1
|
di Leandro L, Colasante M, Pitari G, Ippoliti R. Hosts and Heterologous Expression Strategies of Recombinant Toxins for Therapeutic Purposes. Toxins (Basel) 2023; 15:699. [PMID: 38133203 PMCID: PMC10748335 DOI: 10.3390/toxins15120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.
Collapse
Affiliation(s)
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.d.L.); (M.C.); (G.P.)
| |
Collapse
|
2
|
Khodak YA. Heterologous Expression of Recombinant Proteins and Their Derivatives Used as Carriers for Conjugate Vaccines. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1248-1266. [PMID: 37770392 DOI: 10.1134/s0006297923090055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 09/30/2023]
Abstract
Carrier proteins that provide an effective and long-term immune response to weak antigens has become a real breakthrough in the disease prevention, making it available to a wider range of patients and making it possible to obtain reliable vaccines against a variety of pathogens. Currently, research is continuing both to identify new peptides, proteins, and their complexes potentially suitable for use as carriers, and to develop new methods for isolation, purification, and conjugation of already known and well-established proteins. The use of recombinant proteins has a number of advantages over isolation from natural sources, such as simpler cultivation of the host organism, the possibility of modifying genetic constructs, use of numerous promoter variants, signal sequences, and other regulatory elements. This review is devoted to the methods of obtaining both traditional and new recombinant proteins and their derivatives already being used or potentially suitable for use as carrier proteins in conjugate vaccines.
Collapse
Affiliation(s)
- Yuliya A Khodak
- Institute of Bioengineering, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, 117312, Russia.
| |
Collapse
|
3
|
Yang L, Zhou H, Chen G, Li H, Yang D, Pan L. Expression and Purification of Glycosyltransferase DnmS from Streptomyces peucetius ATCC 27952 and Study on Catalytic Characterization of Its Reverse Glycosyltransferase Reaction. Microorganisms 2023; 11:microorganisms11030762. [PMID: 36985335 PMCID: PMC10058486 DOI: 10.3390/microorganisms11030762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Anthracyclines are an important class of natural antitumor drugs. They have a conservative aromatic tetracycline backbone that is substituted with different deoxyglucoses. The deoxyglucoses are crucial for the biological activity of many bacterial natural products after the proper modification from glycosyltransferases (GTs). The difficulty in obtaining highly purified active GTs has prevented biochemical studies on natural product GTs. In this paper, a new Escherichia coli fusion plasmid pGro7′, which introduces the Streptomyces coelicolor chaperone genes groEL1, groES and groEL2, was constructed. The glycosyltransferase DnmS from Streptomyces peucetius ATCC 27952 was co-expressed with the plasmid pGro7′, and unprecedented high-efficiency and soluble expression of DnmS in the E. coli expression system was realized. Subsequently, the reverse glycosylation reaction characteristics of DnmS and DnmQ were verified. We found that DnmS and DnmQ had the highest enzyme activity when they participated in the reaction at the same time. These studies provide a strategy for the soluble expression of GTs in Streptomyces and confirm the reversibility of the catalytic reaction of GTs. This provides a powerful method for the production of active anthracyclines and to enhance the diversity of natural products.
Collapse
Affiliation(s)
- Liyan Yang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Huimin Zhou
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Guiguang Chen
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Hongliang Li
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
| | - Dengfeng Yang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
- Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
- Correspondence: (D.Y.); (L.P.)
| | - Lixia Pan
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning 530007, China
- College of Food and Quality Engineering, Nanning University, Nanning 530200, China
- Correspondence: (D.Y.); (L.P.)
| |
Collapse
|
4
|
Chen PY, Yi YC, Wang HC, Ng IS. Heterologous Expression of Toxic White Spot Syndrome Virus (WSSV) Protein in Eengineered Escherichia coli Strains. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04369-1. [PMID: 36701096 DOI: 10.1007/s12010-023-04369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Aquacultural shrimps suffer economic lost due to the white spot syndrome virus (WSSV) that is the most notorious virus for its fatality and contagion, leading to a 100% death rate on infected shrimps within 7 days. However, the infection of mechanism remains a mystery and crucial problem. To elucidate the pathogenesis of WSSV, a high abundance of protein is required to identify and characterize its functions. Therefore, the optimal WSSV355 overexpression was explored in engineered Escherichia coli strains, in particular C43(DE3) as a toxic tolerance strain remedied 40% of cell growth from BL21(DE3). Meanwhile, a trace amount of WSSV355 was observed in both strains. To optimize the codon of WSSV355 using codon adaption index (CAI), an overexpression was observed with 1.32 mg/mL in C43(DE3), while the biomass was decreased by 35%. Subsequently, the co-expression with pRARE boosted the target protein up to 1.93 mg/mL. Finally, by scaling up production of WSSV355 in the fermenter with sufficient oxygen supplied, the biomass and total and soluble protein were enhanced 67.6%, 44.9%, and 7.8% compared with that in flask condition. Herein, the current approach provides efficacious solutions to produce toxic proteins via codon usage, strain selection, and processing optimization by alleviating the burden and boosting protein production in E. coli.
