1
|
Qiu Z, Han Y, Li J, Ren Y, Liu X, Li S, Zhao GR, Du L. Metabolic division engineering of Escherichia coli consortia for de novo biosynthesis of flavonoids and flavonoid glycosides. Metab Eng 2025; 89:60-75. [PMID: 39947347 DOI: 10.1016/j.ymben.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/17/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Heterologous biosynthesis of natural products with long biosynthetic pathways in microorganisms often suffers from diverse problems, such as enzyme promiscuity and metabolic burden. Flavonoids and their glycosides are important phytochemicals in the diet of human beings, with various health benefits and biological activities. Despite previous efforts and achievements, efficient microbial production of plant-derived flavonoid compounds with long pathways remains challenging. Herein, we applied metabolic division engineering of Escherichia coli consortia to overcome these limitations. By establishing new biosynthetic pathways, rationally adjusting metabolic node intermediates, and engineering different auxotrophic and orthogonal carbon sources for hosts, we established stable two- and three-bacteria co-culture systems to efficiently de novo produce 12 flavonoids (61.15-325.31 mg/L) and 36 corresponding flavonoid glycosides (1.31-191.79 mg/L). Furthermore, the co-culture system was rapidly extended in a plug-and-play manner to produce isoflavonoids, dihydrochalcones, and their glycosides. This study successfully alleviates metabolic burden and overcomes enzyme promiscuity, and provides significant insights that could guide the biosynthesis of other complex secondary metabolites.
Collapse
Affiliation(s)
- Zetian Qiu
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Yumei Han
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Jia Li
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Yi Ren
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Xue Liu
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China.
| | - Guang-Rong Zhao
- State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China; Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China.
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
2
|
Thuan NH, Lam BD, Trung NT. Rhamnosyltransferases: Biochemical activities, potential biotechnology for production of natural products and their applications. Enzyme Microb Technol 2025; 189:110656. [PMID: 40239361 DOI: 10.1016/j.enzmictec.2025.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/18/2025]
Abstract
Rhamnosyltransferase is an enzyme that catalyzes the transfer of rhamnose moieties from an activated donor molecule, typically nucleotide diphosphate-rhamnose (NDP-rhamnose), to a wide range of acceptor molecules, including proteins, lipids, saccharides, glycoproteins, glycans, and glycolipids. This enzymatic process, known as rhamnosylation, plays a fundamental role in the biosynthesis of critical biomolecules, such as components of the cell wall, plasma membrane channels, receptors, antigens, signaling molecules, antibiotics, and other secondary metabolites. Due to its essential involvement in both primary and secondary metabolic pathways, rhamnosyltransferase is indispensable for various biological processes and exhibits significant potential for applications in human health and industrial biotechnology. In recent years, this enzyme has garnered substantial attention from the scientific community, owing to its unique biochemical properties and its utility in diverse sectors, including medicine, food technology, and cosmetics. This review aims to synthesize recent advancements in the study of rhamnosyltransferase, with a focus on its catalytic mechanisms, biological significance, and emerging applications in biotechnological innovation.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Pharmaceutical Biotechnology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam.
| | - Bui Dinh Lam
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; Institute of Biotechnology and Food Technology, Thai Nguyen University of Agriculture and Forestry, Thai Nguyen 250000, Viet Nam
| | - Nguyen Thanh Trung
- Center for Pharmaceutical Biotechnology, College of Medicine and Pharmacy, Duy Tan University, Danang 550000, Viet Nam
| |
Collapse
|
3
|
Chen J, Qiu X, Sun Z, Luan M, Chen J. Genome-wide analysis of UDP-glycosyltransferase family in Citrus sinensis and characterization of a UGT gene encoding flavonoid 1-2 rhamnosyltransferase. Int J Biol Macromol 2024; 280:135752. [PMID: 39299422 DOI: 10.1016/j.ijbiomac.2024.135752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
UDP-glycosyltransferases (UGTs) play a crucial role in the glycosylation of secondary metabolites in plants, which is of significant importance for growth and response to biotic or abiotic stress. Despite the wide identification of UGT family members in various species, limited information is available regarding this family in citrus. In this study, we identified 87 UGT genes from the Citrus sinensis genome and classified them into 14 groups. We characterized their gene structures and motif compositions, providing insights into the molecular basis underlying discrepant functions of UGT genes within each evolutionary branch. Tandem duplication events were found to be the main driving force behind UGT gene expansion. Additionally, we identified numerous cis-acting elements in the promoter region of UGT genes, including those responsive to light, growth factors, phytohormones, and stress conditions. Notably, light-responsive elements were found with a frequency of 100 %. We elucidated the expression pattern of UGTs during fruit development in Citrus aurantium using RNA-seq and quantitative real-time PCR (qRT-PCR), revealing that 10 key UGT genes are closely associated with biosynthesis of bitter flavanone neohesperidosides (FNHs). Furthermore, we identified Ca1,2RhaT as a flavonoid 1-2 rhamnosyltransferase (1,2RhaT) involved in FNHs biosynthesis for the first time. Isolation and functional characterization of the gene Ca1,2RhaT from Citrus aurantium in vitro and in vivo indicated that Ca1,2RhaT encoded a citrus 1,2RhaT and possessed rhamnosyl transfer activities. This work provides comprehensive information on the UGT family while offering new insights into understanding molecular mechanisms regulating specific accumulation patterns of FNHs or non-bitter flavanone rutinosides (FRTs) in citrus.
