1
|
Tong J, Chen S, Gu X, Zhang X, Wei F, Xing Y. CD38 and extracellular NAD + regulate the development and maintenance of Hp vaccine-induced CD4 + T RM in the gastric epithelium. Mucosal Immunol 2024; 17:990-1004. [PMID: 38960319 DOI: 10.1016/j.mucimm.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Tissue-resident memory T cells (TRM) can be induced by infection and vaccination, and play a key role in maintaining long-term protective immunity against mucosal pathogens. Our studies explored the key factors and mechanisms affecting the differentiation, maturation, and stable residence of gastric epithelial CD4+ TRM induced by Helicobacter pylori (Hp) vaccine and optimized Hp vaccination to promote the generation and residence of TRM. Cluster of differentiation (CD)38 regulated mitochondrial activity and enhanced transforming growth factor-β signal transduction to promote the differentiation and residence of gastric epithelial CD4+ TRM by mediating the expression of CD105. Extracellular nucleotides influenced the long-term maintenance of TRM in gastric epithelium by the P2X7 receptor (P2RX7). Vitamin D3 and Gram-positive enhancer matrix (GEM) particles as immune adjuvants combined with Hp vaccination promoted the production of CD69+CD103+CD4+ TRM.
Collapse
Affiliation(s)
- Jinzhe Tong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Simiao Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xinyue Gu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xuanqi Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fang Wei
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
2
|
Ni X, Liu Y, Sun M, Jiang Y, Wang Y, Ke D, Guo G, Liu K. Oral Live-Carrier Vaccine of Recombinant Lactococcus lactis Inducing Prophylactic Protective Immunity Against Helicobacter pylori Infection. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10360-x. [PMID: 39251521 DOI: 10.1007/s12602-024-10360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Helicobacter pylori infects the gastric mucosa and induces chronic gastritis, peptic ulcers, and gastric cancer. Research has demonstrated that vaccination can induce a protective immune response and prevent H. pylori infection. Oral administration of the Lactococcus lactis live-carrier vaccine is safe and easily complied with by the public. In this study, two recombinant L. lactis strains were constructed that expressed antigens of H. pylori urease subunit alpha (UreA) and UreA fused with Escherichia coli heat-labile toxin B subunit (LTB-UreA), named LL-UreA and LL-LTB-UreA, respectively. The expression of antigen proteins was confirmed by Western blotting analysis. Survival assessment indicated that the engineered L. lactis could colonize in the digestive tract of BALB/c mice up to 10 days after the last oral administration with our immunization protocol. The ability to induce immune response and immune protective efficacy of the L. lactis were confirmed. These results indicated that oral administration with LL-UreA or LL-LTB-UreA could induce UreA-specific mucosal secretory IgA (sIgA) and cellular immune response, significantly increasing the cytokines levels of interferon-gamma (IFN-γ), interleukin (IL)-17A, and IL-10, together with the proportion of CD4+IFN-γ+ T cells and CD4+IL17A+ T cells. More importantly, oral administration of LL-UreA and LL-LTB-UreA brought about effective protection in mice to prevent H. pylori infection, especially LL-UreA, resulting in 70% of mice showing no H. pylori colonization and the remaining 30% showing only low levels of colonization. These findings underscore the potential of using orally administered engineered L. lactis vaccines to prevent H. pylori infection.
Collapse
Affiliation(s)
- Xiumei Ni
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yu Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Min Sun
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yajun Jiang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yi Wang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Dingxin Ke
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Gang Guo
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China.
| | - Kaiyun Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
3
|
Zhang F, Ni L, Zhang Z, Luo X, Wang X, Zhou W, Chen J, Liu J, Qu Y, Liu K, Guo L. Recombinant L. lactis vaccine LL-plSAM-WAE targeting four virulence factors provides mucosal immunity against H. pylori infection. Microb Cell Fact 2024; 23:61. [PMID: 38402145 PMCID: PMC10893618 DOI: 10.1186/s12934-024-02321-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) causes chronic gastric disease. An efficient oral vaccine would be mucosa-targeted and offer defense against colonization of invasive infection in the digestive system. Proteolytic enzymes and acidic environment in the gastrointestinal tract (GT) can, however, reduce the effectiveness of oral vaccinations. For the creation of an edible vaccine, L. lactis has been proposed as a means of delivering vaccine antigens. RESULTS We developed a plSAM (pNZ8148-SAM) that expresses a multiepitope vaccine antigen SAM-WAE containing Urease, HpaA, HSP60, and NAP extracellularly (named LL-plSAM-WAE) to increase the efficacy of oral vaccinations. We then investigated the immunogenicity of LL-plSAM-WAE in Balb/c mice. Mice that received LL-plSAM-WAE or SAM-WAE with adjuvant showed increased levels of antibodies against H. pylori, including IgG and sIgA, and resulted in significant reductions in H. pylori colonization. Furthermore, we show that SAM-WAE and LL-plSAM-WAE improved the capacity to target the vaccine to M cells. CONCLUSIONS These findings suggest that recombinant L. lactis could be a promising oral mucosa vaccination for preventing H. pylori infection.
