1
|
Wang Z, Feng T, Zhao L, Li N, Liu J. Enhancing Stability and Catalytic Activity of d-Allulose 3-Epimerase through Multistrategy Computational Design and Cross-Regional Advantageous Mutations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:635-645. [PMID: 39729028 DOI: 10.1021/acs.jafc.4c07342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
d-Allulose 3-epimerase (DAEase) derived from Clostridium bolteae has excellent properties in the catalytic production of d-allulose, a rare sugar with unique biological functions. However, the industrial application of C. bolteae DAEase (Cb-DAEase) for d-allulose production is hindered by its low enzyme activity, poor long-term thermostability, and pH tolerance. In this study, we identified potential noncatalytic residues in Cb-DAEase using methods such as proline substitution, surface charge engineering, and surface residue prediction. The effects of these residues were experimentally validated, followed by structural analysis, which led to the generation of multisite mutants through cross-regional structural combinations. The obtained mutant Cb-R2P-E6P-D137C showed 155.6% of the enzyme activity of the wild type, and the Kcat/Km increased by 1.3-fold, an elevated half-life of 15.7 min, and an elevated Tm value of 1.1 °C. The mutant Cb-R2P-E6P-A83D-D137C had 139.7% of the enzyme activity of the wild type, the Kcat/Km increased by 1.2-fold, with an elevated half-life of 12.3 min, an elevated Tm value of 0.8 °C, and maintained 68% of the enzyme activity at pH 5.0. The findings outlined a feasible approach for the rational design of multiple preset functions of target enzymes simultaneously.
Collapse
Affiliation(s)
- Zhiqi Wang
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Tingting Feng
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Longyan Zhao
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Ning Li
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Jidong Liu
- College of Light Industry and Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
- Academy of Sugarcane and Sugar Industry, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
2
|
Chen M, Guo Z, Sun J, Tang W, Wang M, Tang Y, Li P, Wu B, Chen Y. Insights into the biosynthesis of septacidin l-heptosamine moiety unveils a VOC family sugar epimerase. Acta Pharm Sin B 2023; 13:765-774. [PMID: 36873169 PMCID: PMC9978623 DOI: 10.1016/j.apsb.2022.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
l-Heptopyranoses are important components of bacterial polysaccharides and biological active secondary metabolites like septacidin (SEP), which represents a group of nucleoside antibiotics with antitumor, antifungal, and pain-relief activities. However, little is known about the formation mechanisms of those l-heptose moieties. In this study, we deciphered the biosynthetic pathway of the l,l-gluco-heptosamine moiety in SEPs by functional characterizing four genes and proposed that SepI initiates the process by oxidizing the 4'-hydroxyl of l-glycero-α-d-manno-heptose moiety of SEP-328 (2) to a keto group. Subsequently, SepJ (C5 epimerase) and SepA (C3 epimerase) shape the 4'-keto-l-heptopyranose moiety by sequential epimerization reactions. At the last step, an aminotransferase SepG installs the 4'-amino group of the l,l-gluco-heptosamine moiety to generate SEP-327 (3). An interesting phenomenon is that the SEP intermediates with 4'-keto-l-heptopyranose moieties exist as special bicyclic sugars with hemiacetal-hemiketal structures. Notably, l-pyranose is usually converted from d-pyranose by bifunctional C3/C5 epimerase. SepA is an unprecedented monofunctional l-pyranose C3 epimerase. Further in silico and experimental studies revealed that it represents an overlooked metal dependent-sugar epimerase family bearing vicinal oxygen chelate (VOC) architecture.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyan Guo
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Laboratory of Microbial Metabolic Engineering, Institute of Medicinal Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, China
| | - Jinyuan Sun
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Tang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yue Tang