Collapse
Affiliation(s)
- Po-Yen Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ying-Chen Yi
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 70101, Taiwan.,International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
5
|
High-Level Production of Soluble Cross-Reacting Material 197 in Escherichia coli Cytoplasm Due to Fine Tuning of the Target Gene's mRNA Structure. BIOTECH (BASEL (SWITZERLAND)) 2023; 12:biotech12010009. [PMID: 36648835 PMCID: PMC9844443 DOI: 10.3390/biotech12010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Cross-reacting material 197 (CRM197) is a non-toxic mutant of the diphtheria toxin and is widely used as a carrier protein in conjugate vaccines. This protein was first obtained from the supernatant of the mutant Corynebacterium diphtheriae strain. This pathogenic bacteria strain is characterized by a slow growth rate and a relatively low target protein yield, resulting in high production costs for CRM197. Many attempts have been made to establish high-yield protocols for the heterologous expression of recombinant CRM197 in different host organisms. In the present work, a novel CRM197-producing Escherichia coli strain was constructed. The target protein was expressed in the cytoplasm of SHuffle T7 E. coli cells without any additional tags and with a single potential mutation-an additional Met [-1]. The fine tuning of the mRNA structure (the disruption of the single hairpin in the start codon area) was sufficient to increase the CRM197 expression level several times, resulting in 150-270 mg/L (1.1-2.0 mg/g wet biomass) yields of pure CRM197 protein. Besides the high yield, the advantages of the obtained expression system include the absence of the necessity of CRM197 refolding or tag removal. Thus, an extensive analysis of the mRNA structure and the removal of the unwanted hairpins in the 5' area may significantly improve the target protein expression rate.
Collapse
|
6
|
Liu K, Li J, Liu M, Hou J. Molecular chaperone GroEL-GroES enhances the soluble expression of biologically active ovine growth hormone in the prokaryotic system. Protein Expr Purif 2022; 195-196:106097. [DOI: 10.1016/j.pep.2022.106097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
7
|
Tarahomjoo S, Bandehpour M, Aghaebrahimian M, Ahangaran S. Soluble Diphtheria Toxin Variant, CRM 197 was Obtained in Escherichia
coli at High Productivity Using SUMO Fusion and an Adjusted
Expression Strategy. Protein Pept Lett 2022; 29:350-359. [DOI: 10.2174/0929866529666220209155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/03/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Background:
CRM197, a non-toxic diphtheria toxin variant, is widely used as a
polysaccharide carrier in a variety of conjugate vaccines and also exhibits antitumor activity. CRM197
commercial production is limited due to the low yield of Corynebacterium diphtheriae C7
(197) tox-. Developing an efficient method for recombinant CRM197 production reduces production
costs and is critical for expanding the application coverage of related medical products and basic research.
Escherichia coli is a frequently used host for heterologous protein synthesis. However, the
primary limitation of this system is the inclusion body formation and the low yield of active protein
recovery.
Objective:
As a result, we attempted to produce CRM197 in the soluble form in E. coli using a
small ubiquitin-related modifier (SUMO) tag fusion and an expression strategy optimized for protein
production.
Methods:
CRM197 was expressed intracellularly in E. coli BL21 (DE3) with its N-terminus fused
to a SUMO tag preceded by a histidine tag (HSCRM197). To improve the solubility of HSCRM197
in E. coli, a response surface method (RSM) experimental design was used based on three
factors: expression temperature, inducer concentration, and sorbitol inclusion in the culture medium.
Metal affinity chromatography was used to purify HSCRM197, and the SUMO tag was removed
using the SUMO protease's catalytic domain. After adsorbing the SUMO tag on a Ni-NTA
column, CRM197 was obtained. DNA degradation activity was determined for both HSCRM197
and CRM197.