Collapse
Affiliation(s)
- Jing Chen
- Shandong Peanut Research Institute, Qingdao, Shandong 266100, PR China; Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Xiaojun Qiu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Zhimin Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572000, PR China.
| | - Jianhua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, PR China.
| |
Collapse
|
4
|
Ohashi T, Mabira Y, Mitsuyoshi Y, Kajiura H, Misaki R, Ishimizu T, Fujiyama K. Expression of an endo-rhamnogalacturonase from Aspergillus aculeatus enhances release of Arabidopsis transparent mucilage. J Biosci Bioeng 2024; 138:73-82. [PMID: 38643032 DOI: 10.1016/j.jbiosc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024]
Abstract
Mucilage is a gelatinous and sticky hydrophilic polysaccharide released from epidermal cells of seed coat after the hydration of mature seeds and is composed primarily of unbranched rhamnogalacturonan I (RG-I). In this study, we produced a recombinant endo-RG-I hydrolase from Aspergillus aculeatus (AaRhgA) in the fission yeast Schizosaccharomyces pombe and examined its substrate preference for pyridylaminated (PA) RG-I with the various degrees of polymerization (DP). Recombinant AaRhgA requires PA-RG-I with a DP of 10 or higher for its hydrolase activity. We heterologously expressed the AarhgA gene under the strong constitutive promoter, cauliflower mosaic virus 35S promoter, in Arabidopsis thaliana. In a series of biochemical analyses of each mucilage fraction released from the water-imbibed seeds of the transgenic plants, we found the enhanced deposition of the transparent mucilage layer that existed in the peripheral regions of the adherent mucilage and was not stained with ruthenium red. This study demonstrated the feasibility of manipulating the mucilage organization by heterologous expression of the endo-RG-I hydrolase.
Collapse
Affiliation(s)
- Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka 572-8508, Japan.
| | - Yurika Mabira
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaro Mitsuyoshi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Hsieh CY, Tsai PW, Tomioka Y, Matsumoto Y, Akiyama Y, Wang CC, Tayo LL, Lee CJ. Chronopharmacology of diuresis via metabolic profiling and key biomarker discovery of the traditional Chinese prescription Ji-Ming-San using tandem mass spectrometry in rat models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155260. [PMID: 38176264 DOI: 10.1016/j.phymed.2023.155260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Ji-Ming-Shan (JMS) is a traditional prescription used for patients with rheumatism, tendons swelling, relief of foot pain, athlete's foot, diuresis, gout. Although many studies have investigated the active compounds in each herb, the functional mechanism behind its therapeutic effect remains unclear. STUDY DESIGN Metabolic cages for sample collection. The serum components obtained from the experimental animals were analyzed using LC-MS/MS. Furthermore, cross-analysis using the software MetaboAnalyst and Venn diagrams were used to investigate chronopharmacology of JMS in the animal models. PURPOSE The aim of this study is to analyze the diuretic effects of JMS and to explore their chronopharmacology involved in organ regulation through four-quarter periods from serum samples of rat models. METHODS Metabolic cages were used for collecting the urine samples and PocketChem UA PU-4010, Fuji DRI-CHEM 800 were used to examine the urine biochemical parameters. The serum components were identified through ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-Q-TOF) with a new developed method. Cross analysis, Venn diagram, MetaboAnalyst were used to investigate the key biomarker and major metabolism route with the oral administration of the drug. RESULT JMS significantly changed the 6 h urine volume with no observed kidney toxicity. Urine pH value ranges from 7.0 to 7.5. The chronopharmacology of JMS diuresis activity were 0-6 and 6-12 groups. UPLC-Q-TOF analyses identified 243 metabolites which were determined in positive mode and negative mode respectively. With cross analysis in the Venn diagram, one key biomarker naringenin-7-O-glucoside has been identified. Major metabolic pathways such as 1: Glycerophospholipid metabolism, 2: Primary bile acid biosynthesis, 3: Sphingolipid metabolism, 4: Riboflavin metabolism, 5: Linoleic acid metabolism, 6: Butanoate metabolism. CONCLUSION JMS significantly changed the urine output of animals in the 0-6 and 6-12 groups. No change in urine pH was observed and also kidney toxicity. A new UPLC-Q-TOF method was developed for the detection of the metabolites of JMS after oral administration. The cross analysis with Venn diagram and identified the key biomarker of JMS namely naringenin-7-O-glucoside. The results showed that six major pathways are involved in the gastrointestinal system and the liver. This study demonstrated the capability of JMS prescription in the regulation of diuresis and identified a key biomarker that is responsible for its therapeutic effect.
Collapse
Affiliation(s)
- Cheng-Yang Hsieh
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Po-Wei Tsai
- Department of Medical Science Industries, College of Health Sciences, Chang Jung Christian University, Tainan 711, Taiwan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai Japan
| | - Ching-Chiung Wang
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Lemmuel L Tayo
- School of Chemical, Biological, Materials Engineering and Sciences, Mapúa University, Intramuros, 1002 Metro Manila, Manila, Philippines; Department of Biology, School of Medicine and Health Sciences Mapua University, Makati, Philippines
| | - Chia-Jung Lee
- Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Postal address: Teaching & research building, 250 Wu-Hsing Street, Taipei 110, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
6
|
Yamashita M, Fujimori T, An S, Iguchi S, Takenaka Y, Kajiura H, Yoshizawa T, Matsumura H, Kobayashi M, Ono E, Ishimizu T. The apiosyltransferase celery UGT94AX1 catalyzes the biosynthesis of the flavone glycoside apiin. PLANT PHYSIOLOGY 2023; 193:1758-1771. [PMID: 37433052 PMCID: PMC10602602 DOI: 10.1093/plphys/kiad402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Apiose is a unique branched-chain pentose found in plant glycosides and a key component of the cell wall polysaccharide pectin and other specialized metabolites. More than 1,200 plant-specialized metabolites contain apiose residues, represented by apiin, a distinctive flavone glycoside found in celery (Apium graveolens) and parsley (Petroselinum crispum) in the family Apiaceae. The physiological functions of apiin remain obscure, partly due to our lack of knowledge on apiosyltransferase during apiin biosynthesis. Here, we identified UGT94AX1 as an A. graveolens apiosyltransferase (AgApiT) responsible for catalyzing the last sugar modification step in apiin biosynthesis. AgApiT showed strict substrate specificity for the sugar donor, UDP-apiose, and moderate specificity for acceptor substrates, thereby producing various apiose-containing flavone glycosides in celery. Homology modeling of AgApiT with UDP-apiose, followed by site-directed mutagenesis experiments, identified unique Ile139, Phe140, and Leu356 residues in AgApiT, which are seemingly crucial for the recognition of UDP-apiose in the sugar donor pocket. Sequence comparison and molecular phylogenetic analysis of celery glycosyltransferases suggested that AgApiT is the sole apiosyltransferase-encoding gene in the celery genome. Identification of this plant apiosyltransferase gene will enhance our understanding of the physioecological functions of apiose and apiose-containing compounds.