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengwei Li
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bian Wu
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources & CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Xie X, Tian Y, Ban X, Li C, Yang H, Li Z. Crystal structure of a novel homodimeric D-allulose 3-epimerase from a Clostridia bacterium. Acta Crystallogr D Struct Biol 2022; 78:1180-1191. [DOI: 10.1107/s2059798322007707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022] Open
Abstract
D-Allulose, a low-calorie rare sugar with various physiological functions, is mainly produced through the isomerization of D-fructose by ketose 3-epimerases (KEases), which exhibit various substrate specificities. A novel KEase from a Clostridia bacterium (CDAE) was identified to be a D-allulose 3-epimerase and was further characterized as thermostable and metal-dependent. In order to explore its structure–function relationship, the crystal structure of CDAE was determined using X-ray diffraction at 2.10 Å resolution, revealing a homodimeric D-allulose 3-epimerase structure with extensive interactions formed at the dimeric interface that contribute to structure stability. Structural analysis identified the structural features of CDAE, which displays a common (β/α)8-TIM barrel and an ordered Mn2+-binding architecture at the active center, which may explain the positive effects of Mn2+ on the activity and stability of CDAE. Furthermore, comparison of CDAE and other KEase structures revealed several structural differences, highlighting the remarkable differences in enzyme–substrate binding at the O4, O5 and O6 sites of the bound substrate, which are mainly induced by distinct hydrophobic pockets in the active center. The shape and hydrophobicity of this pocket appear to produce the differences in specificity and affinity for substrates among KEase family enzymes. Exploration of the crystal structure of CDAE provides a better understanding of its structure–function relationship, which might provide a basis for molecular modification of CDAE and further provides a reference for other KEases.
Collapse
|
4
|
Laksmi FA, Nirwantono R, Nuryana I, Agustriana E. Expression and characterization of thermostable D-allulose 3-epimerase from Arthrobacter psychrolactophilus (Ap DAEase) with potential catalytic activity for bioconversion of D-allulose from d-fructose. Int J Biol Macromol 2022; 214:426-438. [PMID: 35750099 DOI: 10.1016/j.ijbiomac.2022.06.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 01/14/2023]
Abstract
A novel D-allulose 3-epimerase (DAEase) from Arthrobacter psychrolactophilus (Ap DAEase) was first characterized in this study. The enzyme catalyzes the epimerization of d-fructose into a functional rare sugar, D-allulose. Ap DAEase was the first record of DAEase identified as a homotrimer with the molecular weight of its subunit at approximately 34 kDa. It had an optimum activity at pH 8.5 and 70 °C in the presence of 1 mM Mg2+. Ap DAEase was found to be an excellent thermostable enzyme. The half-life value at 70 °C was 128.4 min. The kcat and catalytic efficiency of the enzyme toward d-fructose were 2920.00 s-1 and 3.953 mM-1 s-1, respectively. To the best of our knowledge, Ap DAEase possesses the highest kcat among the previously reported DAEases. The conversion ratio of 500 and 100 mg L-1d-fructose to D-allulose was approximately 27 % in 15 and 90 min, respectively. These research findings suggest that Ap DAEase is a promising candidate for the industrial production of D-allulose.
Collapse
Affiliation(s)
- Fina Amreta Laksmi
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor Regency 16911, Indonesia.
| | - Rudi Nirwantono
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor Regency 16911, Indonesia; School of Chemistry and Molecular Bioscience, University of Queensland, Chemistry Bld, 68 Cooper Rd, Brisbane, QLD 4072, Australia
| | - Isa Nuryana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor Regency 16911, Indonesia
| | - Eva Agustriana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Jl. Raya Bogor, Km. 46, Cibinong, Bogor Regency 16911, Indonesia.