Results:
When HSCRM197 was expressed in E. coli under common expression conditions (37ºC,
1000 μM inducer), 15.4% of the protein was found in the cellular soluble fraction. However, when
the RSM-derived expression conditions were used (30ºC, 510 μM inducer, and 200 mM sorbitol),
the obtained HSCRM197 was almost completely soluble (96.5% solubility), and the system productivity
was 32.67 μg ml-1 h-1. HSCRM197 and CRM197 both exhibited nuclease activity. However,
the activity of CRM197 was greater than that of HSCRM197.
Conclusion:
These findings established the utility of the method developed in this study to produce
CRM197 for medical applications.
Collapse
Affiliation(s)
- Shirin Tarahomjoo
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO),
Karaj 31975/148, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Mohammad Aghaebrahimian
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO),
Karaj 31975/148, Iran
| | - Salimeh Ahangaran
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO),
Karaj 31975/148, Iran
| |
Collapse
|
8
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
9
|
Chai P, Pu X, Ge J, Ren S, Xia X, Luo A, Wang S, Wang X, Li J. The recombinant protein combined vaccine based on the fragment C of tetanus toxin and the cross-reacting material 197. Appl Microbiol Biotechnol 2021; 105:1683-1692. [PMID: 33511443 DOI: 10.1007/s00253-021-11139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022]
Abstract
Diphtheria and tetanus toxoids and acellular pertussis (DTaP) vaccines were widely used since 1940s. The exceptional success of childhood vaccination is undisputed. However, the anti-diphtheria and tetanus antibody will decrease with the increase of age in human body. A boosting vaccine for tetanus and diphtheria in adult is recommended by WHO. Recombinant protein vaccine has the advantages of single component and high safety, which is one of the directions to develop boosting vaccines. Therefore, in this study, we evaluated a recombinant TTc and CRM197 combination vaccine (RTCV) that uses the fragment C (TTc) of tetanus toxin and the cross-reacting material 197 (CRM197) of the diphtheria toxin mutant. Our results displayed that RTCV (composed of 10 μg/mL TTc, 20 μg/mL CRM197 antigens, and 500 μg/mL aluminum adjuvants) could induce high levels of IgG and IgG1 antibody in mice, which were similar as those induced by DTaP. These results will provide technical support for a novel boosting vaccine against diphtheria and tetanus. KEY POINTS: • We successfully expressed CRM197 protein in E. coli BL21 (DE3) using pET26b (+) vector. • The anti-TTc and anti-CRM197 antibody titer (IgG) of RTCV was similar with DTaP.
Collapse
Affiliation(s)
- Pengdi Chai
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiuying Pu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jun Ge
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Sulin Ren
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Xiaoyu Xia
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.,School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Amiao Luo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Shiwei Wang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Xiaodong Wang
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China
| | - Jianqiang Li
- Jiangsu Theravac Bio-pharmaceutical CO., Ltd, No.699-18 Xuanwu Street, Nanjing, 210042, China.
| |
Collapse
|
10
|
Yao D, Fan J, Han R, Xiao J, Li Q, Xu G, Dong J, Ni Y. Enhancing soluble expression of sucrose phosphorylase in Escherichia coli by molecular chaperones. Protein Expr Purif 2020; 169:105571. [DOI: 10.1016/j.pep.2020.105571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
|
11
|
Seyfi R, Babaeipour V, Mofid MR, Kahaki FA. Expression and production of recombinant scorpine as a potassium channel blocker protein in Escherichia coli. Biotechnol Appl Biochem 2018; 66:119-129. [DOI: 10.1002/bab.1704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/04/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Roghayyeh Seyfi
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Valiollah Babaeipour
- Department of Bioscience and Biotechnology; Malek Ashtar University of Technology; Tehran Iran
| | - Mohammad Reza Mofid
- Department of Biochemistry; Bioinformatics Research Center; School of Pharmacy and Pharmaceutical Sciences; Isfahan University of Medical Sciences; Isfahan Iran
