1
|
Li Z, Zhou M, Ran X, Wang W, Wang H, Wang T, Wang Y. A powerful but frequently overlooked role of thermodynamics in environmental microbiology: inspirations from anammox. Appl Environ Microbiol 2025; 91:e0166824. [PMID: 39760519 PMCID: PMC11837502 DOI: 10.1128/aem.01668-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Thermodynamics has long been applied in predicting undiscovered microorganisms or analyzing energy flows in microbial metabolism, as well as evaluating microbial impacts on global element distributions. However, further development and refinement in this interdisciplinary field are still needed. This work endeavors to develop a whole-cycle framework integrating thermodynamics with microbiological studies, focusing on representative nitrogen-transforming microorganisms. Three crucial concepts (reaction favorability, energy balance, and reaction directionality) are discussed in relation to nitrogen-transforming reactions. Specifically, reaction favorability, which sheds lights on understanding the diversity of nitrogen-transforming microorganisms, has also provided guidance for novel bioprocess development. Energy balance, enabling the quantitative comparison of microbial energy efficiency, unravels the competitiveness of nitrogen-transforming microorganisms under substrate-limiting conditions. Reaction directionality, revealing the niche-differentiating patterns of nitrogen-transforming microorganisms, provides a foundation for predicting biogeochemical reactions under various environmental conditions. This review highlights the need for a more comprehensive integration of thermodynamics in environmental microbiology, aiming to comprehensively understand microbial impacts on the global environment from micro to macro scales.
Collapse
Affiliation(s)
- Zibin Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Weigang Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| |
Collapse
|
2
|
Shen L, He Y, Hu Q, Yang Y, Ren B, Yang W, Geng C, Jin J, Bai Y. Vertical distribution of Candidatus Methylomirabilis and Methanoperedens in agricultural soils. Appl Microbiol Biotechnol 2024; 108:47. [PMID: 38175239 DOI: 10.1007/s00253-023-12876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024]
Abstract
Candidatus Methylomirabilis-related bacteria conduct anaerobic oxidation of methane (AOM) coupling with NO2- reduction, and Candidatus Methanoperedens-related archaea perform AOM coupling with reduction of diverse electron acceptors, including NO3-, Fe (III), Mn (IV) and SO42-. Application of nitrogen fertilization favors the growth of these methanotrophs in agricultural fields. Here, we explored the vertical variations in community structure and abundance of the two groups of methanotrophs in a nitrogen-rich vegetable field via using illumina MiSeq sequencing and quantitative PCR. The retrieved Methylomirabilis-related sequences had 91.12%-97.32% identity to the genomes of known Methylomirabilis species, and Methanoperedens-related sequences showed 85.49%-97.48% identity to the genomes of known Methanoperedens species which are capable of conducting AOM coupling with reduction of NO3- or Fe (III). The Methanoperedens-related archaeal diversity was significantly higher than Methylomirabilis-related bacteria, with totally 74 and 16 operational taxonomic units, respectively. In contrast, no significant difference in abundance between the bacteria (9.19 × 103-3.83 × 105 copies g-1 dry soil) and the archaea (1.55 × 104-3.24 × 105 copies g-1 dry soil) was observed. Furthermore, the abundance of both groups of methanotrophs exhibited a strong vertical variation, which peaked at 30-40 and 20-30 cm layers, respectively. Soil water content and pH were the key factors influencing Methylomirabilis-related bacterial diversity and abundance, respectively. For the Methanoperedens-related archaea, both soil pH and ammonium content contributed significantly to the changes of these archaeal diversity and abundance. Overall, we provide the first insights into the vertical distribution and regulation of Methylomirabilis-related bacteria and Methanoperedens-related archaea in vegetable soils. KEY POINTS: • The archaeal diversity was significantly higher than bacterial. • There was no significant difference in the abundance between bacteria and archaea. • The abundance of bacteria and archaea peaked at 30-40 and 20-30 cm, respectively.
Collapse
Affiliation(s)
- Lidong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Yefan He
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qinan Hu
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yuling Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bingjie Ren
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wangting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Caiyu Geng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jinghao Jin
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanan Bai
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
3
|
Schmitz EV, Just CL, Schilling K, Streeter M, Mattes TE. Reconnaissance of Oxygenic Denitrifiers in Agriculturally Impacted Soils. mSphere 2023; 8:e0057122. [PMID: 37017537 PMCID: PMC10286720 DOI: 10.1128/msphere.00571-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Row crop production in the agricultural Midwest pollutes waterways with nitrate, and exacerbates climate change through increased emissions of nitrous oxide and methane. Oxygenic denitrification processes in agricultural soils mitigate nitrate and nitrous oxide pollution by short-circuiting the canonical pathway to avoid nitrous oxide formation. Furthermore, many oxygenic denitrifiers employ a nitric oxide dismutase (nod) to create molecular oxygen that is used by methane monooxygenase to oxidize methane in otherwise anoxic soils. The direct investigation of nod genes that could facilitate oxygenic denitrification processes in agricultural sites is limited, with no prior studies investigating nod genes at tile drainage sites. Thus, we performed a reconnaissance of nod genes at variably saturated surface sites, and within a variably to fully saturated soil core in Iowa to expand the known distribution of oxygenic denitrifiers. We identified new nod gene sequences from agricultural soil and freshwater sediments in addition to identifying nitric oxide reductase (qNor) related sequences. Surface and variably saturated core samples displayed a nod to 16S rRNA gene relative abundance of 0.004% to 0.1% and fully saturated core samples had relative nod gene abundance of 1.2%. The relative abundance of the phylum Methylomirabilota increased from 0.6% and 1% in the variably saturated core samples to 3.8% and 5.3% in the fully saturated core samples. The more than 10-fold increase in relative nod abundance and almost 9-fold increase in relative Methylomirabilota abundance in fully saturated soils suggests that potential oxygenic denitrifiers play a greater nitrogen cycling role under these conditions. IMPORTANCE The direct investigation of nod genes in agricultural sites is limited, with no prior studies investigating nod genes at tile drains. An improved understanding of nod gene diversity and distribution is significant to the field of bioremediation and ecosystem services. The expansion of the nod gene database will advance oxygenic denitrification as a potential strategy for sustainable nitrate and nitrous oxide mitigation, specifically for agricultural sites.