| |
Collapse
|
5
|
Xia Y, Cheng Q, Mu W, Hu X, Sun Z, Qiu Y, Liu X, Wang Z. Research Advances of d-allulose: An Overview of Physiological Functions, Enzymatic Biotransformation Technologies, and Production Processes. Foods 2021; 10:2186. [PMID: 34574296 PMCID: PMC8467252 DOI: 10.3390/foods10092186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/12/2021] [Indexed: 02/02/2023] Open
Abstract
d-allulose has a significant application value as a sugar substitute, not only as a food ingredient and dietary supplement, but also with various physiological functions, such as improving insulin resistance, anti-obesity, and regulating glucolipid metabolism. Over the decades, the physiological functions of d-allulose and the corresponding mechanisms have been studied deeply, and this product has been applied to various foods to enhance food quality and prolong shelf life. In recent years, biotransformation technologies for the production of d-allulose using enzymatic approaches have gained more attention. However, there are few comprehensive reviews on this topic. This review focuses on the recent research advances of d-allulose, including (1) the physiological functions of d-allulose; (2) the major enzyme families used for the biotransformation of d-allulose and their microbial origins; (3) phylogenetic and structural characterization of d-allulose 3-epimerases, and the directed evolution methods for the enzymes; (4) heterologous expression of d-allulose ketose 3-epimerases and biotransformation techniques for d-allulose; and (5) production processes for biotransformation of d-allulose based on the characterized enzymes. Furthermore, the future trends on biosynthesis and applications of d-allulose in food and health industries are discussed and evaluated in this review.
Collapse
Affiliation(s)
- Yu Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qianqian Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, China;
| | - Zhen Sun
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Yangyu Qiu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Ximing Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (W.M.); (Z.W.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Q.C.); (Z.S.); (Y.Q.); (X.L.)
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Yoshida H, Yoshihara A, Kato S, Mochizuki S, Akimitsu K, Izumori K, Kamitori S. Crystal structure of a novel homodimeric l-ribulose 3-epimerase from Methylomonus sp. FEBS Open Bio 2021; 11:1621-1637. [PMID: 33838083 PMCID: PMC8167858 DOI: 10.1002/2211-5463.13159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023] Open
Abstract
d-Allulose has potential as a low-calorie sweetener which can suppress fat accumulation. Several enzymes capable of d-allulose production have been isolated, including d-tagatose 3-epimerases. Here, we report the isolation of a novel protein from Methylomonas sp. expected to be a putative enzyme based on sequence similarity to ketose 3-epimerase. The synthesized gene encoding the deduced ketose 3-epimerase was expressed as a recombinant enzyme in Escherichia coli, and it exhibited the highest enzymatic activity toward l-ribulose, followed by d-ribulose and d-allulose. The X-ray structure analysis of l-ribulose 3-epimerase from Methylomonas sp. (MetLRE) revealed a homodimeric enzyme, the first reported structure of dimeric l-ribulose 3-epimerase. The monomeric structure of MetLRE is similar to that of homotetrameric l-ribulose 3-epimerases, but the short C-terminal α-helix of MetLRE is unique and different from those of known l-ribulose 3 epimerases. The length of the C-terminal α-helix was thought to be involved in tetramerization and increasing stability; however, the addition of residues to MetLRE at the C terminus did not lead to tetramer formation. MetLRE is the first dimeric l-ribulose 3-epimerase identified to exhibit high relative activity toward d-allulose.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of MedicineKagawa UniversityKitaJapan,International Institute of Rare Sugar Research and EducationKagawa UniversityKitaJapan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and EducationKagawa UniversityKitaJapan,Faculty of AgricultureKagawa UniversityKitaJapan
| | - Shiro Kato
- International Institute of Rare Sugar Research and EducationKagawa UniversityKitaJapan,Faculty of AgricultureKagawa UniversityKitaJapan
| | - Susumu Mochizuki