Collapse
Affiliation(s)
- Maho Yamashita
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tae Fujimori
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Song An
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Sho Iguchi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyuki Kajiura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroyoshi Matsumura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Masaru Kobayashi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Eiichiro Ono
- Suntory Global Innovation Center Ltd., Research Institute, Soraku-gun, Kyoto 619-0284, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
7
|
Xiao Z, Wang Y, Liu J, Zhang S, Tan X, Zhao Y, Mao J, Jiang N, Zhou J, Shan Y. Systematic Engineering of Saccharomyces cerevisiae Chassis for Efficient Flavonoid-7- O-Disaccharide Biosynthesis. ACS Synth Biol 2023; 12:2740-2749. [PMID: 37566738 DOI: 10.1021/acssynbio.3c00348] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Flavonoids are an essential class of secondary metabolites found in plants and possess various nutritional, medicinal, and agricultural properties. However, the poor water solubility of flavonoid aglycones limits their potential applications. To overcome this issue, glycosylation is a promising approach for improving water solubility and bioavailability. In this study, we constructed a flavonoid-7-O-disaccharide biosynthetic pathway with flavonoid aglycones as substrates in Saccharomyces cerevisiae. Subsequently, through metabolic engineering and promoter strategies, we constructed a UDP-rhamnose regeneration system and optimized the UDP-glucose (UDPG) synthetic pathway. The optimized strain produced up to 131.3 mg/L eriocitrin. After this, the chassis cells were applied to other flavonoids, with substrates such as (2S)-naringenin, (2S)-hesperetin, diosmetin, and (2S)-eriodictyol, which resulted in the synthesis of 179.9 mg/L naringin, 276.6 mg/L hesperidin, 249.0 mg/L neohesperidin, 30.4 mg/L diosmin, and 100.7 mg/L neoeriocitrin. To the best of our knowledge, this is the first report on the biosynthesis of flavonoid-7-O-disaccharide.
Collapse
Affiliation(s)
- Zhiqiang Xiao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yongtong Wang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Juan Liu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Siqi Zhang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Xinjia Tan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Yifei Zhao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Ning Jiang
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
- Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
- Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Products Processing Institute, Changsha 410125, China
| |
Collapse
|
8
|
Nguyen TD. Rhamnosyltransferases in Chrysanthemum: Just a spoonful of sugar helps the flavonoid-based medicines abound. PLANT PHYSIOLOGY 2022; 190:2061-2063. [PMID: 36149328 PMCID: PMC9706423 DOI: 10.1093/plphys/kiac457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
9
|
Wu QW, Wei M, Feng LF, Ding L, Wei WK, Yang JF, Lin XJ, Liang HL, Zhan RT, Ma DM. Rhamnosyltransferases involved in the biosynthesis of flavone rutinosides in Chrysanthemum species. PLANT PHYSIOLOGY 2022; 190:2122-2136. [PMID: 35947689 PMCID: PMC9706480 DOI: 10.1093/plphys/kiac371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 05/06/2023]
Abstract
Linarin (acacetin-7-O-rutinoside), isorhoifolin (apigenin-7-O-rutinoside), and diosmin (diosmetin-7-O-rutinoside) are chemically and structurally similar flavone rutinoside (FR) compounds found in Chrysanthemum L. (Anthemideae, Asteraceae) plants. However, their biosynthetic pathways remain largely unknown. In this study, we cloned and compared FRs and genes encoding rhamnosyltransferases (RhaTs) among eight accessions of Chrysanthemum polyploids. We also biochemically characterized RhaTs of Chrysanthemum plants and Citrus (Citrus sinensis and Citrus maxima). RhaTs from these two genera are substrate-promiscuous enzymes catalyzing the rhamnosylation of flavones, flavanones, and flavonols. Substrate specificity analysis revealed that Chrysanthemum 1,6RhaTs preferred flavone glucosides (e.g. acacetin-7-O-glucoside), whereas Cs1,6RhaT preferred flavanone glucosides. The nonsynonymous substitutions of RhaTs found in some cytotypes of diploids resulted in the loss of catalytic function. Phylogenetic analysis and specialized pathways responsible for the biosynthesis of major flavonoids in Chrysanthemum and Citrus revealed that rhamnosylation activity might share a common evolutionary origin. Overexpression of RhaT in hairy roots resulted in 13-, 2-, and 5-fold increases in linarin, isorhoifolin, and diosmin contents, respectively, indicating that RhaT is mainly involved in the biosynthesis of linarin. Our findings not only suggest that the substrate promiscuity of RhaTs contributes to the diversity of FRs in Chrysanthemum species but also shed light on the evolution of flavone and flavanone rutinosides in distant taxa.
