1
|
Martín JF, Liras P. Diamine Fungal Inducers of Secondary Metabolism: 1,3-Diaminopropane and Spermidine Trigger Enzymes Involved in β-Alanine and Pantothenic Acid Biosynthesis, Precursors of Phosphopantetheine in the Activation of Multidomain Enzymes. Antibiotics (Basel) 2024; 13:826. [PMID: 39335000 PMCID: PMC11428646 DOI: 10.3390/antibiotics13090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently modulated by their interaction with specific ligand molecules. In the last decades, it was found that the biosynthesis of penicillin is induced by two different molecules, 1,3-diaminopropane and spermidine, but not by putrescine (1,4-diaminobutane) or spermine. 1,3-diaminopropane and spermidine induce the expression of penicillin biosynthetic genes in Penicillium chrysogenum. Proteomic studies clearly identified two different proteins that respond to the addition to cultures of these inducers and are involved in β-alanine and pantothenic acid biosynthesis. These compounds are intermediates in the biosynthesis of phosphopantetheine that is required for the activation of non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. These large-size multidomain enzymes are inactive in the "apo" form and are activated by covalent addition of the phosphopantetheine prosthetic group by phosphopantetheinyl transferases. Both 1,3-diaminopropane and spermidine have a similar effect on the biosynthesis of cephalosporin by Acremonium chrysogenum and lovastatin by Aspergillus terreus, suggesting that this is a common regulatory mechanism in the biosynthesis of bioactive secondary metabolites/natural products.
Collapse
Affiliation(s)
- Juan Francisco Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Paloma Liras
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
2
|
Interconnected Set of Enzymes Provide Lysine Biosynthetic Intermediates and Ornithine Derivatives as Key Precursors for the Biosynthesis of Bioactive Secondary Metabolites. Antibiotics (Basel) 2023; 12:antibiotics12010159. [PMID: 36671360 PMCID: PMC9854754 DOI: 10.3390/antibiotics12010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Bacteria, filamentous fungi, and plants synthesize thousands of secondary metabolites with important biological and pharmacological activities. The biosynthesis of these metabolites is performed by networks of complex enzymes such as non-ribosomal peptide synthetases, polyketide synthases, and terpenoid biosynthetic enzymes. The efficient production of these metabolites is dependent upon the supply of precursors that arise from primary metabolism. In the last decades, an impressive array of biosynthetic enzymes that provide specific precursors and intermediates leading to secondary metabolites biosynthesis has been reported. Suitable knowledge of the elaborated pathways that synthesize these precursors or intermediates is essential for advancing chemical biology and the production of natural or semisynthetic biological products. Two of the more prolific routes that provide key precursors in the biosynthesis of antitumor, immunosuppressant, antifungal, or antibacterial compounds are the lysine and ornithine pathways, which are involved in the biosynthesis of β-lactams and other non-ribosomal peptides, and bacterial and fungal siderophores. Detailed analysis of the molecular genetics and biochemistry of the enzyme system shows that they are formed by closely related components. Particularly the focus of this study is on molecular genetics and the enzymatic steps that lead to the formation of intermediates of the lysine pathway, such as α-aminoadipic acid, saccharopine, pipecolic acid, and related compounds, and of ornithine-derived molecules, such as N5-Acetyl-N5-Hydroxyornithine and N5-anhydromevalonyl-N5-hydroxyornithine, which are precursors of siderophores. We provide evidence that shows interesting functional relationships between the genes encoding the enzymes that synthesize these products. This information will contribute to a better understanding of the possibilities of advancing the industrial applications of synthetic biology.