Collapse
Affiliation(s)
- Furui Zhang
- College of First Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
- College of Laboratory Medicine , Ningxia Medical University, Yinchuan, 750004, China
| | - Linhan Ni
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen Zhang
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xuegang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xuequan Wang
- Key Laboratory of Radiation Oncology of Taizhou, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, 317000, China
| | - Wenmiao Zhou
- College of First Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiale Chen
- College of First Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Liu
- College of Laboratory Medicine , Ningxia Medical University, Yinchuan, 750004, China
| | - Yuliang Qu
- College of Laboratory Medicine , Ningxia Medical University, Yinchuan, 750004, China.
| | - Kunmei Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
| | - Le Guo
- College of First Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, China.
- College of Laboratory Medicine , Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
4
|
Jiao C, Jin H, Zhang M, Liu D, Huang P, Bai Y, Dai J, Zhang H, Li Y, Wang H. A bacterium-like particle vaccine displaying protective feline herpesvirus 1 antigens can induce an immune response in mice and cats. Vet Microbiol 2023; 287:109898. [PMID: 37931577 DOI: 10.1016/j.vetmic.2023.109898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Feline herpesvirus 1 (FHV-1) is a highly transmissible virus that mainly causes ocular and upper respiratory infections in cats and seriously threatens the health of domestic cats and captive or wild cats (such as tigers, cheetahs, and lions). Vaccination is crucial to reduce the incidence rate and mortality of cats infected with FHV-1. In this study, three bacterium-like particles (BLPs) displaying the gB, gC, and gD proteins of FHV-1 were constructed based on a gram-positive enhancer matrix-protein anchor (GEM-PA) surface display system. Indirect immunofluorescence assay, western blot, and electron microscopy results showed that gB, gC or gD protein of FHV-1 was successfully displayed on the surface of GEM particles. Additionally, we designed one more BLPs, designated gB&gC&gD-GEM, which consisted of a mixture of gB-GEM, gC-GEM, and gD-GEM at a protein content ratio of 1:1:1. Mice were immunized with the four BLPs mixed with Gel02 adjuvant, and the results indicated that neutralizing antibody level in the gB&gC&gD-GEM group was superior than those in the other groups. Moreover, gB&gC&gD-GEM significantly increased the secretion of cytokines, as well as the activation and maturation of B cells. It also boosted the production of central memory T cells among CD4 + and CD8 + T cells. Moreover, gB&gC&gD-GEM mixed with Gel02 adjuvant provoked an antibody response in cats. In conclusion, the BLPs vaccine prepared from gB&gC&gD-GEM induced specific humoral and cellular immune responses to FHV-1 and be used as a potential vaccine candidate for the control of FHV-1 infection in cats.
Collapse
Affiliation(s)
- Cuicui Jiao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hongli Jin
- Changchun Sino Biotechnology Co., Ltd., Changchun 130012, China
| | - Mengyao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Di Liu
- Changchun Sino Biotechnology Co., Ltd., Changchun 130012, China
| | - Pei Huang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yujie Bai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Dai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haili Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuanyuan Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hualei Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Zhou X, Gao M, De X, Sun T, Bai Z, Luo J, Wang F, Ge J. Bacterium-like particles derived from probiotics: progress, challenges and prospects. Front Immunol 2023; 14:1263586. [PMID: 37868963 PMCID: PMC10587609 DOI: 10.3389/fimmu.2023.1263586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023] Open
Abstract
Bacterium-like particles (BLPs) are hollow peptidoglycan particles obtained from food-grade Lactococcus lactis inactivated by hot acid. With the advantage of easy preparation, high safety, great stability, high loading capacity, and high mucosal delivery efficiency, BLPs can load and display proteins on the surface with the help of protein anchor (PA), making BLPs a proper delivery system. Owning to these features, BLPs are widely used in the development of adjuvants, vaccine carriers, virus/antigens purification, and enzyme immobilization. This review has attempted to gather a full understanding of the technical composition, characteristics, applications. The mechanism by which BLPs induces superior adaptive immune responses is also discussed. Besides, this review tracked the latest developments in the field of BLPs, including Lactobacillus-derived BLPs and novel anchors. Finally, the main limitations and proposed breakthrough points to further enhance the immunogenicity of BLPs vaccines were discussed, providing directions for future research. We hope that further developments in the field of antigen delivery of subunit vaccines or others will benefit from BLPs.