Collapse
Affiliation(s)
- Qing-Wen Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518110, China
| | - Ling-Fang Feng
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Li Ding
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Wu-Ke Wei
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jin-Fen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiao-Jing Lin
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui-Lin Liang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | | | - Dong-Ming Ma
- Authors for correspondence: (D.-M.M.), (R.-T.Z.)
| |
Collapse
|
10
|
Li C, Yan X, Xu Z, Wang Y, Shen X, Zhang L, Zhou Z, Wang P. Pathway elucidation of bioactive rhamnosylated ginsenosides in Panax ginseng and their de novo high-level production by engineered Saccharomyces cerevisiae. Commun Biol 2022; 5:775. [PMID: 35918414 PMCID: PMC9345943 DOI: 10.1038/s42003-022-03740-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/19/2022] [Indexed: 01/16/2023] Open
Abstract
Rg2 and Re are both rhamnose-containing ginsenosides isolated exclusively from Panax plants, which exhibit broad spectrum of pharmacological activities. However, limitations of current plant-relied manufacturing methods have largely hampered their medical applications. Here, we report elucidation of the complete biosynthetic pathway of these two ginsenosides by the identification of a rhamnosyltransferase PgURT94 from Panax ginseng. We then achieve de novo bio-production of Rg2 and Re from glucose by reconstituting their biosynthetic pathways in yeast. Through stepwise strain engineering and fed-batch fermentation, the maximum yield of Rg2 and Re reach 1.3 and 3.6 g/L, respectively. Our work completes the identification of the last missing enzyme for Rg2 and Re biosynthesis and achieves their high-level production by engineered yeasts. Once scaled, this microbial biosynthesis platform will enable a robust and stable supply of Rg2 and Re and facilitate their food and medical applications.
Collapse
Affiliation(s)
- Chaojing Li
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhenzhen Xu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Sciences, Henan University, Kaifeng, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Shen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Zhang
- Logic Informatics Co., Ltd., Shanghai, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Martín JF, Liras P. Comparative Molecular Mechanisms of Biosynthesis of Naringenin and Related Chalcones in Actinobacteria and Plants: Relevance for the Obtention of Potent Bioactive Metabolites. Antibiotics (Basel) 2022; 11:antibiotics11010082. [PMID: 35052959 PMCID: PMC8773403 DOI: 10.3390/antibiotics11010082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/01/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Naringenin and its glycosylated derivative naringin are flavonoids that are synthesized by the phenylpropanoid pathway in plants. We found that naringenin is also formed by the actinobacterium Streptomyces clavuligerus, a well-known microorganism used to industrially produce clavulanic acid. The production of naringenin in S. clavuligerus involves a chalcone synthase that uses p-coumaric as a starter unit and a P450 monoxygenase, encoded by two adjacent genes (ncs-ncyP). The p-coumaric acid starter unit is formed by a tyrosine ammonia lyase encoded by an unlinked, tal, gene. Deletion and complementation studies demonstrate that these three genes are required for biosynthesis of naringenin in S. clavuligerus. Other actinobacteria chalcone synthases use caffeic acid, ferulic acid, sinapic acid or benzoic acid as starter units in the formation of different antibiotics and antitumor agents. The biosynthesis of naringenin is restricted to a few Streptomycess species and the encoding gene cluster is present also in some Saccharotrix and Kitasatospora species. Phylogenetic comparison of S. clavuligerus naringenin chalcone synthase with homologous proteins of other actinobacteria reveal that this protein is closely related to chalcone synthases that use malonyl-CoA as a starter unit for the formation of red-brown pigment. The function of the core enzymes in the pathway, such as the chalcone synthase and the tyrosine ammonia lyase, is conserved in plants and actinobacteria. However, S. clavuligerus use a P450 monooxygenase proposed to complete the cyclization step of the naringenin chalcone, whereas this reaction in plants is performed by a chalcone isomerase. Comparison of the plant and S. clavuligerus chalcone synthases indicates that they have not been transmitted between these organisms by a recent horizontal gene transfer phenomenon. We provide a comprehensive view of the molecular genetics and biochemistry of chalcone synthases and their impact on the development of antibacterial and antitumor compounds. These advances allow new bioactive compounds to be obtained using combinatorial strategies. In addition, processes of heterologous expression and bioconversion for the production of naringenin and naringenin-derived compounds in yeasts are described.
Collapse
|
12
|
Li W, Li G, Yuan Z, Li M, Deng X, Tan M, Ma Y, Chen J, Xu J. Illustration of the variation in the content of flavanone rutinosides in various citrus germplasms from genetic and enzymatic perspectives. HORTICULTURE RESEARCH 2022; 9:6510704. [PMID: 35040975 PMCID: PMC8788359 DOI: 10.1093/hr/uhab017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/16/2021] [Accepted: 08/30/2021] [Indexed: 06/12/2023]
Abstract
In citrus, 1,6-rhamnosytransferase (1,6RhaT) and 1,2-rhamnosytransferase (1,2RhaT) catalyze flavanone-7-O-glucosides to form nonbitter flavanone rutinosides (FRs) and bitter flavanone neohesperidosides (FNs), respectively. As revealed in this study of fruit peels from 36 citrus accessions, FRs varied from undetectable levels in pummelo and kumquat to being the dominant flavonoids in sweet orange and loose-skin mandarins. Furthermore, a previously annotated full-length 1,6RhaT-like gene was identified as another 1,6RhaT-encoding gene by in vitro experiments. In total, 28 alleles of full-length 1,6RhaTs were isolated and classified into A, B and C types with only type A alleles encoding a functional protein. Coincidently, only the accessions that contained FRs harbored type A alleles, as was further verified in two F1 hybrid populations. Moreover, the inferior substrate conversion efficiency of 1,6RhaTs in comparison with that of 1,2RhaT in vitro might partly explain the lower proportions of FRs to total flavanone disaccharides in citrus hybrids harboring both functional rhamnosyltransferases. Our findings provide a better understanding of FR content variations among citrus and are meaningful for a mechanistic illustration of citrus flavonoid metabolism and fruit quality improvement practices.