Collapse
Affiliation(s)
- Emily V. Schmitz
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, Iowa, USA
| | - Craig L. Just
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, Iowa, USA
| | - Keith Schilling
- Iowa Geological Survey, University of Iowa, Iowa City, Iowa, USA
| | - Matthew Streeter
- Iowa Geological Survey, University of Iowa, Iowa City, Iowa, USA
| | - Timothy E. Mattes
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Yang WT, Shen LD, Bai YN. Role and regulation of anaerobic methane oxidation catalyzed by NC10 bacteria and ANME-2d archaea in various ecosystems. ENVIRONMENTAL RESEARCH 2023; 219:115174. [PMID: 36584837 DOI: 10.1016/j.envres.2022.115174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands are recognized as important sources of atmospheric methane (CH4). Currently, increasing evidence shows the potential importance of the anaerobic oxidation of methane (AOM) mediated by NC10 bacteria and a novel cluster of anaerobic methanotrophic archaea (ANME)-ANME-2d in mitigating CH4 emissions from different ecosystems. To better understand the role of NC10 bacteria and ANME-2d archaea in CH4 emission reduction, the current review systematically summarizes different AOM processes and the functional microorganisms involved in freshwater wetlands, paddy fields, inland aquatic ecosystems and coastal wetlands. NC10 bacteria are widely present in these ecosystems, and the nitrite-dependent AOM is identified as an important CH4 sink and induces nitrogen loss. Nitrite- and nitrate-dependent AOM co-occur in the environment, and they are mainly affected by soil/sediment inorganic nitrogen and organic carbon contents. Furthermore, salinity is another key factor regulating the two AOM processes in coastal wetlands. In addition, ANME-2d archaea have the great potential to couple AOM to the reduction of iron (III), manganese (IV), sulfate, and even humics in different ecosystems. However, the study on the environmental distribution of ANME-2d archaea and their role in CH4 mitigation in environments is insufficient. In this study, we propose several directions for future research on the different AOM processes and respective functional microorganisms.
Collapse
Affiliation(s)
- Wang-Ting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Li-Dong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Ya-Nan Bai
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
5
|
Song S, Wang X, Wang Y, Li T, Huang J. NO 3- is an important driver of nitrite-dependent anaerobic methane oxidation bacteria and CH 4 fluxes in the reservoir riparian zone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16138-16151. [PMID: 34647205 DOI: 10.1007/s11356-021-16914-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Nitrite-dependent anaerobic methane oxidation (N-DAMO) is an important biological process that combines microbial nitrogen and carbon cycling and is mainly carried out by nitrite-dependent anaerobic methane-oxidizing bacteria. The discovery of this microbial process has changed the conventional view of methane oxidation and nitrogen loss. In this study, the abundance, diversity, and community structure of N-DAMO bacteria were investigated based on high-throughput sequencing and fluorescence quantitative PCR measurements. We examined environmental factors driving the variations of CH4 fluxes and N-DAMO bacterial using correlation analysis and redundancy analysis. We found low CH4 fluxes and abundant N-DAMO bacteria in the riparian zone. After decomposing the effects of single variables and exploring them, NO3- was the only significant factor that significantly correlated with the abundance and richness of the N-DAMO community and gas fluxes (p < 0.05). Under the influence of three different land use types, the increase in NO3- (grassland vs. woodland and sparse woods, + 132.81% and + 106.25%) caused structural changes in the composition of the N-DAMO bacterial community, increasing its abundance (- 9.58% and + 21.19%), thus promoting the oxidation of CH4 and reduced CH4 emissions (+ 4.78% and + 35.63%) from the riparian zone. Appropriate NO3- input helps maintain the existing low methane emission fluxes in the riparian zone of the reservoir.
Collapse
Affiliation(s)
- Shuang Song
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Xiaoyan Wang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China.
| | - Yubing Wang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Tingting Li
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| | - Jingyu Huang
- College of Resources, Environment and Tourism, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
6
|
Hu J, Ke X, Wang B, Mei Y, Xiao N, Wan X, Liu G, Hu M, Zhao J. SSThe coexistence and diversity of Candidatus methylomirabilis oxyfera-like and anammox bacteria in sediments of an urban eutrophic lake. Int Microbiol 2022; 25:457-469. [DOI: 10.1007/s10123-021-00230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/03/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
|
7
|
Ren L, Wu X, Ma D, Liu L, Li X, Song D. Nitrite-dependent anaerobic methane oxidation bacteria and potential in permafrost region of Daxing'an Mountains. Appl Microbiol Biotechnol 2022; 106:743-754. [PMID: 34982194 DOI: 10.1007/s00253-021-11739-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/02/2022]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) acts as a crucial link between biogeochemical carbon and nitrogen cycles. Nevertheless, very few studies have characterized n-damo microorganisms in high-latitude permafrost regions. Therefore, this study investigated the vertical distribution and diversity of n-damo bacterial communities in soil from three forest types in the permafrost regions of the Daxing'an Mountains. A total of 11 and 8 operational taxonomic units (OTUs) of n-damo 16S rRNA and pmoA genes were observed, respectively. Remarkable spatial variations in n-damo bacteria community richness, diversity, and structure were observed at different soil depths. Moreover, the abundances of n-damo bacteria (16S rRNA and pmoA genes) varied between 1.55 × 104 to 1.47 × 105 and 1.31 × 103 to 3.11 × 104 copies g-1 dry soil (ds), as demonstrated by quantitative PCR analyses. 13CH4 stable isotope tracer assays indicated that the potential n-damo rates varied from 0 to 1.26 nmol g-1 day-1, with the middle layers (20-40 cm and 40-60 cm) exhibiting significantly higher values than the upper (0-20 cm) and deeper layers (80-100 cm) in all three forest types. Redundancy analyses (RDA) indicated that total organic carbon (TOC), nitrate (NO3--N), and nitrite (NO2--N) were key modulators of the distribution of n-damo bacterial communities. This study thus demonstrated the widespread occurrence of n-damo bacteria in cold and high-latitude regions of forest ecosystems and provided important insights into the global distribution of these bacteria. KEY POINTS: • This study detected n-damo bacteria in soil samples obtained from the permafrost region of three forest types in the Daxing'an Mountains. • The community composition of n-damo bacteria was mainly affected by soil depth and not forest type. • The abundances of n-damo bacteria first increased and then decreased at higher soil depths.