Collapse
Affiliation(s)
- Xinyao Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinqi De
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zhikun Bai
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise, China
| | - Jilong Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Fang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, China
| |
Collapse
|
6
|
Gong W, Pan C, Cheng P, Wang J, Zhao G, Wu X. Peptide-Based Vaccines for Tuberculosis. Front Immunol 2022; 13:830497. [PMID: 35173740 PMCID: PMC8841753 DOI: 10.3389/fimmu.2022.830497] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis. As a result of the coronavirus disease 2019 (COVID-19) pandemic, the global TB mortality rate in 2020 is rising, making TB prevention and control more challenging. Vaccination has been considered the best approach to reduce the TB burden. Unfortunately, BCG, the only TB vaccine currently approved for use, offers some protection against childhood TB but is less effective in adults. Therefore, it is urgent to develop new TB vaccines that are more effective than BCG. Accumulating data indicated that peptides or epitopes play essential roles in bridging innate and adaptive immunity and triggering adaptive immunity. Furthermore, innovations in bioinformatics, immunoinformatics, synthetic technologies, new materials, and transgenic animal models have put wings on the research of peptide-based vaccines for TB. Hence, this review seeks to give an overview of current tools that can be used to design a peptide-based vaccine, the research status of peptide-based vaccines for TB, protein-based bacterial vaccine delivery systems, and animal models for the peptide-based vaccines. These explorations will provide approaches and strategies for developing safer and more effective peptide-based vaccines and contribute to achieving the WHO's End TB Strategy.
Collapse
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
- Hebei North University, Zhangjiakou City, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Guangyu Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xueqiong Wu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Mohammadzadeh R, Soleimanpour S, Pishdadian A, Farsiani H. Designing and development of epitope-based vaccines against Helicobacter pylori. Crit Rev Microbiol 2021; 48:489-512. [PMID: 34559599 DOI: 10.1080/1040841x.2021.1979934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori infection is the principal cause of serious diseases (e.g. gastric cancer and peptic ulcers). Antibiotic therapy is an inadequate strategy in H. pylori eradication because of which vaccination is an inevitable approach. Despite the presence of countless vaccine candidates, current vaccines in clinical trials have performed with poor efficacy which makes vaccination extremely challenging. Remarkable advancements in immunology and pathogenic biology have provided an appropriate opportunity to develop various epitope-based vaccines. The fusion of proper antigens involved in different aspects of H. pylori colonization and pathogenesis as well as peptide linkers and built-in adjuvants results in producing epitope-based vaccines with excellent therapeutic efficacy and negligible adverse effects. Difficulties of the in vitro culture of H. pylori, high genetic variation, and unfavourable immune responses against feeble epitopes in the complete antigen are major drawbacks of current vaccine strategies that epitope-based vaccines may overcome. Besides decreasing the biohazard risk, designing precise formulations, saving time and cost, and induction of maximum immunity with minimum adverse effects are the advantages of epitope-based vaccines. The present article is a comprehensive review of strategies for designing and developing epitope-based vaccines to provide insights into the innovative vaccination against H. pylori.
Collapse
Affiliation(s)
- Roghayeh Mohammadzadeh
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Reference Tuberculosis Laboratory, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Pishdadian
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Pan C, Yue H, Zhu L, Ma GH, Wang HL. Prophylactic vaccine delivery systems against epidemic infectious diseases. Adv Drug Deliv Rev 2021; 176:113867. [PMID: 34280513 PMCID: PMC8285224 DOI: 10.1016/j.addr.2021.113867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 07/11/2021] [Indexed: 01/04/2023]
Abstract
Prophylactic vaccines have evolved from traditional whole-cell vaccines to safer subunit vaccines. However, subunit vaccines still face problems, such as poor immunogenicity and low efficiency, while traditional adjuvants are usually unable to meet specific response needs. Advanced delivery vectors are important to overcome these barriers; they have favorable safety and effectiveness, tunable properties, precise location, and immunomodulatory capabilities. Nevertheless, there has been no systematic summary of the delivery systems to cover a wide range of infectious pathogens. We herein summarized and compared the delivery systems for major or epidemic infectious diseases caused by bacteria, viruses, fungi, and parasites. We also included the newly licensed vaccines (e.g., COVID-19 vaccines) and those close to licensure. Furthermore, we highlighted advanced delivery systems with high efficiency, cross-protection, or long-term protection against epidemic pathogens, and we put forward prospects and thoughts on the development of future prophylactic vaccines.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China
| | - Guang-Hui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng-Liang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing 100071, PR China.