Collapse
Affiliation(s)
- Wenyun Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, No.1 Jinnong Road, Huaxi District, Guiyang 550006, China
| | - Gu Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Ziyu Yuan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Mingyue Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Meilian Tan
- The Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, No.2 Xudong Second Road, Wuchang District, Wuhan 430062, China
| | - Yuhua Ma
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, No.1 Jinnong Road, Huaxi District, Guiyang 550006, China
| | - Jiajing Chen
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry, Huazhong Agricultural University, No.1 Shizishan Street,
Hongshan District, Wuhan 430070, China
| |
Collapse
|
13
|
Ohashi T, Sari N, Misaki R, Fujiyama K. Biochemical characterization of Arabidopsis clade F polygalacturonase shows a substrate preference toward oligogalacturonic acids. J Biosci Bioeng 2021; 133:1-7. [PMID: 34690060 DOI: 10.1016/j.jbiosc.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022]
Abstract
Polygalacturonases (PGs) hydrolyze α-1,4-linked d-galacturonic acid (GalUA) in polygalacturonic acid. Previously, PG activity in pea seedlings was found in the Golgi apparatus, where pectin biosynthesis occurs. However, the corresponding genes encoding Golgi-localized PG proteins have never been identified in the higher plants. In this study, we cloned the 5 Arabidopsis genes encoding putative membrane-bound PGs from clade F PGs (AtPGFs) as the first step for the discovery of the Golgi-localized PGs. Five AtPGF proteins (AtPGF3, AtPGF6, AtPGF10, AtPGF14 and AtPGF16) were heterologously produced in Schizosaccharomyces pombe. Among these, only the AtPGF10 protein showed in vitro exo-type PG activity toward fluorogenic pyridylaminated-oligogalacturonic acids (PA-OGAs) as a substrate. The optimum PG activity was observed at pH 5.5 and 60°C. The recombinant AtPGF10 protein showed the maximum PG activities toward PA-OGA with 10 degrees of polymerization. The apparent Km values for the PA-OGAs with 7, 11 and 14 degrees of polymerization were 8.0, 22, and 5.9 μM, respectively. This is the first report of the identification and enzymatic characterization of AtPGF10 as PG carrying putative membrane-bound domain.
Collapse
Affiliation(s)
- Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nabilah Sari
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryo Misaki
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan; Cooperative Research Station in Southeast Asia (OU:CRS), Faculty of Science, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Transglycosylation toward naringenin-7-O-glucoside using an N180H mutant of Coprinopsis cinerea endo-β-N-acetylglucosaminidase. Biochem Biophys Res Commun 2020; 530:155-159. [PMID: 32828279 DOI: 10.1016/j.bbrc.2020.06.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
Flavonoids are generally glycosylated, and the glycan moieties of flavonoid glycosides are known to greatly affect their physicochemical and biological properties. Thus, the development of a variety of tools for glycan remodeling of flavonoid glycosides is highly desired. An endo-β-N-acetylglucosaminidase mutant Endo-CC N180H, which is developed as an excellent chemoenzymatic tool for creating sialylglycoproteins, was employed for the glycosylation of flavonoids. Endo-CC N180H transferred the sialyl biantennary glycans from the sialylglyco peptide to pNP-GlcNAc and narigenin-7-O-glucoside. The kinetic parameters of Endo-CC N180H towards SGP and pNP-GlcNAc were determined. Flavonoid glucosides harboring a 1,3-diol structure in the glucose moieties acted as substrates of Endo-CC N180H. We proposed that the sialyl biantennary glycan transfer to the flavonoid by Endo-CC N180H could pave the way for the improvement of the inherent biological functions of the flavonoids and creation of novel flavonoid glycoside derivatives for future human health benefits including foods and drugs.
Collapse
|
15
|
Wachananawat B, Kuroha T, Takenaka Y, Kajiura H, Naramoto S, Yokoyama R, Ishizaki K, Nishitani K, Ishimizu T. Diversity of Pectin Rhamnogalacturonan I Rhamnosyltransferases in Glycosyltransferase Family 106. FRONTIERS IN PLANT SCIENCE 2020; 11:997. [PMID: 32714362 PMCID: PMC7343896 DOI: 10.3389/fpls.2020.00997] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/17/2020] [Indexed: 05/23/2023]
Abstract
Rhamnogalacturonan I (RG-I) comprises approximately one quarter of the pectin molecules in land plants, and the backbone of RG-I consists of a repeating sequence of [2)-α-L-Rha(1-4)-α-D-GalUA(1-] disaccharide. Four Arabidopsis thaliana genes encoding RG-I rhamnosyltransferases (AtRRT1 to AtRRT4), which synthesize the disaccharide repeats, have been identified in the glycosyltransferase family (GT106). However, the functional role of RG-I in plant cell walls and the evolutional history of RRTs remains to be clarified. Here, we characterized the sole ortholog of AtRRT1-AtRRT4 in liverwort, Marchantia polymorpha, namely, MpRRT1. MpRRT1 had RRT activity and genetically complemented the AtRRT1-deficient mutant phenotype in A. thaliana. However, the MpRRT1-deficient M. polymorpha mutants showed no prominent morphological changes and only an approximate 20% reduction in rhamnose content in the cell wall fraction compared to that in wild-type plants, suggesting the existence of other RRT gene(s) in the M. polymorpha genome. As expected, we detected RRT activities in other GT106 family proteins such as those encoded by MpRRT3 in M. polymorpha and FRB1/AtRRT8 in A. thaliana, the deficient mutant of which affects cell adhesion. Our results show that RRT genes are more redundant and diverse in GT106 than previously thought.