Collapse
|
3
|
Mingyar E, Mühling L, Kulik A, Winkler A, Wibberg D, Kalinowski J, Blin K, Weber T, Wohlleben W, Stegmann E. A Regulator Based "Semi-Targeted" Approach to Activate Silent Biosynthetic Gene Clusters. Int J Mol Sci 2021; 22:ijms22147567. [PMID: 34299187 PMCID: PMC8306873 DOI: 10.3390/ijms22147567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022] Open
Abstract
By culturing microorganisms under standard laboratory conditions, most biosynthetic gene clusters (BGCs) are not expressed, and thus, the products are not produced. To explore this biosynthetic potential, we developed a novel "semi-targeted" approach focusing on activating "silent" BGCs by concurrently introducing a group of regulator genes into streptomycetes of the Tübingen strain collection. We constructed integrative plasmids containing two classes of regulatory genes under the control of the constitutive promoter ermE*p (cluster situated regulators (CSR) and Streptomyces antibiotic regulatory proteins (SARPs)). These plasmids were introduced into Streptomyces sp. TÜ17, Streptomyces sp. TÜ10 and Streptomyces sp. TÜ102. Introduction of the CSRs-plasmid into strain S. sp. TÜ17 activated the production of mayamycin A. By using the individual regulator genes, we proved that Aur1P, was responsible for the activation. In strain S. sp. TÜ102, the introduction of the SARP-plasmid triggered the production of a chartreusin-like compound. Insertion of the CSRs-plasmid into strain S. sp. TÜ10 resulted in activating the warkmycin-BGC. In both recombinants, activation of the BGCs was only possible through the simultaneous expression of aur1PR3 and griR in S. sp. TÜ102 and aur1P and pntR in of S. sp. TÜ10.
Collapse
Affiliation(s)
- Erik Mingyar
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| | - Lucas Mühling
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
| | - Andreas Kulik
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Anika Winkler
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, 33615 Bielefeld, Germany; (A.W.); (D.W.); (J.K.)
| | - Kai Blin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; (K.B.); (T.W.)
| | - Tilmann Weber
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; (K.B.); (T.W.)
| | - Wolfgang Wohlleben
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
| | - Evi Stegmann
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28, 72076 Tübingen, Germany; (E.M.); (L.M.); (A.K.); (W.W.)
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
4
|
Martín JF, Liras P, Sánchez S. Modulation of Gene Expression in Actinobacteria by Translational Modification of Transcriptional Factors and Secondary Metabolite Biosynthetic Enzymes. Front Microbiol 2021; 12:630694. [PMID: 33796086 PMCID: PMC8007912 DOI: 10.3389/fmicb.2021.630694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Different types of post-translational modifications are present in bacteria that play essential roles in bacterial metabolism modulation. Nevertheless, limited information is available on these types of modifications in actinobacteria, particularly on their effects on secondary metabolite biosynthesis. Recently, phosphorylation, acetylation, or phosphopantetheneylation of transcriptional factors and key enzymes involved in secondary metabolite biosynthesis have been reported. There are two types of phosphorylations involved in the control of transcriptional factors: (1) phosphorylation of sensor kinases and transfer of the phosphate group to the receiver domain of response regulators, which alters the expression of regulator target genes. (2) Phosphorylation systems involving promiscuous serine/threonine/tyrosine kinases that modify proteins at several amino acid residues, e.g., the phosphorylation of the global nitrogen regulator GlnR. Another post-translational modification is the acetylation at the epsilon amino group of lysine residues. The protein acetylation/deacetylation controls the activity of many short and long-chain acyl-CoA synthetases, transcriptional factors, key proteins of bacterial metabolism, and enzymes for the biosynthesis of non-ribosomal peptides, desferrioxamine, streptomycin, or phosphinic acid-derived antibiotics. Acetyltransferases catalyze acetylation reactions showing different specificity for the acyl-CoA donor. Although it functions as acetyltransferase, there are examples of malonylation, crotonylation, succinylation, or in a few cases acylation activities using bulky acyl-CoA derivatives. Substrates activation by nucleoside triphosphates is one of the central reactions inhibited by lysine acetyltransferases. Phosphorylation/dephosphorylation or acylation/deacylation reactions on global regulators like PhoP, GlnR, AfsR, and the carbon catabolite regulator glucokinase strongly affects the expression of genes controlled by these regulators. Finally, a different type of post-translational protein modification is the phosphopantetheinylation, catalized by phosphopantetheinyl transferases (PPTases). This reaction is essential to modify those enzymes requiring phosphopantetheine groups like non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. Up to five PPTases are present in S. tsukubaensis and S. avermitilis. Different PPTases modify substrate proteins in the PCP or ACP domains of tacrolimus biosynthetic enzymes. Directed mutations of genes encoding enzymes involved in the post-translational modification is a promising tool to enhance the production of bioactive metabolites.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Paloma Liras