| |
Collapse
|
9
|
Purification and immobilization of the soluble and insoluble portions of recombinant lipase by gram-positive enhancer matrix (GEM) particles. Int J Biol Macromol 2020; 145:1099-1105. [DOI: 10.1016/j.ijbiomac.2019.09.203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 11/18/2022]
|
10
|
Purification and immobilization of α-amylase in one step by gram-positive enhancer matrix (GEM) particles from the soluble protein and the inclusion body. Appl Microbiol Biotechnol 2019; 104:643-652. [PMID: 31788710 DOI: 10.1007/s00253-019-10252-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Immobilization of the enzyme benefits the catalytic industry a lot. The gram-positive enhancer matrix (GEM) particles could purify and immobilize the recombinant α-amylase in one step without changing the enzymatic character. The enzyme immobilized by GEM particles exhibited good reusability and storage stability. The denaturants dissolved some of the GEM particles and a part of the GEM particles could bear the denaturants. The GEM particles had strong binding ability to the recombination protein with the AcmA tag even when the denaturants existed. The inclusion body was dissolved by urea and then bound by the GEM particles. The GEM particles binding the recombination protein were separated by centrifugation and resuspended in the renaturation solution. GEM particles were recycled by repeating the boiling procedure used in preparing them. The recombination α-amylase without any tag was obtained by digestion and separated via centrifugation. Altogether, our findings suggest that GEM particles have the potential to function as both immobilization and purification materials to bind the soluble recombinant protein with the AcmA tag and the inclusion body dissolved in the denaturants.
Collapse
|
11
|
Keikha M, Eslami M, Yousefi B, Ghasemian A, Karbalaei M. Potential antigen candidates for subunit vaccine development against Helicobacter pylori infection. J Cell Physiol 2019; 234:21460-21470. [PMID: 31188484 DOI: 10.1002/jcp.28870] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Abstract
Helicobacter pylori (H. pylori) is a resident bacterium in the stomach that accounts for 75% cases of gastric cancer. In this review, we comprehensively studied published papers on H. pylori vaccines using Google Scholar and NCBI databases to gather information about vaccines against H. pylori. Considering the pivotal roles of the enzyme urease (in production of NH3 and neutralization of the acidic medium of the stomach), cytotoxin-associated gene A, and vacuolating cytotoxin A proteins in H. pylori infection, they could be the best candidates for the construction of recombinant vaccines. The outer membrane porins (Hop), blood group antigen-binding adhesin (BabA), sialic acid-binding adhesin (SabA), and outer inflammatory protein A, play significant roles in binding of bacterium to human gastric tissues, and because binding is the first step in bacterial fixation and colonization, these antigens also can be considered as suitable candidates for designing vaccines. Likely, other significant bacterial antigens, such as NapA (chemotactic factor for recruitment of human neutrophils and monocytes to the site of infection), duodenal ulcer promoting protein A (to promote duodenal ulcer), and Hsp60 (as a molecular chaperon for activation of urease enzyme), can be used in the construction of subunit vaccines. New vaccines in use currently, such as DNA vaccines and subunit vaccines, can efficiently replace the dead and attenuated vaccines. Nonetheless, the results show that urease enzyme is most used compared with bacterial components in the designing and construction of recombinant vaccines. The BabA and SabA antigens belong to the outer membrane porins family in H. pylori and are required for binding and fixation of the bacterium to the human gastric tissues.
Collapse
Affiliation(s)
- Masoud Keikha
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Eslami
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Abdolmajid Ghasemian
- Department of Biology, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
12
|
Sun N, Zhang R, Duan G, Peng X, Wang C, Chen S, Fan Q. A food-grade engineered Lactococcus lactis strain delivering Helicobacter pylori Lpp20 alleviates bacterial infection in H. pylori-challenged mice. Biotechnol Lett 2019; 41:1415-1421. [PMID: 31620902 DOI: 10.1007/s10529-019-02740-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To construct a food-grade bacterium producing and delivering H. pylori Lpp20 antigen and evaluate its immune efficacy against H. pylori challenges with aim to develop anti-H. pylori oral vaccines and functional foods. RESULTS Lpp20 was expressed as a 22 kDa protein in Lactococcus lactis, constituting 11.2% of the cell lysate proteins, and recognized by mouse antisera. Mice orally gavaged with the engineered bacterium had elevated serum IgG levels and lowered urease activity of stomach following H. pylori challenges. CONCLUSIONS This study firstly reports a food-grade L. lactis strain delivering Lpp20 to mucosal immunization sites, demonstrating a novel efficient production and safe utilization mode of Lpp20, offering a promising vaccine candidate and health food sources.