| | - Fatemeh Abarghooi Kahaki
- Department of Biotechnology; School of Advanced Technologies in Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| |
Collapse
|
12
|
Structural and immunological characterization of E. coli derived recombinant CRM 197 protein used as carrier in conjugate vaccines. Biosci Rep 2018; 38:BSR20180238. [PMID: 29875175 PMCID: PMC6153374 DOI: 10.1042/bsr20180238] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/21/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
It is established that the immunogenicity of polysaccharides is enhanced by coupling them to carrier proteins. Cross reacting material (CRM197), a nontoxic variant of diphtheria toxin (DT) is widely used carrier protein for polysaccharide conjugate vaccines. Conventionally, CRM197 is isolated by fermentation of Corynebacterium diphtheriae C7 (β197) cultures, which often suffers from low yield. Recently, several recombinant approaches have been reported with robust processes and higher yields, which will improve the affordability of CRM197-based vaccines. Vaccine manufacturers require detailed analytical information to ensure that the CRM197 meets quality standards and regulatory requirements. In the present manuscript we have described detailed structural characteristics of Escherichia coli based recombinant CRM197 (rCRM197) carrier protein. The crystal structure of the E. coli based rCRM197 was found to be identical with the reported crystal structure of the C7 CRM197 produced in C. diphtheriae C7 strain (Protein Data Bank (PDB) ID: 4EA0). The crystal structure of rCRM197 was determined at 2.3 Å resolution and structure was submitted to the PDB with accession number ID 5I82. This is the first report of a crystal structure of E. coli derived recombinant CRM197 carrier protein. Furthermore, the rCRM197 was conjugated to Vi polysaccharide to generate Typhoid conjugate vaccine (Vi-rCRM197) and its immunogenicity was evaluated in Balb/C Mice. The Vi-rCRM197 conjugate vaccine was found to generate strong primary α-Vi antibody response and also showed a booster response after subsequent vaccination in mice. Overall data suggest that E. coli based recombinant CRM197 exhibits structural and immunological similarity with the C7 CRM197 and can be used as a carrier protein in conjugate vaccine development.
Collapse
|
13
|
Park AR, Jang SW, Kim JS, Park YG, Koo BS, Lee HC. Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E.coli. PLoS One 2018; 13:e0201060. [PMID: 30021008 PMCID: PMC6051658 DOI: 10.1371/journal.pone.0201060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 01/29/2023] Open
Abstract
CRM197, which retains the same inflammatory and immune-stimulant properties as diphtheria toxin but with reduced toxicity, has been used as a safe carrier in conjugated vaccines. Expression of recombinant CRM197 in E. coli is limited due to formation of inclusion bodies. Soluble expression attempts in Bacillus subtilis, P. fluorescens, Pichia pastoris, and E. coli were partially unsuccessful or did not generate yields sufficient for industrial scale production. Multiple approaches have been attempted to produce CRM197 in E. coli, which has attractive features such as high yield, simplicity, fast growth, etc., including expression of oxidative host, concurrent expression of chaperones, or periplasmic export. Recently, alternative methods for recovery of insoluble proteins expressed in E. coli were reported. Compared to traditional denaturation/refolding, these methods used the non-denaturing solubilization agent, N-lauroylsarkosine to obtain higher recovery yields of native proteins. Based on this work, here, we focused on solubilization of CRM197 from E. coli inclusion bodies. First, CRM197 was expressed as inclusion bodies by high-level expression of recombinant CRM197 in E. coli (126.8 mg/g dcw). Then bioactive CRM197 was isolated from these inclusion bodies with high yield (108.1 mg/g dcw) through solubilization with N-lauroylsarkosine including Triton X-100 and CHAPS, and purified by Ni-affinity chromatography and size-exclusion chromatography. In this study, we present a cost-effective alternative for the production of bioactive CRM197 and compare our recovery yield with yields in other production processes.