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
5
|
The Onset of Tacrolimus Biosynthesis in Streptomyces tsukubaensis Is Dependent on the Intracellular Redox Status. Antibiotics (Basel) 2020; 9:antibiotics9100703. [PMID: 33076498 PMCID: PMC7602649 DOI: 10.3390/antibiotics9100703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/02/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
The oxidative stress response is a key mechanism that microorganisms have to adapt to changeling environmental conditions. Adaptation is achieved by a fine-tuned molecular response that extends its influence to primary and secondary metabolism. In the past, the role of the intracellular redox status in the biosynthesis of tacrolimus in Streptomyces tsukubaensis has been briefly acknowledged. Here, we investigate the impact of the oxidative stress response on tacrolimus biosynthesis in S. tsukubaensis. Physiological characterization of S. tsukubaensis showed that the onset of tacrolimus biosynthesis coincided with the induction of catalase activity. In addition, tacrolimus displays antioxidant properties and thus a controlled redox environment would be beneficial for its biosynthesis. In addition, S. tsukubaensis ∆ahpC strain, a strain defective in the H2O2-scavenging enzyme AhpC, showed increased production of tacrolimus. Proteomic and transcriptomic studies revealed that the tacrolimus over-production phenotype was correlated with a metabolic rewiring leading to increased availability of tacrolimus biosynthetic precursors. Altogether, our results suggest that the carbon source, mainly used for cell growth, can trigger the production of tacrolimus by modulating the oxidative metabolism to favour a low oxidizing intracellular environment and redirecting the metabolic flux towards the increase availability of biosynthetic precursors.
Collapse
|
6
|
Zhang Y, Chen H, Wang P, Wen J. Identification of the regulon FkbN for ascomycin biosynthesis and its interspecies conservation analysis as LAL family regulator. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Martín JF, Ramos A, Liras P. Regulation of Geldanamycin Biosynthesis by Cluster-Situated Transcription Factors and the Master Regulator PhoP. Antibiotics (Basel) 2019; 8:antibiotics8030087. [PMID: 31262015 PMCID: PMC6784220 DOI: 10.3390/antibiotics8030087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/25/2019] [Accepted: 06/29/2019] [Indexed: 11/16/2022] Open
Abstract
Geldanamycin and the closely related herbimycins A, B, and C are benzoquinone-type ansamycins with antitumoral activity. They are produced by Streptomyces hygroscopicus var. geldanus, Streptomyces lydicus and Streptomyces autolyticus among other Streptomyces strains. Geldanamycins interact with the Hsp-90 chaperone, a protein that has a key role in tumorigenesis of human cells. Geldanamycin is a polyketide antibiotic and the polyketide synthase contain seven modules organized in three geldanamycin synthases genes named gdmAI, gdmAII, and gdmAIII. The loading domain of GdmI activates AHBA, and also related hydroxybenzoic acid derivatives, forming geldanamycin analogues. Three regulatory genes, gdmRI, gdmRII, and gdmRIII were found associated with the geldanamycin gene cluster in S. hygroscopicus strains. GdmRI and GdmRII are LAL-type (large ATP binding regulators of the LuxR family) transcriptional regulators, while GdmRIII belongs to the TetR-family. All three are positive regulators of geldanamycin biosynthesis and are strictly required for expression of the geldanamycin polyketide synthases. In S. autolyticus the gdmRIII regulates geldanamycin biosynthesis and also expression of genes in the elaiophylin gene cluster, an unrelated macrodiolide antibiotic. The biosynthesis of geldanamycin is very sensitive to the inorganic phosphate concentration in the medium. This regulation is exerted through the two components system PhoR-PhoP. The phoRP genes of S. hygroscopicus are linked to phoU encoding a transcriptional modulator. The phoP gene was deleted in S. hygroscopicus var geldanus and the mutant was unable to grow in SPG medium unless supplemented with 5 mM phosphate. Also, the S. hygroscopicus pstS gene involved in the high affinity phosphate transport was cloned, and PhoP binding sequences (PHO boxes), were found upstream of phoU, phoRP, and pstS; the phoRP-phoU sequences were confirmed by EMSA and nuclease footprinting protection assays. The PhoP binding sequence consists of 11 nucleotide direct repeat units that are similar to those found in S. coelicolor Streptomyces avermitilis and other Streptomyces species. The available genetic information provides interesting tools for modification of the biosynthetic and regulatory mechanisms in order to increase geldanamycin production and to obtain new geldanamycin analogues with better antitumor properties.