Collapse
Affiliation(s)
| | - Takeshi Kuroha
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Hiroyuki Kajiura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
16
|
Kianersi F, Abdollahi MR, Mirzaie-Asl A, Dastan D, Rasheed F. Identification and tissue-specific expression of rutin biosynthetic pathway genes in Capparis spinosa elicited with salicylic acid and methyl jasmonate. Sci Rep 2020; 10:8884. [PMID: 32483287 PMCID: PMC7264309 DOI: 10.1038/s41598-020-65815-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
Capparis spinosa is an edible medicinal plant which is considered as an excellent source of rutin. Rutin is a glycoside of the flavonoid quercetin that has been reported to have a beneficial role in controlling various diseases such as hypertension, arteriosclerosis, diabetes, and obesity. In this study, the partial cDNA of four genes involved in the rutin biosynthetic pathway including 4-coumaroyl CoA ligase (4CL), flavonoid 3′-hydroxylase (F3′H), flavonol synthase (FLS) and flavonol-3-O-glucoside L-rhamnosyltransferase (RT) were identified in C.spinosa plants for the first time. The protein sequences of these genes shared high similarity with the same proteins in other plant species. Subsequently, the expression patterns of these genes as well as rutin accumulation in C.spinosa leaves treated with different concentrations of salicylic acid (SA) and methyl jasmonate (MeJA) and also in different tissues of Caper plants treated with 100 mgL−1 SA and 150 μM MeJA were evaluated. The expression of all four genes was clearly up-regulated and rutin contents increased in response to MeJA and SA treatments after 24 h. The highest rutin contents (5.30 mgg−1 DW and 13.27 mgg−1 DW), as well as the highest expression levels of all four genes, were obtained using 100 mgL−1 SA and 150 μM MeJA, respectively. Among the different tissues, the highest rutin content was observed in young leaves treated with 150 μM MeJA, which corresponded to the expression of related genes, especially RT, as a key gene in the rutin biosynthetic pathway. These results suggest that rutin content in various tissues of C. spinosa can be enhanced to a significant extent by MeJA and SA treatments and the gene expression patterns of rutin-biosynthesis-related genes are regulated by these elicitors.
Collapse
Affiliation(s)
- Farzad Kianersi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Reza Abdollahi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
| | - Asghar Mirzaie-Asl
- Department of Plant Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
| | - Dara Dastan
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faiza Rasheed
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, SE-230 53, Alnarp, Sweden.,KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| |
Collapse
|
17
|
Mrudulakumari Vasudevan U, Lee EY. Flavonoids, terpenoids, and polyketide antibiotics: Role of glycosylation and biocatalytic tactics in engineering glycosylation. Biotechnol Adv 2020; 41:107550. [PMID: 32360984 DOI: 10.1016/j.biotechadv.2020.107550] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/19/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, terpenoids, and polyketides are structurally diverse secondary metabolites used widely as pharmaceuticals and nutraceuticals. Most of these molecules exist in nature as glycosides, in which sugar residues act as a decisive factor in their architectural complexity and bioactivity. Engineering glycosylation through selective trimming or extension of the sugar residues in these molecules is a prerequisite to their commercial production as well to creating novel derivatives with specialized functions. Traditional chemical glycosylation methods are tedious and can offer only limited end-product diversity. New in vitro and in vivo biocatalytic tools have emerged as outstanding platforms for engineering glycosylation in these three classes of secondary metabolites to create a large repertoire of versatile glycoprofiles. As knowledge has increased about secondary metabolite-associated promiscuous glycosyltransferases and sugar biosynthetic machinery, along with phenomenal progress in combinatorial biosynthesis, reliable industrial production of unnatural secondary metabolites has gained momentum in recent years. This review highlights the significant role of sugar residues in naturally occurring flavonoids, terpenoids, and polyketide antibiotics. General biocatalytic tools used to alter the identity and pattern of sugar molecules are described, followed by a detailed illustration of diverse strategies used in the past decade to engineer glycosylation of these valuable metabolites, exemplified with commercialized products and patents. By addressing the challenges involved in current bio catalytic methods and considering the perspectives portrayed in this review, exceptional drugs, flavors, and aromas from these small molecules could come to dominate the natural-product industry.
Collapse
Affiliation(s)
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
18
|
Citrus Taste Modification Potentials by Genetic Engineering. Int J Mol Sci 2019; 20:ijms20246194. [PMID: 31817978 PMCID: PMC6940753 DOI: 10.3390/ijms20246194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Citrus fruits are mainly consumed as fresh fruit and processed juice products. They serve as nutritional and a tasty diet in our daily life. However, the formidable bitterness and delayed bitterness significantly impact the citrus industry attributable to the two major bitter compounds naringin and limonin. The extremely sour and acidic also negatively affects the sensory quality of citrus products. Citrus breeding programs have developed different strategies to improve citrus quality and a wealth of studies have aimed to uncover the genetic and biochemical basis of citrus flavor. In this minireview, we outline the major genes characterized to be involved in pathways shaping the sweet, bitter, or sour taste in citrus, and discuss briefly about the possible approaches to modify citrus taste by genetic engineering.
Collapse
|
19
|
Koja E, Ohata S, Maruyama Y, Suzuki H, Shimosaka M, Taguchi G. Identification and characterization of a rhamnosyltransferase involved in rutin biosynthesis in Fagopyrum esculentum (common buckwheat). Biosci Biotechnol Biochem 2018; 82:1790-1802. [DOI: 10.1080/09168451.2018.1491286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
ABSTRACT
Rutin, a 3-rutinosyl quercetin, is a representative flavonoid distributed in many plant species, and is highlighted for its therapeutic potential. In this study, we purified uridine diphosphate-rhamnose: quercetin 3-O-glucoside 6″-O-rhamnosyltransferase and isolated the corresponding cDNA (FeF3G6″RhaT) from seedlings of common buckwheat (Fagopyrum esculentum). The recombinant FeF3G6″RhaT enzyme expressed in Escherichia coli exhibited 6″-O-rhamnosylation activity against flavonol 3-O-glucoside and flavonol 3-O-galactoside as substrates, but showed only faint activity against flavonoid 7-O-glucosides. Tobacco cells expressing FeF3G6″RhaT converted the administered quercetin into rutin, suggesting that FeF3G6″RhaT can function as a rhamnosyltransferase in planta. Quantitative PCR analysis on several organs of common buckwheat revealed that accumulation of FeF3G6″RhaT began during the early developmental stages of rutin-accumulating organs, such as flowers, leaves, and cotyledons. These results suggest that FeF3G6″RhaT is involved in rutin biosynthesis in common buckwheat.