Collapse
Affiliation(s)
- Nan Sun
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Rongguang Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, China.
| | - Guangcai Duan
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Xiaoyan Peng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Chen Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Qingtang Fan
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, China
| |
Collapse
|
13
|
Douzandeh-Mobarrez B, Kariminik A. Gut Microbiota and IL-17A: Physiological and Pathological Responses. Probiotics Antimicrob Proteins 2019; 11:1-10. [PMID: 28921400 DOI: 10.1007/s12602-017-9329-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-17A is a cytokine which is produced by several immune and non-immune cells. The cytokine plays dual roles from protection from microbes and protection from pro-inflammatory based diseases to induction of the pro-inflammatory based diseases. The main mechanisms which lead to the controversial roles of IL-17A are yet to be clarified. Gut microbiota (GM) are the resident probiotic bacteria in the gastrointestinal tracts which have been introduced as a plausible regulator of IL-17A production and functions. This review article describes the recent information regarding the roles played by GM in determination of IL-17A functions outcome.
Collapse
Affiliation(s)
- Banafsheh Douzandeh-Mobarrez
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.,Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Ashraf Kariminik
- Department of Microbiology, Kerman Branch, Islamic Azad University, Kerman, Iran.
| |
Collapse
|
14
|
Ikuse T, Blanchard TG, Czinn SJ. Inflammation, Immunity, and Vaccine Development for the Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2019; 421:1-19. [PMID: 31123883 DOI: 10.1007/978-3-030-15138-6_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It has been over 30 years since a link was established between H. pylori infection of the gastric mucosa and the development of chronic gastric diseases. Research in rodent models supported by data from human tissue demonstrated that the host immune response to H. pylori is limited by host regulatory T cells. Immunization has been shown to induce a potent Th1- and Th17-mediated immune response capable of eradicating or at least significantly reducing the bacterial load of H. pylori in the stomach in small animal models. These results have not translated well to humans. Clinical trials employing many of the strategies used in rodents for oral immunization including the use of a mucosal adjuvant such as Escherichia coli LT or delivery by attenuated enteric bacteria have failed to limit H. pylori infection and have highlighted the potential toxicity of exotoxin-based mucosal adjuvants. A recent study, however, utilizing a recombinant fusion protein of H. pylori urease and the subunit B of E. coli LT, was performed on over 4000 children. Efficacy of over 70% was demonstrated against naturally acquired infection compared to control volunteers one year post-immunization. Efficacy was reduced, but still above 50% at three years. This study provided new insight into the strategies for developing an improved vaccine for widespread use in countries with high infection rates and where gastric cancer (GC) remains one of the most common causes of death due to cancer.
Collapse
Affiliation(s)
- Tamaki Ikuse
- Department of Pediatric and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Thomas G Blanchard
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Steven J Czinn
- Department of Pediatrics, University of Maryland School of Medicine, 13-015 Bressler Research Building, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| |
Collapse
|
15
|
Liu W, Zeng Z, Luo S, Hu C, Xu N, Huang A, Zheng L, Sundberg EJ, Xi T, Xing Y. Gastric Subserous Vaccination With Helicobacter pylori Vaccine: An Attempt to Establish Tissue-Resident CD4+ Memory T Cells and Induce Prolonged Protection. Front Immunol 2019; 10:1115. [PMID: 31156652 PMCID: PMC6533896 DOI: 10.3389/fimmu.2019.01115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/01/2019] [Indexed: 12/22/2022] Open
Abstract
Tissue-resident memory T (Trm) cells are enriched at the sites of previous infection and required for enhanced protective immunity. However, the emergence of Trm cells and their roles in providing protection are unclear in the field of Helicobacter pylori (H. pylori) vaccinology. Here, our results suggest that conventional vaccine strategies are unable to establish a measurable antigen (Ag)-specific memory cell pool in stomach; in comparison, gastric subserous injection of mice with micro-dose of Alum-based H. pylori vaccine can induce a pool of local CD4+ Trm cells. Regional recruitment of Ag-specific CD4+ T cells depends on the engagement of Ag and adjuvant-induced inflammation. Prior subcutaneous vaccination enhanced this recruitment. A stable pool of Ag-specific CD4+ T cells can be detected for 240 days. Two weeks of FTY720 administration in immune mice suggests that these cells do not experience the recirculation. Immunohistochemistry results show that close to the vaccination site, abundant CD4+T cells locate on epithelial niches, independent of lymphocyte cluster. Paradigmatically, Ag-specific CD4+ T cells with a phenotype of CD69+CD103- are preferential on lymphocytes isolated from epithelium. Upon Helicobacter infection, CD4+ Trm cells orchestrate a swift recall response with the recruitment of circulating antigen-specific Th1/Th17 cells to trigger a tissue-wide pathogen clearance. This study investigates the vaccine-induced gastric CD4+ Trm cells in a mice model, and highlights the need for designing a vaccine strategy against H. pylori by establishing the protective CD4+ Trm cells.