Collapse
Affiliation(s)
- Juan F Martín
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain.
| | - Angelina Ramos
- Instituto de Biotecnología (INBIOTEC). Av. Real 1, 24006 León, Spain
| | - Paloma Liras
- Area de Microbiología, Departmento de Biología Molecular, Universidad de León, 24071 León, Spain
| |
Collapse
|
8
|
Martínez-Burgo Y, Santos-Aberturas J, Rodríguez-García A, Barreales EG, Tormo JR, Truman AW, Reyes F, Aparicio JF, Liras P. Activation of Secondary Metabolite Gene Clusters in Streptomyces clavuligerus by the PimM Regulator of Streptomyces natalensis. Front Microbiol 2019; 10:580. [PMID: 30984130 PMCID: PMC6448028 DOI: 10.3389/fmicb.2019.00580] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Expression of non-native transcriptional activators may be a powerful general method to activate secondary metabolites biosynthetic pathways. PAS-LuxR regulators, whose archetype is PimM, activate the biosynthesis of polyene macrolide antifungals and other antibiotics, and have been shown to be functionally preserved across multiple Streptomyces strains. In this work we show that constitutive expression of pimM in Streptomyces clavuligerus ATCC 27064 significantly affected its transcriptome and modifies secondary metabolism. Almost all genes in three secondary metabolite clusters were overexpressed, including the clusters responsible for the biosynthesis of the clinically important clavulanic acid and cephamycin C. In comparison to a control strain, this resulted in 10- and 7-fold higher production levels of these metabolites, respectively. Metabolomic and bioactivity studies of S. clavuligerus::pimM also revealed deep metabolic changes. Antifungal activity absent in the control strain was detected in S. clavuligerus::pimM, and determined to be the result of a fivefold increase in the production of the tunicamycin complex.
Collapse
Affiliation(s)
| | | | - Antonio Rodríguez-García
- Microbiology Section, Department of Molecular Biology, University of León, León, Spain.,Institute of Biotechnology of León, INBIOTEC, León, Spain
| | - Eva G Barreales
- Microbiology Section, Department of Molecular Biology, University of León, León, Spain
| | - José Rubén Tormo
- Centre of Excellence for Research into Innovative Medicine, Health Sciences Technology, MEDINA, Granada, Spain
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Fernando Reyes
- Centre of Excellence for Research into Innovative Medicine, Health Sciences Technology, MEDINA, Granada, Spain
| | - Jesús F Aparicio
- Microbiology Section, Department of Molecular Biology, University of León, León, Spain
| | - Paloma Liras
- Microbiology Section, Department of Molecular Biology, University of León, León, Spain
| |
Collapse
|
9
|
Ordóñez-Robles M, Rodríguez-García A, Martín JF. Genome-wide transcriptome response of Streptomyces tsukubaensis to N-acetylglucosamine: effect on tacrolimus biosynthesis. Microbiol Res 2018; 217:14-22. [DOI: 10.1016/j.micres.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/04/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
|
10
|
Wang C, Huang D, Liang S. Identification and metabolomic analysis of chemical elicitors for tacrolimus accumulation in Streptomyces tsukubaensis. Appl Microbiol Biotechnol 2018; 102:7541-7553. [DOI: 10.1007/s00253-018-9177-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
|
11
|
Transposon-based identification of a negative regulator for the antibiotic hyper-production in Streptomyces. Appl Microbiol Biotechnol 2018; 102:6581-6592. [DOI: 10.1007/s00253-018-9103-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
|
12
|
Ordóñez-Robles M, Santos-Beneit F, Martín JF. Unraveling Nutritional Regulation of Tacrolimus Biosynthesis in Streptomyces tsukubaensis through omic Approaches. Antibiotics (Basel) 2018; 7:antibiotics7020039. [PMID: 29724001 PMCID: PMC6022917 DOI: 10.3390/antibiotics7020039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022] Open
Abstract
Streptomyces tsukubaensis stands out among actinomycetes by its ability to produce the immunosuppressant tacrolimus. Discovered about 30 years ago, this macrolide is widely used as immunosuppressant in current clinics. Other potential applications for the treatment of cancer and as neuroprotective agent have been proposed in the last years. In this review we introduce the discovery of S. tsukubaensis and tacrolimus, its biosynthetic pathway and gene cluster (fkb) regulation. We have focused this work on the omic studies performed in this species in order to understand tacrolimus production. Transcriptomics, proteomics and metabolomics have improved our knowledge about the fkb transcriptional regulation and have given important clues about nutritional regulation of tacrolimus production that can be applied to improve production yields. Finally, we address some points of S. tsukubaensis biology that deserve more attention.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, León 24006, Spain.