Collapse
Affiliation(s)
- Eiki Koja
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Soichiro Ohata
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Yoshinori Maruyama
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Makoto Shimosaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| |
Collapse
|
20
|
Singh S, Patel KA, Sonawane PD, Vishwakarma RK, Khan BM. Enhanced activity of Withania somnifera family-1 glycosyltransferase (UGT73A16) via mutagenesis. World J Microbiol Biotechnol 2018; 34:150. [PMID: 30255239 DOI: 10.1007/s11274-018-2534-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/11/2018] [Indexed: 12/15/2022]
Abstract
This work used an approach of enzyme engineering towards the improved production of baicalin as well as alteration of acceptor and donor substrate preferences in UGT73A16. The 3D model of Withania somnifera family-1 glycosyltransferase (UGT73A16) was constructed based on the known crystal structures of plant UGTs. Structural and functional properties of UGT73A16 were investigated using docking and mutagenesis. The docking studies were performed to understand the key residues involved in substrate recognition. In the molecular model of UGT73A16, substrates binding pockets are located between N- and C-terminal domains. Modeled UGT73A16 was docked with UDP-glucose, UDP-glucuronic acid (UDPGA), kaempferol, isorhamnetin, 3-hydroxy flavones, naringenin, genistein and baicalein. The protein-ligand interactions showed that His 16, Asp 246, Lys 255, Ala 337, Gln 339, Val 340, Asn 358 and Glu 362 amino acid residues may be important for catalytic activity. The kinetic parameters indicated that mutants A337C and Q339A exhibited 2-3 fold and 6-7 fold more catalytic efficiency, respectively than wild type, and shifted the sugar donor specificity from UDP-glucose to UDPGA. The mutant Q379H displayed large loss of activity with UDP-glucose and UDPGA strongly suggested that last amino acid residue of PSPG box is important for glucuronosylation and glucosylation and highly specific to sugar binding sites. The information obtained from docking and mutational studies could be beneficial in future to engineer this biocatalyst for development of better ones.
Collapse
Affiliation(s)
- Somesh Singh
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India. .,Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, People's Republic of China.
| | - Krunal A Patel
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Prashant D Sonawane
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Rishi K Vishwakarma
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India
| | - Bashir M Khan
- Plant Tissue Culture Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra, 411008, India.
| |
Collapse
|
21
|
Takenaka Y, Kato K, Ogawa-Ohnishi M, Tsuruhama K, Kajiura H, Yagyu K, Takeda A, Takeda Y, Kunieda T, Hara-Nishimura I, Kuroha T, Nishitani K, Matsubayashi Y, Ishimizu T. Pectin RG-I rhamnosyltransferases represent a novel plant-specific glycosyltransferase family. NATURE PLANTS 2018; 4:669-676. [PMID: 30082766 DOI: 10.1038/s41477-018-0217-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 07/10/2018] [Indexed: 05/18/2023]
Abstract
Pectin is one of the three key cell wall polysaccharides in land plants and consists of three major structural domains: homogalacturonan, rhamnogalacturonan I (RG-I) and RG-II. Although the glycosyltransferase required for the synthesis of the homogalacturonan and RG-II backbone was identified a decade ago, those for the synthesis of the RG-I backbone, which consists of the repeating disaccharide unit [→2)-α-L-Rha-(1 → 4)-α-D-GalUA-(1→], have remained unknown. Here, we report the identification and characterization of Arabidopsis RG-I:rhamnosyltransferases (RRTs), which transfer the rhamnose residue from UDP-β-L-rhamnose to RG-I oligosaccharides. RRT1, which is one of the four Arabidopsis RRTs, is a single-spanning transmembrane protein, localized to the Golgi apparatus. RRT1 was highly expressed during formation of the seed coat mucilage, which is a specialized cell wall with abundant RG-I. Loss-of-function mutation in RRT1 caused a reduction in the level of RG-I in the seed coat mucilage. The RRTs belong to a novel glycosyltransferase family, now designated GT106. This is a large plant-specific family, and glycosyltransferases in this family seem to have plant-specific roles, such as biosynthesis of plant cell wall polysaccharides.
Collapse
Affiliation(s)
- Yuto Takenaka
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
| | - Kohei Kato
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | | | - Kana Tsuruhama
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Hiroyuki Kajiura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Kenta Yagyu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Atsushi Takeda
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yoichi Takeda
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tadashi Kunieda
- Faculty of Science and Technology, Konan University, Kobe, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | | | - Takeshi Kuroha
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | - Takeshi Ishimizu
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Japan.
- College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.
| |
Collapse
|
22
|
Liu X, Lin C, Ma X, Tan Y, Wang J, Zeng M. Functional Characterization of a Flavonoid Glycosyltransferase in Sweet Orange ( Citrus sinensis). FRONTIERS IN PLANT SCIENCE 2018; 9:166. [PMID: 29497429 PMCID: PMC5818429 DOI: 10.3389/fpls.2018.00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/30/2018] [Indexed: 05/06/2023]
Abstract
Fruits of sweet orange (Citrus sinensis), a popular commercial Citrus species, contain high concentrations of flavonoids beneficial to human health. These fruits predominantly accumulate O-glycosylated flavonoids, in which the disaccharides [neohesperidose (rhamnosyl-α-1,2-glucose) or rutinose (rhamnosyl-α-1,6-glucose)] are linked to the flavonoid aglycones through the 3- or 7-hydroxyl sites. The biotransformation of the flavonoid aglycones into O-rutinosides or O-neohesperidosides in the Citrus plants usually consists of two glycosylation reactions involving a series of uridine diphosphate-sugar dependent glycosyltransferases (UGTs). Although several genes encoding flavonoid UGTs have been functionally characterized in the Citrus plants, full elucidation of the flavonoid glycosylation process remains elusive. Based on the available genomic and transcriptome data, we isolated a UGT with a high expression level in the sweet orange fruits that possibly encodes a flavonoid glucosyltransferase and/or rhamnosyltransferase. Biochemical analyses revealed that a broad range of flavonoid substrates could be glucosylated at their 3- and/or 7-hydrogen sites by the recombinant enzyme, including hesperetin, naringenin, diosmetin, quercetin, and kaempferol. Furthermore, overexpression of the gene could significantly increase the accumulations of quercetin 7-O-rhamnoside, quercetin 7-O-glucoside, and kaempferol 7-O-glucoside, implying that the enzyme has flavonoid 7-O-glucosyltransferase and 7-O-rhamnosyltransferase activities in vivo.
