotrophic cyanobacteria, ranging from the relatively simple hierridins to the more intricate cylindrocyclophanes. Recently, it has emerged that cyanobacteria employ two different biosynthetic pathways to produce unique alkylresorcinol scaffolds. However, these convergent pathways intersect by sharing biosynthetic elements which lead to common structural motifs. To obtain a broader view of the biochemical diversity of these compounds in cyanobacteria, we comprehensively cover the isolation, structure, biological activity and biosynthesis of their mono- and dialkylresorcinols. Moreover, we provide an overview of the diversity and distribution of alkylresorcinol-generating biosynthetic gene clusters in this phylum and highlight opportunities for discovery of novel alkylresorcinol scaffolds. Because some of these molecules have inspired notable syntheses, different approaches used to build these molecules in the laboratory are showcased.
Collapse
Affiliation(s)
- Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Caroline Rouger
- Research Unit Marine Natural Products Chemistry
, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech)
, GEOMAR Helmholtz Centre for Ocean Research Kiel
,
Germany
| | - Nathaniel R. Glasser
- Department of Chemistry & Chemical Biology
, Harvard University
,
Cambridge
, MA
, USA
| | - Sara Freitas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Nelly B. de Fraissinette
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| | - Emily P. Balskus
- Department of Chemistry & Chemical Biology
, Harvard University
,
Cambridge
, MA
, USA
| | - Deniz Tasdemir
- Research Unit Marine Natural Products Chemistry
, GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech)
, GEOMAR Helmholtz Centre for Ocean Research Kiel
,
Germany
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)
, University of Porto
,
Matosinhos
, Portugal
.
| |
Collapse
|
11
|
Shi YM, Bode HB. Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 2019; 35:309-335. [PMID: 29359226 DOI: 10.1039/c7np00054e] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to November 2017 Organismic interaction is one of the fundamental principles for survival in any ecosystem. Today, numerous examples show the interaction between microorganisms like bacteria and higher eukaryotes that can be anything between mutualistic to parasitic/pathogenic symbioses. There is also increasing evidence that microorganisms are used by higher eukaryotes not only for the supply of essential factors like vitamins but also as biological weapons to protect themselves or to kill other organisms. Excellent examples for such systems are entomopathogenic nematodes of the genera Heterorhabditis and Steinernema that live in mutualistic symbiosis with bacteria of the genera Photorhabdus and Xenorhabdus, respectively. Although these systems have been used successfully in organic farming on an industrial scale, it was only shown during the last 15 years that several different natural products (NPs) produced by the bacteria play key roles in the complex life cycle of the bacterial symbionts, the nematode host and the insect prey that is killed by and provides nutrients for the nematode-bacteria pair. Since the bacteria can switch from mutualistic to pathogenic lifestyle, interacting with two different types of higher eukaryotes, and since the full system with all players can be established in the lab, they are promising model systems to elucidate the natural function of microbial NPs. This review summarizes the current knowledge as well as open questions for NPs from Photorhabdus and Xenorhabdus and tries to assign their roles in the tritrophic relationship.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Merck-Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Frankfurt am Main 60438, Germany
| | | |
Collapse
|
12
|
Nofiani R, Philmus B, Nindita Y, Mahmud T. 3-Ketoacyl-ACP synthase (KAS) III homologues and their roles in natural product biosynthesis. MEDCHEMCOMM 2019; 10:1517-1530. [PMID: 31673313 DOI: 10.1039/c9md00162j] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 11/21/2022]
Abstract
The 3-ketoacyl-ACP synthase (KAS) III proteins are one of the most abundant enzymes in nature, as they are involved in the biosynthesis of fatty acids and natural products. KAS III enzymes catalyse a carbon-carbon bond formation reaction that involves the α-carbon of a thioester and the carbonyl carbon of another thioester. In addition to the typical KAS III enzymes involved in fatty acid and polyketide biosynthesis, there are proteins homologous to KAS III enzymes that catalyse reactions that are different from that of the traditional KAS III enzymes. Those include enzymes that are responsible for a head-to-head condensation reaction, the formation of acetoacetyl-CoA in mevalonate biosynthesis, tailoring processes via C-O bond formation or esterification, as well as amide formation. This review article highlights the diverse reactions catalysed by this class of enzymes and their role in natural product biosynthesis.
Collapse
Affiliation(s)
- Risa Nofiani
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA . .,Department of Chemistry , Universitas Tanjungpura , Pontianak , Indonesia
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Yosi Nindita
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences , Oregon State University , Corvallis , OR 97333 , USA .
| |
Collapse
|
13
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
14
|
Bozhüyük KAJ, Zhou Q, Engel Y, Heinrich A, Pérez A, Bode HB. Natural Products from Photorhabdus and Other Entomopathogenic Bacteria. Curr Top Microbiol Immunol 2016; 402:55-79. [PMID: 28091935 DOI: 10.1007/82_2016_24] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the first natural products (NP) from Photorhabdus and Xenorhabdus bacteria have been known now for almost 30 years, a huge variety of new compounds have been identified in the last 5-10 years, mainly due to the application of modern mass spectrometry. Additionally, application of molecular methods that allow the activation of NP production in several different strains as well as efficient heterologous expression methods have led to the production and validation of many new compounds. In this chapter we discuss the benefit of using Photorhabdus as a model system for microbial chemical ecology. We also examine non-ribosomal peptide synthetases as the most important pathway for NP production. Finally, we discuss the origin and function of all currently known NPs and the development of the molecular and chemical tools used to identify these NPs faster.
Collapse
Affiliation(s)
- Kenan A J Bozhüyük
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Qiuqin Zhou
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Yvonne Engel
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Antje Heinrich
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Alexander Pérez
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Helge B Bode
- Merck Endowed Chair for Molecular Biotechnology, Department of Biosciences and Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|