1
|
Bouqellah NA, Abdel-Hafez LJM, Mostafa IY, Faraag AHI. Investigating the antifungal potential of genetically modified hybrid chitinase enzymes derived from Bacillus subtilis and Serratia marcescens. Int Microbiol 2025; 28:177-194. [PMID: 39356373 DOI: 10.1007/s10123-024-00591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/04/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024]
Abstract
Chitinases are glycosyl hydrolase enzymes that break down chitin, an integral component of fungal cell walls. Bacteria such as Bacillus subtilis and Serratia marcescens produce chitinases with antifungal properties. In this study, we aimed to generate hybrid chitinase enzymes with enhanced antifungal activity by combining functional domains from native chitinases produced by B. subtilis and S. marcescens. Chitinase genes were cloned from both bacteria and fused together using overlap extension PCR. The hybrid constructs were expressed in E. coli and the recombinant enzymes purified. Gel electrophoresis and computational analysis confirmed the molecular weights and isoelectric points of the hybrid chitinases were intermediate between the parental enzymes. Antifungal assays demonstrated that the hybrid chitinases inhibited growth of the fungus Fusarium oxysporum significantly more than the native enzymes and also showed fungicidal activity against Candida albicans, Alternaria solani, and Rhizoctonia solani. The results indicate that hybrid bacterial chitinases are a promising approach to engineer novel antifungal proteins. This study provides insight into structure-function relationships of chitinases and strategies for generating biotherapeutics with enhanced bioactive properties. These hybrid chitinases result in a more potent and versatile antifungal agent.
Collapse
Affiliation(s)
- Nahla Alsayd Bouqellah
- Biology Department, Science College, Taibah University, 42317-8599, Al Madinah Al Munawwarah, Saudi Arabia.
| | | | - Islam Yousif Mostafa
- Department of Microbiology, Faculty of Dentistry and Oral Medicine, Future University, Cairo, Egypt
| | - Ahmed Hassan Ibrahim Faraag
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
- School of Biotechnology, Badr University in Cairo, Badr City, 11829, Cairo, Egypt.
| |
Collapse
|
2
|
Yang Y, Zhang C, Lu H, Wu Q, Wu Y, Li W, Li X. Improvement of thermostability and catalytic efficiency of xylanase from Myceliophthora thermophilar by N-terminal and C-terminal truncation. Front Microbiol 2024; 15:1385329. [PMID: 38659990 PMCID: PMC11039872 DOI: 10.3389/fmicb.2024.1385329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Extracting xylanase from thermophilic filamentous fungi is a feasible way to obtain xylanase with good thermal stability. Methods The transcriptomic data of Myceliophthora thermophilic destructive ATCC42464 were differentially expressed and enriched. By comparing the sequences of Mtxylan2 and more than 10 xylanases, the N-terminal and C-terminal of Mtxylan2 were truncated, and three mutants 28N, 28C and 28NC were constructed. Results and discussion GH11 xylan Mtxylan2 was identified by transcriptomic analysis, the specific enzyme activity of Mtxylan2 was 104.67 U/mg, and the optimal temperature was 65°C. Molecular modification of Mtxylan2 showed that the catalytic activity of the mutants was enhanced. Among them, the catalytic activity of 28C was increased by 9.3 times, the optimal temperature was increased by 5°C, and the residual enzyme activity remained above 80% after 30 min at 50-65°C, indicating that redundant C-terminal truncation can improve the thermal stability and catalytic performance of GH11 xylanase.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chengnan Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing, China
| | - Hongyun Lu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - QiuHua Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Yanfang Wu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Weiwei Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing, China
| |
Collapse
|
3
|
Fan W, Li Z, Li C, Gu Z, Hong Y, Cheng L, Ban X. Catalytic activity enhancement of 1,4-α-glucan branching enzyme by N-terminal modification. Food Chem X 2023; 20:100888. [PMID: 38144803 PMCID: PMC10739917 DOI: 10.1016/j.fochx.2023.100888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 12/26/2023] Open
Abstract