Collapse
Affiliation(s)
- Lu Ren
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Xiangwen Wu
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Dalong Ma
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China. .,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China.
| | - Lin Liu
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Xin Li
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| | - Dandan Song
- College of Geographical Sciences, Harbin Normal University, Harbin, 150025, China.,Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological Safety, Harbin, 150025, China
| |
Collapse
|
8
|
Ding J, Zeng RJ. Fundamentals and potential environmental significance of denitrifying anaerobic methane oxidizing archaea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143928. [PMID: 33316511 DOI: 10.1016/j.scitotenv.2020.143928] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/01/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Many properties of denitrifying anaerobic methane oxidation (DAMO) bacteria have been explored since their first discovery, while DAMO archaea have attracted less attention. Since nitrate is more abundant than nitrite not only in wastewater but also in the natural environment, in depth investigations of the nitrate-DAMO process should be conducted to determine its environmental significance in the global carbon and nitrogen cycles. This review summarizes the status of research on DAMO archaea and the catalyzed nitrate-dependent anaerobic methane oxidation, including such aspects as laboratory enrichment, environmental distribution, and metabolic mechanism. It is shown that appropriate inocula and enrichment parameters are important for the culture enrichment and thus the subsequent DAMO activity, but there are still relatively few studies on the environmental distribution and physiological metabolism of DAMO archaea. Finally, some hypotheses and directions for future research on DAMO archaea, anaerobic methanotrophic archaea, and even anaerobically metabolizing archaea are also discussed.
Collapse
Affiliation(s)
- Jing Ding
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China; Jiangsu Provincial Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
9
|
Migration and Transformation of Heavy Metals in the Soil of the Water-Level Fluctuation Zone in the Three Gorges Reservoir under Simulated Nitrogen Deposition. J CHEM-NY 2021. [DOI: 10.1155/2021/6660661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accumulation of heavy metals (HMs) in the water-level fluctuation zone (WLFZ) of the Three Gorges Reservoir (TGR) area is potentially harmful to the water environment. In order to reveal whether nitrogen (N) deposition is a potential driving factor for the migration and transformation of HMs (Cd, Cr, Cu, Ni, and Pb), a simulated N deposition experiment was performed on the soil in the WFLZ of the TGR. The results showed that the accumulative release amounts of HMs increased with the increase of N deposition. It was found that the Elovich equation, double-constant equation, and parabolic diffusion equation could well describe the release process of Cu, Cd, Cr, and Ni, while the double-constant equation, parabolic diffusion equation, and first-order equation could be applicable for Pb. The exchangeable fractions of HMs increased to varying degrees after the N deposition treatment, wherein Ni was most significant, indicating that N deposition could increase the ecological risk of HM pollution in the TGR area. The results provide insight into the major factors affecting the release of different HMs under N deposition in this vulnerable region ecologically.
Collapse
|
10
|
Shen LD, Tian MH, Cheng HX, Liu X, Yang YL, Liu JQ, Xu JB, Kong Y, Li JH, Liu Y. Different responses of nitrite- and nitrate-dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114623. [PMID: 33618455 DOI: 10.1016/j.envpol.2020.114623] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 06/12/2023]
Abstract
Nitrite (NO2-)- and nitrate (NO3-)-dependent anaerobic oxidation of methane (AOM) are two new additions in microbial methane cycle, which potentially act as important methane sinks in freshwater aquatic systems. Here, we investigated spatial variations of community composition, abundance and potential activity of NO2-- and NO3--dependent anaerobic methanotrophs in the sediment of Jiulonghu Reservoir (Zhejiang Province, China), a freshwater reservoir having a gradient of increasing nitrogen loading from upstream to downstream regions. High-throughput sequencing of total bacterial and archaeal 16S rRNA genes showed the cooccurrence of Candidatus Methylomirabilis oxyfera (M. oxyfera)-like and Candidatus Methanoperedens nitroreducens (M. nitroreducens)-like anaerobic methanotrophs in the examined reservoir sediments. The community structures of these methanotrophs differed substantially between the sediments of upstream and downstream regions. Quantitative PCR suggested higher M. oxyfera-like bacterial abundance in the downstream (8.6 × 107 to 2.8 × 108 copies g-1 dry sediment) than upstream sediments (2.4 × 107 to 3.5 × 107 copies g-1 dry sediment), but there was no obvious difference in M. nitroreducens-like archaeal abundance between these sediments (3.7 × 105 to 4.8 × 105 copies g-1 dry sediment). The 13CH4 tracer experiments suggested the occurrence of NO2-- and NO3--dependent AOM activities, and their rates were 4.7-14.1 and 0.8-2.6 nmol CO2 g-1 (dry sediment) d-1, respectively. Further, the rates of NO2--dependent AOM in downstream sediment were significantly higher than those in upstream sediment. The NO3- concentration was the key factor affecting the spatial variations of abundance and activity of NO2--dependent anaerobic methanotrophs. Overall, our results showed different responses of NO2-- and NO3--dependent anaerobic methanotrophs to increasing nitrogen loading in a freshwater reservoir.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Mao-Hui Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hai-Xiang Cheng
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000, China
| | - Xin Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Ling Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jiang-Bing Xu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yun Kong
- College of Resources and Environment, Yangtze University, Hubei, Wuhan, 430100, China
| | - Jian-Hui Li
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou, 324000, China
| | - Yan Liu
- Wuxijiang National Wetland Park Service, Quzhou, 324000, China
| |
Collapse
|
11
|