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Shuanghui Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Chupeng Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Ningyin Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - An Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Eric J. Sundberg
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Shape of gastrointestinal immunity with non-genetically modified Lactococcus lactis particles requires commensal bacteria and myeloid cells-derived TGF-β1. Appl Microbiol Biotechnol 2019; 103:3847-3861. [PMID: 30852661 DOI: 10.1007/s00253-019-09716-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/05/2019] [Accepted: 02/23/2019] [Indexed: 12/14/2022]
Abstract
Heat-killed probiotics or microbial autologous components show multiple activities on modulating host immune responses towards tolerance or vice versus aggressiveness. Gram-positive enhancer matrix particles (GEMs), the non-genetically modified particles which composed of the cell wall derived from Lactococcus lactis (L. lactis), were used as a typical microbial molecule to investigate the mechanism of opposite immune responses generated in disparate scenarios. The results of stool 16S rRNA Illumina sequencing suggested that the overwhelming number of mice pre-administered with GEMs showed the expansion of Bacteroidetes but contraction of Verrucomicrobia. Co-administration GEMs and antibiotics could preserve the microbial diversity, even though the abundance of gut microbes was largely depleted by antibiotics. Additionally, dendritic cells (DCs) from mice receiving GEMs rather than DCs that in vitro treated with GEMs induced the expansion of regulatory T cells (Tregs), witnessing the critical role of gut flora alteration. Importantly, this alteration provided protection to alleviate dextran sulfate sodium (DSS)-induced intestinal inflammation. On the other hand, in the context of Helicobacter felis (H. felis) infection, the mice pre-administrated with GEMs exhibited a comparably potent gastric immunity with the elevated expression of IFN-γ, IL-17, and multiple anti-microbial factors, leading to the reduced burden of H. felis. However, tolerance for both DSS-induced intestinal inflammation and immunity against H. felis was depleted in a mice model lacking of transforming growth factor-β1 (TGF-β1) in myeloid cells. These findings suggest that GEMs can modulate host immune responses bidirectionally according to context, and may serve as a supplement for antibiotic treatment.
Collapse
|
17
|
Luo S, Liu W, Zeng Z, Ye F, Hu C, Xu N, Huang A, Xi T, Xing Y. Toxic adjuvants alter the function and phenotype of dendritic cells to initiate adaptive immune responses induced by oral Helicobacter pylori vaccines. Helicobacter 2018; 23:e12536. [PMID: 30247802 DOI: 10.1111/hel.12536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Toxic adjuvant is considered as an indispensable constituent for oral Helicobacter pylori (H. pylori) vaccines. However, the elaborate role of toxic adjuvant in the initiation of adaptive immune response is largely undescribed. MATERIALS AND METHODS We employed an acid-resistant HP55/PLGA nanoparticles (NPs) delivery system encapsulating three antigens (Hsp, Nap, and Lpp20) from H. pylori and accompanied with three adjuvants (LPS, CpG, and chimeric flagellum (CF)) to explore the underlying mechanism of the adjuvant constituent. H. pylori-specific antibody responses were detected by ELISA. Gastric inflammatory and Th1/Th17 responses were analyzed by flow cytometry. Expressions of inflammatory cytokines were measured by quantitative real-time PCR. RESULTS In bone marrow-derived dendritic cells' (BMDCs) model, the addition of toxic adjuvants is responsible for the proinflammatory function, but not the mature phenotype of BMDCs. In vivo, intestinal loop injection with NPs + LPS, rather than NPs alone, altered the dendritic cell (DC) phenotypes in mesenteric lymph nodes and drove a local proinflammatory microenvironment. In a prophylactic vaccination model, mice immunized with NPs + adjuvants significantly reduced the gastric colonization of H. pylori, induced antigen-specific antibody responses and Th1/Th17 cell responses. After H. pylori challenge, these mice showed potent recall responses involving both neutrophil and inflammatory monocyte infiltration. Additionally, TLR4 knockout mice were immunized with NPs + LPS and NPs + CF, respectively; only the recipients of NPs + CF orchestrated a protective response to control bacterial infection. CONCLUSIONS Our study indicated that toxic adjuvants within oral H.pylori vaccines altered the function and phenotype of dendritic cells and facilitated the establishment of proinflammatory microenvironment to initiate adaptive immune responses.