- International Institute of Rare Sugar Research and EducationKagawa UniversityKitaJapan,Faculty of AgricultureKagawa UniversityKitaJapan
| | - Kazuya Akimitsu
- International Institute of Rare Sugar Research and EducationKagawa UniversityKitaJapan,Faculty of AgricultureKagawa UniversityKitaJapan
| | - Ken Izumori
- International Institute of Rare Sugar Research and EducationKagawa UniversityKitaJapan,Faculty of AgricultureKagawa UniversityKitaJapan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of MedicineKagawa UniversityKitaJapan,International Institute of Rare Sugar Research and EducationKagawa UniversityKitaJapan
| |
Collapse
|
7
|
Yoshida H, Yoshihara A, Gullapalli PK, Ohtani K, Akimitsu K, Izumori K, Kamitori S. X-ray structure of Arthrobacter globiformis M30 ketose 3-epimerase for the production of D-allulose from D-fructose. Acta Crystallogr F Struct Biol Commun 2018; 74:669-676. [PMID: 30279320 PMCID: PMC6168773 DOI: 10.1107/s2053230x18011706] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/19/2018] [Indexed: 12/18/2022] Open
Abstract
The X-ray structure of ketose 3-epimerase from Arthrobacter globiformis M30, which was previously reported to be a D-allulose 3-epimerase (AgD-AE), was determined at 1.96 Å resolution. The crystal belonged to the hexagonal space group P6522, with unit-cell parameters a = b = 103.98, c = 256.53 Å. The structure was solved by molecular replacement using the structure of Mesorhizobium loti L-ribulose 3-epimerase (MlL-RE), which has 41% sequence identity, as a search model. A hexagonal crystal contained two molecules in the asymmetric unit, and AgD-AE formed a homotetramer with twofold symmetry. The overall structure of AgD-AE was more similar to that of MlL-RE than to the known structures of D-psicose (alternative name D-allulose) 3-epimerases (D-PEs or D-AEs), although AgD-AE and MlL-RE have different substrate specificities. Both AgD-AE and MlL-RE have long helices in the C-terminal region that would contribute to the stability of the homotetramer. AgD-AE showed higher enzymatic activity for L-ribulose than D-allulose; however, AgD-AE is stable and is a unique useful enzyme for the production of D-allulose from D-fructose.
Collapse
Affiliation(s)
- Hiromi Yoshida
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | | | - Kouhei Ohtani
- Matsutani Chemical Industry Co. Ltd, 5-3 Kita-Itami, Itami, Hyogo 664-8508, Japan
| | - Kazuya Akimitsu
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Shigehiro Kamitori
- Life Science Research Center and Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Kagawa, Japan
| |
Collapse
|
8
|
Guerrero-Wyss M, Durán Agüero S, Angarita Dávila L. D-Tagatose Is a Promising Sweetener to Control Glycaemia: A New Functional Food. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8718053. [PMID: 29546070 PMCID: PMC5818958 DOI: 10.1155/2018/8718053] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 11/17/2022]
Abstract
The objective of the current research was to review and update evidence on the dietary effect of the consumption of tagatose in type 2 diabetes, as well as to elucidate the current approach that exists on its production and biotechnological utility in functional food for diabetics. Articles published before July 1, 2017, were included in the databases PubMed, EBSCO, Google Scholar, and Scielo, including the terms "Tagatose", "Sweeteners", "Diabetes Mellitus type 2", "Sweeteners", "D-Tag". D-Tagatose (D-tag) is an isomer of fructose which is approximately 90% sweeter than sucrose. Preliminary studies in animals and preclinical studies showed that D-tag decreased glucose levels, which generated great interest in the scientific community. Recent studies indicate that tagatose has low glycemic index, a potent hypoglycemic effect, and eventually could be associated with important benefits for the treatment of obesity. The authors concluded that D-tag is promising as a sweetener without major adverse effects observed in these clinical studies.
Collapse
Affiliation(s)
- Marion Guerrero-Wyss
- Escuela de Nutrición, Facultad Ciencias De La Salud, Universidad San Sebastián, Santiago, Chile
| | - Samuel Durán Agüero
- Escuela de Nutrición, Facultad Ciencias De La Salud, Universidad San Sebastián, Santiago, Chile
| | - Lisse Angarita Dávila
- Carrera de Nutrición, Facultad de Medicina, Universidad Andres Bello, Sede Concepción, Talcahuano, Chile
| |
Collapse
|
9
|
|