Xie F, Ma A, Zhou H, Liang Y, Yin J, Ma K, Zhuang X, Zhuang G. Niche differentiation of denitrifying anaerobic methane oxidizing bacteria and archaea leads to effective methane filtration in a Tibetan alpine wetland. ENVIRONMENT INTERNATIONAL 2020; 140:105764. [PMID: 32371309 DOI: 10.1016/j.envint.2020.105764] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) is a vital methane sink in wetlands. However, the interactions and niche partitioning of DAMO bacteria and archaea in freshwater wetland soils, in addition to the interactions among microorganisms that couple methane and nitrogen cycling is still unclear, despite that these factors may govern the fate of methane and nitrogen in wetlands. Here, we evaluated the vertical distribution of DAMO bacteria and archaea in soil layers along with the potential interactions among populations in the methane-coupled nitrogen cycling microbial community of Tibetan freshwater wetlands. A combination of molecular biology, stable isotope tracer technology, and microbial bioinformatics was used to evaluate these interrelated dynamics. The abundances and potential methane oxidation rates indicated that DAMO bacteria and archaea differentially occupy surface and subsurface soil layers, respectively. The inferred interactions between DAMO bacteria and nitrogen cycling microorganisms within their communities are complex, DAMO bacteria apparently achieve an advantage in the highly competitive environment of surface soils layers and occupy a specific niche in those environments. Conversely, the apparent relationships between DAMO archaea and nitrogen cycling microorganisms are relatively simple, wherein high levels of cooperation are inferred between DAMO archaea and nitrate-producing organisms in subsurface soils layers. These results suggest that the vertical distribution patterns of DAMO bacteria and archaea enable them to play significant roles in the methane oxidation activity of different soil layers and collectively form an effective methane filtration consortium.
Collapse
Affiliation(s)
- Fei Xie
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Hanchang Zhou
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jun Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Ke Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101400 Beijing, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
12
|
Liu Y, Wang X, Chen Y, Zhang L, Xu K, Du Y. Anaerobic methane-oxidizing bacterial communities in sediments of a drinking reservoir, Beijing, China. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01578-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Zhang M, Huang JC, Sun S, Rehman MMU, He S. Depth-specific distribution and significance of nitrite-dependent anaerobic methane oxidation process in tidal flow constructed wetlands used for treating river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137054. [PMID: 32036140 DOI: 10.1016/j.scitotenv.2020.137054] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Tidal flow constructed wetlands (TF CWs) have been considered an effective approach to treat contaminated river water, as well as a significant role in global matter cycles, especially for carbon and nitrogen. Notably, it has been thought that methane oxidation was completely catalyzed by the aerobic process, ignoring the anaerobic methane oxidation, such as the nitrite-dependent anaerobic methane oxidation (n-damo) process. In our current work, therefore, we used molecular and stable isotopes to investigate the biodiversity, quantity and potential rate of n-damo bacteria in the TF CWs located in the Xisha Wetland Park in the Yangtze River estuary, China. The results revealed that n-damo process was active in the collected soil cores, with a decreasing trend along water depths and rates ranging from 8.48 to 23.45 nmol CO2 g-1 dry soil d-1. The n-damo bacterial contributions to CH4 oxidation and N2 production in TF CWs reached 9.49-26.26% and 20.73-47.11%, respectively, suggesting that n-damo bacteria was an important nitrogen and methane sink in the TF CWs, but had been previously overlooked. The copy numbers of total bacterial 16S rRNA and pmoA genes were 1.84-11.21 × 109 and 0.59-2.72 × 106 copies g-1 ds, respectively, as the higher abundance was found in the soil at lower water levels during tidal submergence. Diverse n-damo bacterial 16S rRNA gene sequences belonged to group B, C and D were measured, and it was found that group B and C were the most frequently measured n-damo clusters in the TF CWs. In addition, nitrite was the key factor regulating the n-damo bacterial distribution in the TF CWs. This study would broaden our horizons and help us better understand the nitrogen and methane cycles in tidal ecosystems.
Collapse
Affiliation(s)
- Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Muhammad Muneeb Ur Rehman
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
14
|
Rhizosphere Bacterial Community Structure and Predicted Functional Analysis in the Water-Level Fluctuation Zone of the Danjiangkou Reservoir in China During the Dry Period. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041266. [PMID: 32079120 PMCID: PMC7068437 DOI: 10.3390/ijerph17041266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
The water-level fluctuation zone (WLFZ) is a transitional zone between terrestrial and aquatic ecosystems. Plant communities that are constructed artificially in the WLFZ can absorb and retain nutrients such as nitrogen (N) and phosphorus (P). However, the microbial community composition and function associated with this process have not been elucidated. In this study, four artificially constructed plant communities, including those of herbs (Cynodon dactylon and Chrysopogon zizanioides), trees (Metasequoia glyptostroboides), and shrubs (Salix matsudana) from the newly formed WLFZ of the Danjiangkou Reservoir were evaluated. The bacterial community compositions were analyzed by 16S rRNA gene sequencing using a MiSeq platform, and the functions of these communities were assessed via Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis. The results showed that the bacterial communities primarily comprised 362 genera from 24 phyla, such as Proteobacteria, Acidobacteria, Actinobacteria, and Gemmatimonadetes, showing the richness of the community composition. Planting altered the bacterial community composition, with varying effects observed among the different plant types. The bacterial community functional analysis revealed that these bacteria were primarily associated with six biological metabolic pathway categories (e.g., metabolism, genetic information processing, and environmental information processing) with 34 subfunctions, showing the richness of community functions. The planting of M. glyptostroboides, S. matsudana, and C. dactylon improved the metabolic capabilities of bacterial communities. N- and P-cycling gene analysis showed that planting altered the N- and P-cycling metabolic capacities of soil bacteria. The overall N- and P-metabolic capacity was highly similar between C. dactylon and C. zizanioides samples and between S. matsudana and M. glyptostroboides samples. The results of this study provide a preliminary analysis of soil bacterial community structure and function in the WLFZ of the Danjiangkou Reservoir and provides a reference for vegetation construction in this zone.