Collapse
|
14
|
Necessity of translocation domain for realisation of cytostatic effect of non-toxic derivatives of diphtheria toxin. BIOTECHNOLOGIA ACTA 2018. [DOI: 10.15407/biotech11.02.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Hennessey JP, Costantino P, Talaga P, Beurret M, Ravenscroft N, Alderson MR, Zablackis E, Prasad AK, Frasch C. Lessons Learned and Future Challenges in the Design and Manufacture of Glycoconjugate Vaccines. CARBOHYDRATE-BASED VACCINES: FROM CONCEPT TO CLINIC 2018. [DOI: 10.1021/bk-2018-1290.ch013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
| | | | - Philippe Talaga
- Department of Analytical Research and Development, Sanofi Pasteur, Marcy l’Etoile 69280, France
| | - Michel Beurret
- Janssen Vaccines & Prevention B.V., Leiden, 2301 CA, The Netherlands
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | | - Earl Zablackis
- Analytical Process Technology, Sanofi Pasteur, Swiftwater, Pennsylvania 18370, United States
| | - A. Krishna Prasad
- Pfizer Vaccines Research and Development, Pearl River, New York 10965, United States
| | - Carl Frasch
- Consultant, Martinsburg, West Virginia 25402, United States
| |
Collapse
|
16
|
Zhang J, Sun A, Dong Y, Wei D. Recombinant Production and Characterization of SAC, the Core Domain of Par-4, by SUMO Fusion System. Appl Biochem Biotechnol 2017; 184:1155-1167. [PMID: 28971310 DOI: 10.1007/s12010-017-2599-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/06/2017] [Indexed: 11/27/2022]
Abstract
Prostate apoptosis response-4 (Par-4), an anticancer protein that interacts with cell surface receptor GRP78, can selectively suppress proliferation and induce apoptosis of cancer cells. The core domain of Par-4 (aa 137-195), designated as SAC, is sufficient to inhibit tumor growth and metastasis without harming normal tissues and organs. Nevertheless, the anticancer effects of SAC have not been determined in ovarian cancer cells. Here, we developed a novel method for producing native SAC in Escherichia coli using a small ubiquitin-related modifier (SUMO) fusion system. This fusion system not only greatly improved the solubility of target protein but also enhanced the expression level of SUMO-SAC. After purified by Ni-NTA affinity chromatography, SUMO tag was cleaved from SUMO-SAC fusion protein using SUMO protease to obtain recombinant SAC. Furthermore, we simplified the purification process by combining the SUMO-SAC purification and SUMO tag cleavage into one step. Finally, the purity of recombinant SAC reached as high as 95% and the yield was 25 mg/L. Our results demonstrated that recombinant SAC strongly inhibited proliferation and induced apoptosis in ovarian cancer cells SKOV-3. Immunofluorescence analysis and competitive binding reaction showed that recombinant SAC could specifically induce apoptosis of SKOV-3 cells through combination with cell surface receptor, GRP78. Therefore, we have developed an effective strategy for expressing bioactive SAC in prokaryotic cells, which supports the application of SAC in ovarian cancer therapy.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Aiyou Sun
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Yuguo Dong
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
17
|
Nasiri M, Babaie J, Amiri S, Azimi E, Shamshiri S, Khalaj V, Golkar M, Fard-Esfahani P. SHuffle™ T7 strain is capable of producing high amount of recombinant human fibroblast growth factor-1 (rhFGF-1) with proper physicochemical and biological properties. J Biotechnol 2017; 259:30-38. [PMID: 28827102 DOI: 10.1016/j.jbiotec.2017.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/14/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Human fibroblast growth factor-1 (FGF-1) has powerful mitogenic activities in a variety of cell types and plays significant roles in many physiological processes e.g. angiogenesis and wound healing. There is increasing demand for large scale production of recombinant human FGF-1 (rhFGF-1), in order to investigate the potential medical use. In the present study, we explored SHuffle™ T7 strain for production of rhFGF-1. METHODS A synthetic gene encoding Met-140 amino acid form of human FGF-1 was utilized for expression of the protein in three different E. coli hosts (BL21 (DE3), Rosetta-gami™ 2(DE3), SHuffle™ T7). Total expressions and soluble/insoluble expression ratios of rhFGF-1 in different hosts were analyzed and compared. Soluble rhFGF-1 produced in SHuffle™ T7 cells was purified using one-step heparin-Sepharose affinity chromatography and characterized by a variety of methods for physicochemical and biological properties. RESULTS The highest level of rhFGF-1 expression and maximum soluble/insoluble ratio were achieved in SHuffle™ T7 strain. Using a single-step heparin-Sepharose chromatography, about 1500mg of purified rhFGF-1 was obtained from one liter of the culture, representing purification yield of ∼70%. The purified protein was reactive toward anti-FGF-1 ployclonal antibody in immunoblotting. Mass spectrometry confirmed the protein had expected amino acid sequence and molecular weight. In reverse-phase high-performance liquid chromatography (RP-HPLC), the protein displayed the same retention time with the human FGF-1 standard, and purity of 94%. Less than 0.3% of the purified protein was comprised of oligomers and/or aggregates as judged by high-performance size-exclusion chromatography (HP-SEC). Secondary and tertiary structures of the protein, investigated by circular dichroism and intrinsic fluorescence spectroscopy methods, respectively, represented native folding of the protein. The purified rhFGF-1 was bioactive and stimulated proliferation of NIH 3T3 cells with EC50 of 0.84ng/mL. CONCLUSION Although SHuffle™ T7 has been introduced for production of disulfide-bonded proteins in cytoplasm, we herein successfully recruited it for high yield production of soluble and bioactive rhFGF-1, a protein with 3 free cysteine and no disulfide bond. To our knowledge, this is the highest-level of rhFGF-1 expression in E. coli reported so far. Extensive physicochemical and biological analysis showed the protein had similar characteristic to authentic FGF-1.