The 1,4-α-glucan branching enzyme (GBE, EC 2.4.1.18) has garnered considerable attention for its ability to increase the degree of branching of starch and retard starch digestion, which has great industrial applications. Previous studies have reported that the N-terminal domain plays an important role in the expression and stability of GBEs. To further increase the catalytic ability of Gt-GBE, we constructed five mutants in the N-terminal domain: L19R, L19K, L25R, L25K, and L25A. Specific activities of L25R and L25A were increased by 28.46% and 23.46%, respectively, versus the wild-type Gt-GBE. In addition, the α-1,6-glycosidic linkage ratios of maltodextrin samples treated with L25R and L25A increased to 5.71%, which were significantly increased by 19.96% compared with that of the wild-type Gt-GBE. The results of this study suggest that the N-terminal domain selective modification can improve enzyme catalytic activity, thus further increasing the commercial application of enzymes in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Wenjuan Fan
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, Jiangsu 214122, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Wuxi, Jiangsu 214122, China
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaofeng Ban
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Liu Z, Wen S, Wu G, Wu H. Heterologous expression and characterization of Anaeromyces robustus xylanase and its use in bread making. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Monica P, Mutturi S, Kapoor M. Truncation of C-terminal amino acids of GH26 endo-mannanase (ManB-1601) affects biochemical properties and stability against anionic surfactants. Enzyme Microb Technol 2022; 157:110031. [DOI: 10.1016/j.enzmictec.2022.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022]
|
6
|
The Emergence of New Catalytic Abilities in an Endoxylanase from Family GH10 by Removing an Intrinsically Disordered Region. Int J Mol Sci 2022; 23:ijms23042315. [PMID: 35216436 PMCID: PMC8874783 DOI: 10.3390/ijms23042315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Endoxylanases belonging to family 10 of the glycoside hydrolases (GH10) are versatile in the use of different substrates. Thus, an understanding of the molecular mechanisms underlying substrate specificities could be very useful in the engineering of GH10 endoxylanases for biotechnological purposes. Herein, we analyzed XynA, an endoxylanase that contains a (β/α)8-barrel domain and an intrinsically disordered region (IDR) of 29 amino acids at its amino end. Enzyme activity assays revealed that the elimination of the IDR resulted in a mutant enzyme (XynAΔ29) in which two new activities emerged: the ability to release xylose from xylan, and the ability to hydrolyze p-nitrophenyl-β-d-xylopyranoside (pNPXyl), a substrate that wild-type enzyme cannot hydrolyze. Circular dichroism and tryptophan fluorescence quenching by acrylamide showed changes in secondary structure and increased flexibility of XynAΔ29. Molecular dynamics simulations revealed that the emergence of the pNPXyl-hydrolyzing activity correlated with a dynamic behavior not previously observed in GH10 endoxylanases: a hinge-bending motion of two symmetric regions within the (β/α)8-barrel domain, whose hinge point is the active cleft. The hinge-bending motion is more intense in XynAΔ29 than in XynA and promotes the formation of a wider active site that allows the accommodation and hydrolysis of pNPXyl. Our results open new avenues for the study of the relationship between IDRs, dynamics and activity of endoxylanases, and other enzymes containing (β/α)8-barrel domain.
Collapse
|
7
|
Improving the Extraction of Active Ingredients from Medicinal Plants by XynA Modification. J CHEM-NY 2022. [DOI: 10.1155/2022/2483797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Active ingredients of medicinal plants have unique pharmacological and clinical effects. However, conventional extraction technology has many disadvantages, such as long-time and low-efficiency. XynA-assisted extraction may overcome such problems, since the plant cell wall is mainly composed of cellulose. Based on the three-dimensional protein structure, we found the C-terminal domain and N-terminal domain twisted together and resulted in more flexibility. We carried out a series of truncations, with XynA_ΔN36 getting more yields of active ingredients. As shown by HPLC analysis, the efficiencies for extraction of salvianic acid A and berberine from Salvia miltiorrhiza and Phellodendron chinense were increased by approximately 38.14% and 35.20%, respectively, compared with the conventional extraction protocol. The yields of the two compounds reached 2.84 ± 0.05 mg g−1 and 3.52 ± 0.14 mg g−1, respectively. Above all, XynA_ΔN36 can be applied to the extraction of salvianic acid A and berberine, and this study provides a novel enzyme for the extraction technology, which aids rational utilization and quality control of medicinal plants.