Collapse
|
15
|
Wang Y, Hong Y, Ma M, Wu S, Op den Camp HJM, Zhu G, Zhang W, Ye F. Anthropogenic Pollution Intervenes the Recovery Processes of Soil Archaeal Community Composition and Diversity From Flooding. Front Microbiol 2019; 10:2285. [PMID: 31632383 PMCID: PMC6783558 DOI: 10.3389/fmicb.2019.02285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 09/19/2019] [Indexed: 11/15/2022] Open
Abstract
Archaea play vital roles in global biogeochemical cycles, particularly in nitrification and methanogenesis. The recovery of archaeal community following disturbance is essential for maintaining the stability of ecosystem function. To examine whether the archaeal community could recover from water flooding and assess the influence of anthropogenic pollution on the autogenic recovery, soil samples from two riparian zones with contrasting pollution background were investigated. Collected samples in each area were divided into three groups of reference, flooding, and recovery according to the flooded state of each site. The results showed that the archaeal abundance was resilient to the disturbances of both water flooding and anthropogenic pollution. More similar community composition and diversity appeared between the recovery and reference groups in the area with low anthropogenic pollution. It indicated that high anthropogenic pollution could result in less resilience of archaeal community. The co-occurrence network further revealed that the archaeal community in the area of low anthropogenic pollution exhibited more associations suggesting a higher ecosystem stability. The better recovery of archaeal community was associated with the high resilience ability. The Nitrososphaerales was the key taxon maintaining the better recovery of the archaeal community from the disturbances due to its high resilience index and quantitative dominance. Overall, archaeal community has the capability of autogenic recovery, the process of which might be intervened by anthropogenic pollution, and then potentially affects the ecosystem functions of the riparian system.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Yiguo Hong
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Maohua Ma
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shengjun Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Fei Ye
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| |
Collapse
|
16
|
Zhu B, Wang J, Bradford LM, Ettwig K, Hu B, Lueders T. Nitric Oxide Dismutase ( nod) Genes as a Functional Marker for the Diversity and Phylogeny of Methane-Driven Oxygenic Denitrifiers. Front Microbiol 2019; 10:1577. [PMID: 31354671 PMCID: PMC6636425 DOI: 10.3389/fmicb.2019.01577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/25/2019] [Indexed: 11/13/2022] Open
Abstract
Oxygenic denitrification represents a new route in reductive nitrogen turnover which differs from canonical denitrification in how nitric oxide (NO) is transformed into dinitrogen gas. Instead of NO reduction via N2O to N2, NO is proposed to be directly disproportionated into N2 and O2 in oxygenic denitrification, catalyzed by the putative NO dismutase (Nod). Although a high diversity of nod genes has been recovered from various environments, still little is known about the niche partitioning and ecophysiology of oxygenic denitrifiers. One constraint is that nod as a functional marker for oxygenic denitrifiers is not well established. To address this issue, we compared the diversity and phylogeny of nod, 16S rRNA and pmoA gene sequences of four NC10 enrichments that are capable of methane-driven oxygenic denitrification and one environmental sample. The phylogenies of nod, 16S rRNA and pmoA genes of these cultures were generally congruent. The diversity of NC10 bacteria inferred from different genes was also similar in each sample. A new set of NC10-specific nod primers was developed and used in qPCR. The abundance of NC10 bacteria inferred from nod genes was constantly lower than via 16S rRNA genes, but the difference was within one order of magnitude. These results suggest that nod is a suitable molecular marker for studying the diversity and phylogeny of methane-driven oxygenic denitrifiers, the further investigation of which may be of value to develop enhanced strategies for sustainable nitrogen or methane removal.
Collapse
Affiliation(s)
- Baoli Zhu
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany.,Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands.,Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Lauren M Bradford
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany
| | - Katharina Ettwig
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Munich, Germany.,Chair of Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
17
|
Wang B, Huang S, Zhang L, Zhao J, Liu G, Hua Y, Zhou W, Zhu D. Diversity of NC10 bacteria associated with sediments of submerged Potamogeton crispus (Alismatales: Potmogetonaceae). PeerJ 2018; 6:e6041. [PMID: 30533317 PMCID: PMC6284450 DOI: 10.7717/peerj.6041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022] Open
Abstract
Background The nitrite-dependent anaerobic methane oxidation (N-DAMO) pathway, which plays an important role in carbon and nitrogen cycling in aquatic ecosystems, is mediated by “Candidatus Methylomirabilis oxyfera” (M. oxyfera) of the NC10 phylum. M. oxyfera-like bacteria are widespread in nature, however, the presence, spatial heterogeneity and genetic diversity of M. oxyfera in the rhizosphere of aquatic plants has not been widely reported. Method In order to simulate the rhizosphere microenvironment of submerged plants, Potamogeton crispus was cultivated using the rhizobox approach. Sediments from three compartments of the rhizobox: root (R), near-rhizosphere (including five sub-compartments of one mm width, N1–N5) and non-rhizosphere (>5 mm, Non), were sampled. The 16S rRNA gene library was used to investigate the diversity of M. oxyfera-like bacteria in these sediments. Results Methylomirabilis oxyfera-like bacteria were found in all three sections, with all 16S rRNA gene sequences belonging to 16 operational taxonomic units (OTUs). A maximum of six OTUs was found in the N1 sub-compartment of the near-rhizosphere compartment and a minimum of four in the root compartment (R) and N5 near-rhizosphere sub-compartment. Indices of bacterial community diversity (Shannon) and richness (Chao1) were 0.73–1.16 and 4–9, respectively. Phylogenetic analysis showed that OTU1-11 were classified into group b, while OTU12 was in a new cluster of NC10. Discussion Our results confirmed the existence of M. oxyfera-like bacteria in the rhizosphere microenvironment of the submerged plant P. crispus. Group b of M. oxyfera-like bacteria was the dominant group in this study as opposed to previous findings that both group a and b coexist in most other environments. Our results indicate that understanding the ecophysiology of M. oxyfera-like bacteria group b may help to explain their existence in the rhizosphere sediment of aquatic plant.