Collapse
Affiliation(s)
- Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Cailing Lin
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xiaodi Ma
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Yan Tan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jiuzhao Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- *Correspondence: Ming Zeng,
| |
Collapse
|
23
|
Uehara Y, Tamura S, Maki Y, Yagyu K, Mizoguchi T, Tamiaki H, Imai T, Ishii T, Ohashi T, Fujiyama K, Ishimizu T. Biochemical characterization of rhamnosyltransferase involved in biosynthesis of pectic rhamnogalacturonan I in plant cell wall. Biochem Biophys Res Commun 2017; 486:130-136. [PMID: 28283389 DOI: 10.1016/j.bbrc.2017.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
The pectin in plant cell walls consists of three domains: homogalacturonan, rhamnogalacturonan (RG)-I, and RG-II. It is predicted that around 50 different glycosyltransferases are required for their biosynthesis. Among these, the activities of only a few glycosyltransferases have been detected because pectic oligosaccharides are not readily available for use as substrates. In this study, fluorogenic pyridylaminated RG-I-backbone oligosaccharides (PA-RGs) with 3-14 degrees of polymerization (DP) were prepared. Using these oligosaccharides, the activity of RG-I:rhamnosyltransferase (RRT), involved in the biosynthesis of the RG-I backbone diglycosyl repeating units (-4GalUAα1-2Rhaα1-), was detected from the microsomes of azuki bean epicotyls. RRT was found to prefer longer acceptor substrates, PA-RGs with a DP > 7, and it does not require any metal ions for its activity. RRT is located in the Golgi and endoplasmic reticulum. The activity of RRT coincided with epicotyl growth, suggesting that RG-I biosynthesis is involved in plant growth.
Collapse
Affiliation(s)
- Yohei Uehara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shunsuke Tamura
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yusuke Maki
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan; Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kenta Yagyu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tadashi Mizoguchi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hitoshi Tamiaki
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Tomoya Imai
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Tadashi Ishii
- Graduate School of Life and Environmental Sciences, Tsukuba University, Tsukuba, Ibaraki 305-8572, Japan
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
24
|
Yin S, Liu M, Kong JQ. Functional analyses of OcRhS1 and OcUER1 involved in UDP-L-rhamnose biosynthesis in Ornithogalum caudatum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:536-548. [PMID: 27835851 DOI: 10.1016/j.plaphy.2016.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 05/27/2023]
Abstract
UDP-L-rhamnose (UDP-Rha) is an important sugar donor for the synthesis of rhamnose-containing compounds in plants. However, only a few enzymes and their encoding genes involved in UDP-Rha biosynthesis are available in plants. Here, two genes encoding rhamnose synthase (RhS) and bi-functional UDP-4-keto-6-deoxy-D-glucose (UDP-4K6DG) 3, 5-epimerase/UDP-4-keto-L-rhamnose (UDP-4KR) 4-keto-reductase (UER) were isolated from Ornithogalum caudatum based on the RNA-Seq data. The OcRhS1 gene has an ORF (open reading frame) of 2019 bp encoding a tri-functional RhS enzyme. In vitro enzymatic assays revealed OcRhS1 can really convert UDP-D-glucose (UDP-Glc) into UDP-Rha via three consecutive reactions. Biochemical evidences indicated that the recombinant OcRhS1 was active in the pH range of 5-11 and over the temperature range of 0-60 °C. The Km value of OcRhS1 for UDP-Glc was determined to be 1.52 × 10-4 M. OcRhS1 is a multi-domain protein with two sets of cofactor-binding motifs. The cofactors dependent properties of OcRhS1 were thus characterized in this research. Moreover, the N-terminal portion of OcRhS1 (OcRhS1-N) was observed to metabolize UDP-Glc to form intermediate UDP-4K6DG. OcUER1 contains an ORF of 906 bp encoding a polypeptide of 301 aa. OcUER1 shared high similarity with the carboxy-terminal domain of OcRhS1 (OcRhS1-C), suggesting its intrinsic ability of converting UDP-4K6DG into UDP-Rha. It was thus reasonably inferred that UDP-Glc could be bio-transformed into UDP-Rha under the collaborating action of OcRhS1-N and OcUER1. The subsequently biochemical assay verified this notion. Importantly, expression profiles of OcRhS1 and OcUER1 revealed their possible involvement in the biosynthesis of rhamnose-containing polysaccharides in O. caudatum.
Collapse
Affiliation(s)
- Sen Yin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China
| | - Ming Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China
| | - Jian-Qiang Kong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.
| |
Collapse
|
25
|
Mo T, Liu X, Liu Y, Wang X, Zhang L, Wang J, Zhang Z, Shi S, Tu P. Expanded investigations of the aglycon promiscuity and catalysis characteristic of flavonol 3-O-rhamnosyltransferase AtUGT78D1 from Arabidopsis thaliana. RSC Adv 2016. [DOI: 10.1039/c6ra16251g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rhamnosides usually possess better bioavailabilities and improved solubilities compared with their aglycons and are a major source of bioactive natural products.
Collapse
Affiliation(s)
- Ting Mo
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Yuyu Liu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Le Zhang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Zhongxiu Zhang
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
- School of Chinese Materia Medica
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing 100029
- P. R. China
| |
Collapse
|