Collapse
|
8
|
Xie W, Yu Q, Zhang R, Liu Y, Cao R, Wang S, Zhan R, Liu Z, Wang K, Wang C. Insights into the Catalytic Mechanism of a Novel XynA and Structure-Based Engineering for Improving Bifunctional Activities. Biochemistry 2021; 60:2071-2083. [PMID: 34156819 DOI: 10.1021/acs.biochem.1c00134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xylan and cellulose are the two major constituents of numerous types of lignocellulose. The bifunctional enzyme that exhibits xylanase/cellulase activity has attracted a great deal of attention in biofuel production. Previously, a thermostable GH10 family enzyme (XynA) from Bacillus sp. KW1 was found to degrade both xylan and cellulose. To improve bifunctional activity on the basis of structure, we first determined the crystal structure of XynA at 2.3 Å. Via molecular docking and activity assays, we revealed that Gln250 and His252 were indispensable to bifunctionality, because they could interact with two conserved catalytic residues, Glu182 and Glu280, while bringing the substrate close to the activity pocket. Then we used a structure-based engineering strategy to improve xylanase/cellulase activity. Although no mutants with increased bifunctional activity were obtained after much screening, we found the answer in the N-terminal 36-amino acid truncation of XynA. The activities of XynA_ΔN36 toward beechwood xylan, wheat arabinoxylan, filter paper, and barley β-glucan were significantly increased by 0.47-, 0.53-, 2.46-, and 1.04-fold, respectively. Furthermore, upon application, this truncation released more reducing sugars than the wild type in the degradation of pretreated corn stover and sugar cane bagasse. These results showed the detailed molecular mechanism of the GH10 family bifunctional endoxylanase/cellulase. The basis of these catalytic performances and the screened XynA_ΔN36 provide clues for the further use of XynA in industrial applications.
Collapse
Affiliation(s)
- Wei Xie
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Qi Yu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ruiqing Zhang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Yun Liu
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Ruoting Cao
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Sidi Wang
- College of Fundamental Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Kui Wang
- Research Center of Chinese Herbal Resource Science and Engineering, Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| |
Collapse
|
9
|
Module function analysis of a full-length κ-carrageenase from Pseudoalteromonas sp. ZDY3. Int J Biol Macromol 2021; 182:1473-1483. [PMID: 34019922 DOI: 10.1016/j.ijbiomac.2021.05.110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 05/16/2021] [Indexed: 11/20/2022]
Abstract
κ-Carrageenan oligosaccharides with many excellent biological properties could be produced by κ-carrageenases selectively. In this study, based on the encoding gene of full length κ-carrageenase obtained from Pseudoalteromonas sp. ZDY3 and the reported mature secreted κ-carrageenase composed of 275 amino acid residues (N26-T300), CgkPZ_GH16 was expressed in E. coli, but no soluble active protein could be detected. Fortunately, the signal peptide of wild-type κ-carrageenase was recognized, and cleaved in the soluble and folding form in E. coli, the Km and kcat values of CgkPZ_SP_GH16 was 1.007 mg/mL and 362.8 s-1. By molecular dynamics simulations, it was showed that YjdB domain might affect the activity of κ-carrageenase. Due to the absence of mature processing modification system in E. coli, YjdB was remained in recombinant full length κ-carrageenase, and the lost catalytic efficiency of CgkPZ was compensated by expression level and thermal stability. Interestingly, CgkPZ_GH16_YjdB was expressed soluble without the signal peptide, which indicated that YjdB could contribute to the expression and folding of κ-carrageenase. These results provide new insight into the effects of different modules of κ-carrageenase on the expression and properties of enzyme.
Collapse
|
10
|
Zhang C, Ding Y. Probing the Relation Between Community Evolution in Dynamic Residue Interaction Networks and Xylanase Thermostability. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:686-696. [PMID: 31217124 DOI: 10.1109/tcbb.2019.2922906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Residue-residue interactions are the basis of protein thermostability. The molecular conformations of Streptomyces lividans xylanase (xyna_strli) and Thermoascus aurantiacus xylanase (xyna_theau) at 300K, 325K and 350K were obtained by Molecular Dynamics (MD) simulations. Dynamic weighted residue interaction networks were constructed and the rigid-communities were detected using the ESPRA algorithm and the Evolving Graph+Fast-Newman algorithm. The residues in the rigid-communities are primarily located in loop2, short helixes α2', α3', α4' and helixes α3 and α4. Thus, the rigid-community is close to the N-terminus of xylanase, which is usually stabilized to increase thermostability using site-directed mutagenesis. The evolution of the rigid-community with increasing temperature shows a stable synergistic interaction between loop2, α2', α3' and α4' in xyna_theau. In particular, the short helixes α2' and α3' form a "thermo helix" to promote thermostability. In addition, tight global interactions between loop2, α2', α3', α3, α4' and α4 of xyna_theau are identified, consisting mainly of hydrogen bonds, van der Waals forces and π-π stacking. These residue interactions are more resistant to high temperatures than those in xyna_strli. Robust residue interactions within these secondary structures are key factors influencing xyna_strli and xyna_theau thermostability. Analyzing the rigid-community can elucidate the cooperation of secondary structures, which cannot be discovered from sequence and 3D structure alone.