Collapse
Affiliation(s)
- Binghan Wang
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Shanshan Huang
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Liangmao Zhang
- Laboratory of Environmental Planning and Management, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Guanglong Liu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Yumei Hua
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Wenbing Zhou
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Duanwei Zhu
- Laboratory of Eco-Environmental Engineering Research, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Yang Y, Chen J, Li B, Liu Y, Xie S. Anaerobic methane oxidation potential and bacteria in freshwater lakes: Seasonal changes and the influence of trophic status. Syst Appl Microbiol 2018; 41:650-657. [DOI: 10.1016/j.syapm.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/15/2018] [Accepted: 08/02/2018] [Indexed: 11/30/2022]
|
19
|
Methane stimulates massive nitrogen loss from freshwater reservoirs in India. Nat Commun 2018; 9:1265. [PMID: 29593290 PMCID: PMC5871758 DOI: 10.1038/s41467-018-03607-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/28/2018] [Indexed: 11/08/2022] Open
Abstract
The fate of the enormous amount of reactive nitrogen released to the environment by human activities in India is unknown. Here we show occurrence of seasonal stratification and generally low concentrations of dissolved inorganic combined nitrogen, and high molecular nitrogen (N2) to argon ratio, thus suggesting seasonal loss to N2 in anoxic hypolimnia of several dam-reservoirs. However, 15N-experiments yielded low rates of denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium-except in the presence of methane (CH4) that caused ~12-fold increase in denitrification. While nitrite-dependent anaerobic methanotrophs belonging to the NC10 phylum were present, previously considered aerobic methanotrophs were far more abundant (up to 13.9%) in anoxic hypolimnion. Methane accumulation in anoxic freshwater systems seems to facilitate rapid loss of reactive nitrogen, with generally low production of nitrous oxide (N2O), through widespread coupling between methanotrophy and denitrification, potentially mitigating eutrophication and emissions of CH4 and N2O to the atmosphere.
Collapse
|
20
|
Sun H, Wu Y, Bing H, Zhou J, Li N. Available forms of nutrients and heavy metals control the distribution of microbial phospholipid fatty acids in sediments of the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5740-5751. [PMID: 29230650 DOI: 10.1007/s11356-017-0824-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
The construction of the Three Gorges Reservoir (TGR) as well as the development of local industry and agriculture not only had tremendous impacts on the environment but also affected human health. Although water, soil, and air in the TGR have been well studied for environmental risk assessment, very little information is available on benthic sediments and microorganisms. In this study, sedimentary samples were collected along the main stream of the TGR to examine microbial phospholipid fatty acids (PLFA) and relevant variables (e.g., nutrients and heavy metals) after the full operation of the TGR. The results showed that there were prominent trends (increase or decrease) of sedimentary PLFAs and properties from downstream to upstream. Bacteria-specific PLFA decreased toward the dam, while fungi-specific PLFA did not show any significant trend. The PLFA ratio of fungi to bacteria (F/B) increased along the mainstream. The total PLFA concentration, which represents the microbial biomass, decreased significantly toward the dam. Upstream and downstream sampling points were clearly distinguished by PLFA ordination in the redundancy analysis (RDA). That finding showed microbial PLFAs to have an obvious distribution pattern (increase or decrease) in the TGR. The PLFA distribution was markedly controlled by nutrients and heavy metals, but nutrients were more important. Moreover, among nutrients, Bio-P, NH4+-N, NO3--N, and DOC were more important than TP, TN, TOC, and pH in controlling PLFA distribution. For heavy metals, Tl, V, Mo, and Ni were more important than Zn, Cu, Cd, and Pb. These findings suggested that Tl, V, Mo, and Ni should not be ignored to guard against their pollution in the TGR, and we should pay attention to them and make them our first priority. This study highlighted that the construction of the TGR changed riverine environments and altered microbial communities in sediments by affecting sedimentary properties. It is a reminder that the microbial ecology of sediment as an indicator should be considered in assessing the eco-risk of the TGR.
Collapse
Affiliation(s)
- Hongyang Sun
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, #9, Block 4, Renminnanlu Road, Chengdu, 610041, China
| | - Yanhong Wu
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, #9, Block 4, Renminnanlu Road, Chengdu, 610041, China.