Collapse
Affiliation(s)
- Shuanghui Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Feng Ye
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chupeng Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Ningyin Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - An Huang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Ozdemir T, Fedorec AJ, Danino T, Barnes CP. Synthetic Biology and Engineered Live Biotherapeutics: Toward Increasing System Complexity. Cell Syst 2018; 7:5-16. [DOI: 10.1016/j.cels.2018.06.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/31/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
|
19
|
Zhang R, Qiao D, Peng X, Duan G, Shi Q, Zhang L, Wang C, Liang W, Chen S, Fan Q. A novel food‐grade lactococcal expression system and its use for secretion and delivery of an oral vaccine antigen. JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY 2018; 93:1655-1660. [DOI: 10.1002/jctb.5536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 11/25/2017] [Indexed: 07/03/2024]
Abstract
AbstractBACKGROUNDFood‐grade bacterial expression systems are relatively rare, and increasing evidence indicates that subcellular location of antigens in bacterial vector vaccines may markedly affect the immune efficacy.RESULTSThis study developed a novel food‐grade secretory expression system for heterologous protein production and oral vaccine delivery. Furthermore, by using the expression system, an engineered L. lactis strain secreting H. pylori UreB was constructed, and used to vaccinate SPF BALB/c mice. As results, the UreB expressed in L. lactis was detected in both cell lysates and culture supernatant of the engineered strain, constituting roughly 50% of the culture supernatant proteins, and recognized by mouse anti‐H. pylori sera. Oral vaccination with the engineered L. lactis produced a significantly elevated anti‐UreB serum antibody level in mice (P < 0.05).CONCLUSIONThese data show a novel food‐grade L. lactis secretory expression system, which may have distinct potential impact on edible and medicinal protein production and oral vaccine development. Moreover, this is the first report on secretory expression of a H. pylori antigen via using a food‐grade lactococcal expression system, and the engineered strain secreting UreB can be a hopeful H. pylori vaccine candidate. © 2017 Society of Chemical Industry
Collapse
Affiliation(s)
- Rongguang Zhang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Dan Qiao
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Xiaoyan Peng
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Guangcai Duan
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
- Henan Innovation Center of Molecular Diagnosis and Laboratory Medicine Xinxiang Medical University Xinxiang China
| | - Qingfeng Shi
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Linghan Zhang
- Department of Clinical Medicine Zhengzhou University Zhengzhou China
| | - Chen Wang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Wenjuan Liang
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Shuaiyin Chen
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| | - Qingtang Fan
- Department of Epidemiology and Statistics, College of Public Health Zhengzhou University Zhengzhou China
| |
Collapse
|
20
|
Liu W, Tan Z, Liu H, Zeng Z, Luo S, Yang H, Zheng L, Xi T, Xing Y. Nongenetically modified Lactococcus lactis-adjuvanted vaccination enhanced innate immunity against Helicobacter pylori. Helicobacter 2017; 22. [PMID: 28805287 DOI: 10.1111/hel.12426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gram-positive enhancer matrix particles (GEM) produced by Lactococcus lactis can enhance vaccine-induced immune response. However, the mechanism under which this adjuvant mounts the efficacy of orally administered vaccines remains unexplored. MATERIALS AND METHODS We used a prophylactic mice model to investigate the mechanism of GEM-adjuvanted vaccination. Helicobacter pylori urease-specific antibody response was monitored and detected in murine serum by ELISA. Urease-specific splenic cytokine profile was examined. Gastric inflammatory responses were measured on day 43 or 71 by quantitative real-time PCR, flow cytometry and histology. RESULTS We found that GEM enhanced the efficiency of oral H. pylori vaccine by promoting innate immunity. The vaccine CUE-GEM composed of GEM particles and recombinant antigen CTB-UE provided protection of immunized mice against H. pylori insult. The protective response was associated with induction of postimmunization gastritis and local Th1/Th17 cell-medicated immune response. We showed that innate inflammatory responses including neutrophil chemokines CXCL1-2, neutrophils, and antimicrobial proteins S100A8 and MUC1 were significantly elevated. Within all infected mice, S100A8 and MUC1 levels were negatively correlated with H. pylori burden. Strikingly, mice receiving GEM also show reduction of colonization, possibly through natural host response pathways to recruit CD4+ T cells and promote S100A8 expression. CONCLUSIONS These findings suggest that GEM-based vaccine may impact Th1/Th17 immunity to orchestrate innate immune response against H. pylori infection.