Collapse
|
11
|
Cai L, Zhang M, Shao T, He Y, Li J, Ren B, Zhou C. Effect of introducing disulfide bridges in C-terminal structure on the thermostability of xylanase XynZF-2 from Aspergillus niger. J GEN APPL MICROBIOL 2019; 65:240-245. [PMID: 30905899 DOI: 10.2323/jgam.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, a mutant xylanase of high thermostability was obtained by site-directed mutagenesis. The homologous 3D structure of xylanase was successfully modeled and the mutation sites were predicted using bioinformatics software. Two amino acids of XynZF-2 were respectively substituted by cysteines (T205C and A52C) and a disulfide bridge was introduced into the C-terminal of XynZF-2. The mutant gene xynZFTA was cloned into pPIC9K and expressed in P. pastoris. The optimum temperature of the variant XynZFTA was improved from 45°C to 60°C, and XynZFTA retained greater than 90.0% activity (XynZF-2 retained only 50.0% activity) after treatment at 50°C for 5 min. The optimum pH of mutant xylanase was similar to XynZF-2 (pH = 5.0). The pH stability span (5.0~7.0) of the mutant xylanase was increased to 3.0~9.0. Overall, the results implied that the introduction of a disulfide bridge in the C-terminal structure improved the thermostability and pH stability of XynZF-2.
Collapse
Affiliation(s)
- Liutengzi Cai
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Mishuai Zhang
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Tianci Shao
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - You He
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Jingyi Li
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Bingjie Ren
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Chenyan Zhou
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| |
Collapse
|
12
|
Osire T, Yang T, Xu M, Zhang X, Li X, Niyomukiza S, Rao Z. Lys-Arg mutation improved the thermostability of Bacillus cereus neutral protease through increased residue interactions. World J Microbiol Biotechnol 2019; 35:173. [PMID: 31673794 DOI: 10.1007/s11274-019-2751-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 10/18/2019] [Indexed: 11/26/2022]
Abstract
Neutral proteases have broad application as additives in modern laundry detergents and therefore, thermostability is an integral parameter for effective production of protein crystals. To improve thermostability, the contribution of individual residues of Bacillus cereus neutral protease was examined by site-directed mutagenesis. The Lys11Arg and Lys211Arg mutants clearly possessed improved thermostabilities (Tm were 63 and 61 °C respectively) compared to the wild-type (Tm was 60 °C). MD simulations further revealed that the mutants had low RMSD and RMSF values compared to wild-type BCN indicating increased stability of the protein structure. Lys11Arg mutant particularly possessed the lowest RMSD values due to increased residue interactions, which resulted in enhanced thermostability. The mutants also displayed strong stability to most inhibitors, organic solvents and surfactants after incubation for 1 h. This study demonstrated Lys-Arg mutation enhanced thermostability of BCN and thus provides insight for engineering stabilizing mutations with improved thermostability for related proteins.
Collapse
Affiliation(s)
- Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China.
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Xu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Samuel Niyomukiza
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 LiHu Boulevard, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
13
|
Li X, Zhang X, Xu S, Xu M, Yang T, Wang L, Zhang H, Fang H, Osire T, Rao Z. Insight into the thermostability of thermophilic L-asparaginase and non-thermophilic L-asparaginase II through bioinformatics and structural analysis. Appl Microbiol Biotechnol 2019; 103:7055-7070. [DOI: 10.1007/s00253-019-09967-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/29/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
|
14
|
Characterization of Two New Endo-β-1,4-xylanases from Eupenicillium parvum 4–14 and Their Applications for Production of Feruloylated Oligosaccharides. Appl Biochem Biotechnol 2018; 186:816-833. [DOI: 10.1007/s12010-018-2775-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 04/27/2018] [Indexed: 01/14/2023]
|
15
|
Biochemical and biophysical characterization of novel GH10 xylanase prospected from a sugar cane bagasse compost-derived microbial consortia. Int J Biol Macromol 2018; 109:560-568. [DOI: 10.1016/j.ijbiomac.2017.12.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
|
16
|
Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1. PLoS One 2017; 12:e0189806. [PMID: 29253895 PMCID: PMC5734778 DOI: 10.1371/journal.pone.0189806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 12/01/2017] [Indexed: 01/14/2023] Open
Abstract
Extremophilic xylanases have attracted great scientific and industrial interest. In this study, a GH10 xylanase-encoding gene, Xyl10E, was cloned from Bispora sp. MEY-1 and expressed in Pichia pastoris GS115. Deduced Xyl10E shares the highest identities of 62% and 57% with characterized family GH10 xylanases from Talaromyces leycettanus and Penicillium canescens (structure 4F8X), respectively. Xyl10E was most active at 93 to 95°C and pH 4.0, retained more than 75% or 48% of the initial activity when heated at 80°C or 90°C for 30 min, respectively, and hardly lost activity at pH 1.0 to 7.0, but was completely inhibited by SDS. Two residues, A160 and A161, located on loop 4, were identified to play roles in catalysis. Mutants A160D/E demonstrated higher affinity to substrate with lower Km values, while mutants A161D/E mainly displayed elevated Vmax values. All of these mutants had significantly improved catalytic efficiency. According to the molecular dynamics simulation, the mutation of A160E was able to affect the important substrate binding site Y204 and then improve the substrate affinity, and the mutation of A161D was capable of forming a hydrogen bond with the substrate to promote the substrate binding or accelerate the product release. This study introduces a highly thermophilic fungal xylanase and reveals the importance of loop 4 for catalytic efficiency.