Collapse
Affiliation(s)
- Marzieh Nasiri
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran; Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Jalal Babaie
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Samira Amiri
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Ebrahim Azimi
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Shiva Shamshiri
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Iran.
| | - Majid Golkar
- Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran.
| | | |
Collapse
|
18
|
Goffin P, Dewerchin M, De Rop P, Blais N, Dehottay P. High-yield production of recombinant CRM197, a non-toxic mutant of diphtheria toxin, in the periplasm ofEscherichia coli. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
|
19
|
Uthailak N, Mahamad P, Chittavanich P, Yanarojana S, Wijagkanalan W, Petre J, Panbangred W. Molecular Cloning, Structural Modeling and the Production of Soluble Triple-Mutated Diphtheria Toxoid (K51E/G52E/E148K) Co-expressed with Molecular Chaperones in Recombinant Escherichia coli. Mol Biotechnol 2017; 59:117-127. [PMID: 28324209 DOI: 10.1007/s12033-017-0001-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CRM197 is a diphtheria toxin (DT) mutant (G52E) which has been used as a carrier protein for conjugate vaccines. However, it still possesses cytotoxicity toward mammalian cells. The goal of this project was to produce a non-toxic and soluble CRM197EK through introduction of triple amino acid substitutions (K51E/G52E/E148K) in Escherichia coli. The expression of CRM197EKTrxHis was optimized and co-expressed with different molecular chaperones. The soluble CRM197EKTrxHis was produced at a high concentration (97.33 ± 17.47 μg/ml) under the optimal condition (induction with 0.1 mM IPTG at 20 °C for 24 h). Cells containing pG-Tf2, expressing trigger factor and GroEL-GroES, accumulated the highest amount of soluble CRM197EKTrxHis at 111.24 ± 10.40 μg/ml after induction for 24 h at 20 °C. The soluble CRM197EKTrxHis still possesses nuclease activity and completely digest λDNA at 25 and 37 °C with 8- and 4-h incubation, respectively. Molecular modeling of diphtheria toxin, CRM197 and CRM197EK indicated that substitutions of two amino acids (K51E/E148K) may cause poor NAD binding, consistent with the lack of toxicity. Therefore, CRM197EK might be used as a new potential carrier protein. However, further in vivo study is required to confirm its roles as functional carrier protein in conjugate vaccines.
Collapse
Affiliation(s)
- Naphatsamon Uthailak
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- Mahidol University - Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pornpimol Mahamad
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
- Mahidol University - Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Pamorn Chittavanich
- Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Somchai Yanarojana
- Department of Pharmacology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Wassana Wijagkanalan
- BioNet-Asia Co., Ltd., 19 Udomsuk 37, Sukhumvit 103, Prakanong, Bangkok, 10260, Thailand
| | - Jean Petre
- BioNet-Asia Co., Ltd., 19 Udomsuk 37, Sukhumvit 103, Prakanong, Bangkok, 10260, Thailand
| | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
- Mahidol University - Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
20
|
Roth R, van Zyl P, Tsekoa T, Stoychev S, Mamputha S, Buthelezi S, Crampton M. Co-expression of sulphydryl oxidase and protein disulphide isomerase inEscherichia coliallows for production of soluble CRM197. J Appl Microbiol 2017; 122:1402-1411. [DOI: 10.1111/jam.13441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/28/2022]
Affiliation(s)
- R. Roth
- Biosciences; Council for Scientific and Industrial Research; Pretoria South Africa
| | - P. van Zyl
- Biosciences; Council for Scientific and Industrial Research; Pretoria South Africa
| | - T. Tsekoa
- Biosciences; Council for Scientific and Industrial Research; Pretoria South Africa
| | - S. Stoychev
- Biosciences; Council for Scientific and Industrial Research; Pretoria South Africa
| | - S. Mamputha
- Biosciences; Council for Scientific and Industrial Research; Pretoria South Africa
| | - S. Buthelezi
- Biosciences; Council for Scientific and Industrial Research; Pretoria South Africa
| | - M. Crampton
- Biosciences; Council for Scientific and Industrial Research; Pretoria South Africa
| |
Collapse
|