Collapse
Affiliation(s)
- Wei Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhoulin Tan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Hai Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Zeng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Shuanghui Luo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Huimin Yang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yingying Xing
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
21
|
Lang J, Wang X, Liu K, He D, Niu P, Cao R, Jin L, Wu J. Oral delivery of staphylococcal nuclease by Lactococcus lactis prevents type 1 diabetes mellitus in NOD mice. Appl Microbiol Biotechnol 2017; 101:7653-7662. [PMID: 28889199 DOI: 10.1007/s00253-017-8480-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 12/23/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the self-destruction of insulin-producing β cells. Recently, studies have revealed that neutrophils contribute to the early pathological injury to the pancreas, predominantly via the formation of neutrophil extracellular traps (NETs). To determine whether early intervention targeting NETs with staphylococcal nuclease (SNase) can delay the onset of T1DM, non-obese diabetic (NOD) mice were orally administered recombinant Lactococcus lactis (L. lactis) expressing SNase. The results showed that NETs were effectively disrupted by SNase both in vivo and in vitro, leading to a significant decrease in neutrophil-derived circulating free DNA (cf-DNA/NETs), neutrophil elastase (NE), and protease 3 (PR3) in the serum compared with the controls. In addition, SNase effectively regulated the blood glucose levels of NOD mice, and the onset of diabetes was postponed with reduced mortality and morbidity. Recombinant L. lactis also ameliorated inflammation in NOD mice, as evidenced by the remarkable increase in IL-4 and reductions in TNF-α and CRP. Moreover, HE staining results showed that L. lactis expressing SNase exerted protective effects on pancreatic islets and relieved inflammation of the small intestine in NOD mice. Hence, the present study indicates that the oral delivery of SNase by L. lactis can effectively prevent T1DM, ameliorate inflammation, and contribute to immunomodulatory balance in NOD mice.
Collapse
Affiliation(s)
- Junchao Lang
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xiaoke Wang
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Kunfeng Liu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Dongmei He
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Pancong Niu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Rongyue Cao
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Liang Jin
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jie Wu
- Minigene Pharmacy Laboratory, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
22
|
Abstract
Helicobacter pylori is usually acquired in early childhood and the infection persists lifelong without causing symptoms. In a small of cases, the infection leads to gastric or duodenal ulcer disease, or gastric cancer. Why disease occurs in these individuals remains unclear, however the host response is known to play a very important part. Understanding the mechanisms involved in maintaining control over the immune and inflammatory response is therefore extremely important. Vaccines against H. pylori have remained elusive but are desperately needed for the prevention of gastric carcinogenesis. This review focuses on research findings which may prove useful in the development of prognostic tests for gastric cancer development, therapeutic agents to control immunopathology, and effective vaccines.
Collapse
Affiliation(s)
- Karen Robinson
- Nottingham Digestive Diseases Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Kazuyo Kaneko
- Nottingham Digestive Diseases Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Leif Percival Andersen
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
23
|
Tan Z, Liu W, Liu H, Li C, Zhang Y, Meng X, Tang T, Xi T, Xing Y. Oral Helicobacter pylori vaccine-encapsulated acid-resistant HP55/PLGA nanoparticles promote immune protection. Eur J Pharm Biopharm 2017; 111:33-43. [DOI: 10.1016/j.ejpb.2016.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/02/2016] [Indexed: 12/19/2022]
|
24
|
Mao R, Wu D, Wang Y. Surface display on lactic acid bacteria without genetic modification: strategies and applications. Appl Microbiol Biotechnol 2016; 100:9407-9421. [PMID: 27649963 DOI: 10.1007/s00253-016-7842-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/21/2022]
Abstract
Microbial cell surface display has attracted greater attention than ever and has numerous potential applications in biotechnology. With the safety and probiotic properties, lactic acid bacteria (LAB) have been used widely in food and industrial applications. In order to circumvent using genetically modified microorganisms which face low public acceptance and severe regulatory scrutiny, surface-engineered LAB without genetical modification are more preferred. According to the way used to obtain the fusion protein containing the passenger molecule and anchoring domain, the genetic or chemical approaches can be used to construct these surface-engineered LAB. In addition to the viable wide-type LAB, non-living bacterial-like particles (BLP) can be attached by these fusion proteins added from outside. Compared to the living LAB, BLP have a higher binding capacity and less anticarrier response. Mucosal vaccines are the predominant application of these surface-engineered LAB with no genetical modification.
Collapse
Affiliation(s)
- Ruifeng Mao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Dongli Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yefu Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|