Collapse
|
17
|
Yu Y, Liu Z, Yang M, Chen M, Wei Z, Shi L, Li L, Mou H. Characterization of Full-Length and Truncated Recombinant κ-Carrageenase Expressed in Pichia pastoris. Front Microbiol 2017; 8:1544. [PMID: 28861059 PMCID: PMC5561669 DOI: 10.3389/fmicb.2017.01544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
κ-Carrageenase belongs to glycoside hydrolase family 16 and cleaves the β-(1→4) linkages of κ-carrageenan. In this study, genes encoding the full-length (cgkZ), Por secretion tail-truncated (cgkZΔPst) and carbohydrate binding domain-truncated (cgkZΔCBM) κ-carrageenase proteins were expressed in Pichia pastoris. The copy numbers of gene cgkZ, cgkZΔPst and cgkZΔCBM were 7, 7 and 6, respectively. The enzymatic activities of recombinant enzymes cgkZ, cgkZΔPst and cgkZΔCBM reached 4.68, 5.70, and 3.02 U/mL, respectively, after 120 h of shake flask fermentation at 22°C and pH 6 in the presence of 1 % (v/v) methanol. The molecular weights of recombinant cgkZ, cgkZΔPst, and cgkZΔCBM were approximately 65, 45, and 40 kDa; their Km values were 2.07, 1.85, and 1.04 mg/mL; and they exhibited optimal activity at 45-50°C and pH 6-7. All the recombinant enzymes were stimulated by Na+, Mg2+, Ca2+, and dithiothreitol. The end-products of enzymatic hydrolysis were mainly composed of κ-carrageenan tetrasaccharide and hexasaccharide. The removal of the Por secretion tail of κ-carrageenase promoted the transcription of κ-carrageenase gene, enhancing the specific activity of κ-carrageenase without significantly changing its catalytic properties. Although the transcription level of κ-carrageenase gene after the removal of the carbohydrate binding domain was relatively high, the specific activity of the recombinant enzyme significantly decreased. The comprehensive application of the P. pastoris expression system combined with the rational modification of genes may provide a novel approach for the heterologous expression of various marine enzymes with high activities.
Collapse
Affiliation(s)
- Yuan Yu
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Min Yang
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Meng Chen
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Zhihan Wei
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Lixia Shi
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Li Li
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of ChinaQingdao, China
| |
Collapse
|
18
|
Wang X, Huang H, Xie X, Ma R, Bai Y, Zheng F, You S, Zhang B, Xie H, Yao B, Luo H. Improvement of the catalytic performance of a hyperthermostable GH10 xylanase from Talaromyces leycettanus JCM12802. BIORESOURCE TECHNOLOGY 2016; 222:277-284. [PMID: 27723474 DOI: 10.1016/j.biortech.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 05/07/2023]
Abstract
A xylanase gene of GH 10, Tlxyn10A, was cloned from Talaromyces leycettanus JCM12802 and expressed in Pichia pastoris. Purified recombinant TlXyn10A was acidic and hyperthermophilic, and retained stable over the pH range of 2.0-6.0 and at 90°C. Sequence analysis of TlXyn10A identified seven residues probably involved in substrate contacting. Three mutants (TlXyn10A_P, _N and _C) were then constructed by substituting some or all of the residues with corresponding ones of hyperthermal Xyl10C from Bispora sp. MEY-1. TlXyn10A_P with mutations at subsites +2 to +4 exhibited improved specific activity (by 0.44-fold) and pH stability (2.0-10.0). Molecular dynamics simulation analysis indicated that mutations E229I and F232E probably weaken the substrate affinity at subsites +3 to +4, and G149D may introduce a new hydrogen bond. These modifications altogether account for the improved performance of TlXyn10A_P. Moreover, TlXyn10A_P was able to hydrolyze wheat straw persistently, and has the application potentials in various industries.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Fei Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China; College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Shuai You
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bingyu Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huifang Xie
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| |
Collapse
|