| | - Haijian Bing
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, #9, Block 4, Renminnanlu Road, Chengdu, 610041, China
| | - Jun Zhou
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, #9, Block 4, Renminnanlu Road, Chengdu, 610041, China
| | - Na Li
- Alpine Ecosystem Observation and Experiment Station of Gongga Mountain, The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, #9, Block 4, Renminnanlu Road, Chengdu, 610041, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
21
|
Molecular and stable isotopic evidence for the occurrence of nitrite-dependent anaerobic methane-oxidizing bacteria in the mangrove sediment of Zhangjiang Estuary, China. Appl Microbiol Biotechnol 2018; 102:2441-2454. [DOI: 10.1007/s00253-017-8718-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/18/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
|
22
|
Chi S, Zheng Z, Zhang Z, Hu J, Zheng J, Zhao X, Hu J, Dong F, Peng J. Comparative Effects of Aquaculture and Water Level Fluctuations on Macroinvertebrate Communities in Three Gorges Reservoir, China. POLISH JOURNAL OF ECOLOGY 2017. [DOI: 10.3161/15052249pje2017.65.4.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shiyun Chi
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| | - Zhiwei Zheng
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| | - Zhiyong Zhang
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| | - Jun Hu
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| | - Jinxiu Zheng
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| | - Xianfu Zhao
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| | - Juxiang Hu
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| | - Fangyong Dong
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| | - Jianhua Peng
- Key Laboratory of Ecological Impacts of Hydraulic-projects and Restoration of Aquatic Ecosystem, Ministry of Water Resources; Institute of Hydrogeology, MWR&CAS, Wuhan 430079, P.R.China
| |
Collapse
|
23
|
Aerobic and anaerobic methanotrophic communities in urban landscape wetland. Appl Microbiol Biotechnol 2017; 102:433-445. [PMID: 29079862 DOI: 10.1007/s00253-017-8592-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/10/2023]
Abstract
Both aerobic methane-oxidizing bacteria (MOB) and nitrite-dependent anaerobic methane oxidation (n-damo) organisms can be important methane sinks in a wetland. However, the influences of the vegetation type on aerobic MOB and n-damo communities in wetland, especially in constructed wetland, remain poorly understood. The present study investigated the influences of the vegetation type on both aerobic MOB and n-damo organisms in a constructed urban landscape wetland. Sediments were collected from eight sites vegetated with different plant species. The abundance (1.19-3.27 × 107 pmoA gene copies per gram dry sediment), richness (Chao1 estimator = 16.3-81.5), diversity (Shannon index = 2.10-3.15), and structure of the sediment aerobic MOB community were found to vary considerably with sampling site. In contrast, n-damo community abundance (8.74 × 105-4.80 × 106 NC10 16S rRNA gene copies per gram dry sediment) changed slightly with the sampling site. The richness (Chao1 estimator = 1-11), diversity (Shannon index = 0-0.78), and structure of the NC10 16S rRNA gene-based n-damo community illustrated slight site-related changes, while the spatial changes of the pmoA gene-based n-damo community richness (Chao1 estimator = 1-8), diversity (Shannon index = 0-0.99), and structure were considerable. The vegetation type could have a profound impact on the wetland aerobic MOB community and had a stronger influence on the pmoA-based n-damo community than on the NC10 16S-based one in urban wetland. Moreover, the aerobic MOB community had greater abundance and higher richness and diversity than the n-damo community. Methylocystis (type II MOB) predominated in urban wetland, while no known type I MOB species was detected. In addition, the ratio of total organic carbon to total nitrogen (C/N) might be a determinant of sediment n-damo community diversity and aerobic MOB richness.
Collapse
|
24
|
Shen LD, Wu HS, Liu X, Li J. Cooccurrence and potential role of nitrite- and nitrate-dependent methanotrophs in freshwater marsh sediments. WATER RESEARCH 2017; 123:162-172. [PMID: 28668629 DOI: 10.1016/j.watres.2017.06.075] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 05/31/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
Nitrite- and nitrate-dependent anaerobic methane oxidation are mediated by the NC10 bacteria closely related to "Candidatus Methylomirabilis oxyfera" (M. oxyfera) and the ANME-2d archaea closely related to "Candidatus Methanoperedens nitroreducens" (M. nitroreducens), respectively. Here, we investigated the occurrence and activity of both M. oxyfera-like bacteria and M. nitroreducens-like archaea in the sediment of freshwater marshes in Eastern China. The presence of diverse M. oxyfera-like bacteria (>87% identity to M. oxyfera) and M. nitroreducens-like archaea (>96% identity to M. nitroreducens) was confirmed by using Illumina-based total bacterial and archaeal 16S rRNA gene sequencing, respectively. The recovered M. oxyfera-like bacterial sequences accounted for 1.6-4.3% of the total bacterial 16S rRNA pool, and M. nitroreducens-like archaeal sequences accounted for 0.2-1.8% of the total archaeal 16S rRNA pool. The detected numbers of OTUs of the 16S rRNA genes of M. oxyfera-like bacteria and M. nitroreducens-like archaea were 78 and 72, respectively, based on 3% sequence difference. Quantitative PCR showed that the 16S rRNA gene abundance of M. oxyfera-like bacteria (6.1 × 106-3.2 × 107 copies g-1 sediment) was 2-4 orders of magnitude higher than that of M. nitroreducens-like archaea (1.4 × 103-3.2 × 104 copies g-1 sediment). Stable isotope experiments showed that the addition of both nitrite and nitrate stimulated the anaerobic methane oxidation, while the stimulation by nitrite is more significant than nitrate. Our results provide the first evidence that the M. oxyfera-like bacteria play a more important role than the M. nitroreducens-like archaea in methane cycling in wetland systems.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China.
| | - Hong-Sheng Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xu Liu
- Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Ji Li
- Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
25
|
He LP, Liu D, Lin JJ, Yu ZG, Yang XX, Fu C, Liu ZX, Zhao QH. Total nitrogen and pH-controlled chemical speciation, bioavailability and ecological risk from Cd, Cr, Cu, Pb and Zn in the water level-fluctuating zone sediments of the Three Gorges Reservoir. CHEMICAL SPECIATION & BIOAVAILABILITY 2017. [DOI: 10.1080/09542299.2017.1335179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Li-ping He
- Department of Environment, College of Architecture and Environment, Sichuan University, Chengdu, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing, China
| | - Dan Liu
- Department of Agricultural and Forestry Science and Technology, Chongqing Three Gorges Vocation College, Chongqing, China
| | - Jun-jie Lin
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing, China
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Zhi-guo Yu
- College of Hydrometeorology, Nanjing University of Information Science and Technology, Nanjing, China
| | - Xiao-xia Yang
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Chuan Fu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing, China
| | - Zheng-xue Liu
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Chongqing, China
| | - Qiao-hua Zhao
- College of Hydrometeorology, Nanjing University of Information Science and Technology, Nanjing, China
| |
Collapse
|
26
|
Long Y, Liu C, Lin H, Li N, Guo Q, Xie S. Vertical and horizontal distribution of sediment nitrite-dependent methane-oxidizing organisms in a mesotrophic freshwater reservoir. Can J Microbiol 2017; 63:525-534. [DOI: 10.1139/cjm-2016-0585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0–5 cm, 5–10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 105 to 8.24 × 105 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32–2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from “Candidatus Methylomirabilis oxyfera”. Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.
Collapse
Affiliation(s)
- Yan Long
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Changbao Liu
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Hengliang Lin
- Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutes, School of Environment, Jinan University, Guangzhou 510632, People’s Republic of China
| | - Ningning Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Environment Protection, Guangzhou 510655, People’s Republic of China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
27
|
Wang S, Liu Y, Liu G, Huang Y, Zhou Y. A New Primer to Amplify pmoA Gene From NC10 Bacteria in the Sediments of Dongchang Lake and Dongping Lake. Curr Microbiol 2017; 74:908-914. [PMID: 28501892 DOI: 10.1007/s00284-017-1260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/28/2017] [Indexed: 11/27/2022]
Abstract
Nitrite-dependent anaerobic methane oxidation (n-damo) is catalyzed by the NC10 phylum bacterium "Candidatus Methylomirabilis oxyfera" (M. oxyfera). Generally, the pmoA gene is applied as a functional marker to test and identify NC10-like bacteria. However, it is difficult to detect the NC10 bacteria from sediments of freshwater lake (Dongchang Lake and Dongping Lake) with the previous pmoA gene primer sets. In this work, a new primer cmo208 was designed and used to amplify pmoA gene of NC10-like bacteria. A newly nested PCR approach was performed using the new primer cmo208 and the previous primers cmo182, cmo682, and cmo568 to detect the NC10 bacteria. The obtained pmoA gene sequences exhibited 85-92% nucleotide identity and 95-97% amino acid sequence identity to pmoA gene of M. oxyfera. The obtained diversity of pmoA gene sequences coincided well with the diversity of 16S rRNA sequences. These results indicated that the newly designed pmoA primer cmo208 could give one more option to detect NC10 bacteria from different environmental samples.
Collapse
MESH Headings
- Aerobiosis
- Anaerobiosis
- Bacteria/classification
- Bacteria/genetics
- Bacteria/isolation & purification
- Cluster Analysis
- DNA Primers/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, Bacterial
- Genetic Variation
- Geologic Sediments/microbiology
- Lakes
- Phylogeny
- Polymerase Chain Reaction/methods
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Shenghui Wang
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| | - Yanjun Liu
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Guofu Liu
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Yaru Huang
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| | - Yu Zhou
- College of Life Science, Liaocheng University, Liaocheng, 252059, People's Republic of China
| |
Collapse
|
28
|
Vegetation type and layer depth influence nitrite-dependent methane-oxidizing bacteria in constructed wetland. Arch Microbiol 2016; 199:505-511. [DOI: 10.1007/s00203-016-1328-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/03/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
|
29
|
Chen J, Dick R, Lin JG, Gu JD. Current advances in molecular methods for detection of nitrite-dependent anaerobic methane oxidizing bacteria in natural environments. Appl Microbiol Biotechnol 2016; 100:9845-9860. [DOI: 10.1007/s00253-016-7853-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 11/29/2022]
|
30
|
Long Y, Jiang X, Guo Q, Li B, Xie S. Sediment nitrite-dependent methane-oxidizing microorganisms temporally and spatially shift in the Dongjiang River. Appl Microbiol Biotechnol 2016; 101:401-410. [DOI: 10.1007/s00253-016-7888-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/07/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022]
|
31
|
Shen LD, Wu HS, Gao ZQ, Liu X, Li J. Comparison of community structures of Candidatus Methylomirabilis oxyfera-like bacteria of NC10 phylum in different freshwater habitats. Sci Rep 2016; 6:25647. [PMID: 27157928 PMCID: PMC4860643 DOI: 10.1038/srep25647] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/20/2016] [Indexed: 12/26/2022] Open
Abstract
Methane oxidation coupled to nitrite reduction is mediated by 'Candidatus Methylomirabilis oxyfera' (M. oxyfera), which belongs to the NC10 phylum. In this study, the community composition and diversity of M. oxyfera-like bacteria of NC10 phylum were examined and compared in four different freshwater habitats, including reservoir sediments (RS), pond sediments (PS), wetland sediments (WS) and paddy soils (PAS), by using Illumina-based 16S rRNA gene sequencing. The recovered NC10-related sequences accounted for 0.4-2.5% of the 16S rRNA pool in the examined habitats, and the highest percentage was found in WS. The diversity of NC10 bacteria were the highest in RS, medium in WS, and lowest in PS and PAS. The observed number of OTUs (operational taxonomic unit; at 3% cut-off) were 97, 46, 61 and 40, respectively, in RS, PS, WS and PAS. A heterogeneous distribution of NC10 bacterial communities was observed in the examined habitats, though group B members were the dominant bacteria in each habitat. The copy numbers of NC10 bacterial 16S rRNA genes ranged between 5.8 × 10(6) and 3.2 × 10(7) copies g(-1) sediment/soil in the examined habitats. These results are helpful for a systematic understanding of NC10 bacterial communities in different types of freshwater habitats.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.,Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Hong-Sheng Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.,Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Zhi-Qiu Gao
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China.,College of Geophysics and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xu Liu
- Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ji Li
- Department of Agricultural Resource and Environment, College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|