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo 33006, Spain.
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Universidad de León, León 24071, Spain.
| |
Collapse
|
13
|
Combining metabolomics and network analysis to improve tacrolimus production in Streptomyces tsukubaensis using different exogenous feedings. ACTA ACUST UNITED AC 2017; 44:1527-1540. [DOI: 10.1007/s10295-017-1974-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Abstract
Tacrolimus is widely used as an immunosuppressant in the treatment of various autoimmune diseases. However, the low fermentation yield of tacrolimus has thus far restricted its industrial applications. To solve this problem, the time-series response mechanisms of the intracellular metabolism that were highly correlated with tacrolimus biosynthesis were investigated using different exogenous feeding strategies in S. tsukubaensis. The metabolomic datasets, which contained 93 metabolites, were subjected to weighted correlation network analysis (WGCNA), and eight distinct metabolic modules and seven hub metabolites were identified to be specifically associated with tacrolimus biosynthesis. The analysis of metabolites within each metabolic module suggested that the pentose phosphate pathway (PPP), shikimate and aspartate pathway might be the main limiting factors in the rapid synthesis phase of tacrolimus accumulation. Subsequently, all possible key-limiting steps in the above metabolic pathways were further screened using a genome-scale metabolic network model (GSMM) of S. tsukubaensis. Based on the prediction results, two newly identified targets (aroC and dapA) were overexpressed experimentally, and both of the engineered strains showed higher tacrolimus production. Moreover, the best strain, HT-aroC/dapA, that was engineered to simultaneously enhanced chorismate and lysine biosynthesis was able to produce 128.19 mg/L tacrolimus, 1.64-fold higher than control (78.26 mg/L). These findings represent a valuable addition to our understanding of tacrolimus accumulation in S. tsukubaensis, and pave the way to further production improvements.
Collapse
|
14
|
Ordóñez-Robles M, Santos-Beneit F, Albillos SM, Liras P, Martín JF, Rodríguez-García A. Streptomyces tsukubaensis as a new model for carbon repression: transcriptomic response to tacrolimus repressing carbon sources. Appl Microbiol Biotechnol 2017; 101:8181-8195. [PMID: 28983826 DOI: 10.1007/s00253-017-8545-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
Abstract
In this work, we identified glucose and glycerol as tacrolimus repressing carbon sources in the important species Streptomyces tsukubaensis. A genome-wide analysis of the transcriptomic response to glucose and glycerol additions was performed using microarray technology. The transcriptional time series obtained allowed us to compare the transcriptomic profiling of S. tsukubaensis growing under tacrolimus producing and non-producing conditions. The analysis revealed important and different metabolic changes after the additions and a lack of transcriptional activation of the fkb cluster. In addition, we detected important differences in the transcriptional response to glucose between S. tsukubaensis and the model species Streptomyces coelicolor. A number of genes encoding key players of morphological and biochemical differentiation were strongly and permanently downregulated by the carbon sources. Finally, we identified several genes showing transcriptional profiles highly correlated to that of the tacrolimus biosynthetic pathway regulator FkbN that might be potential candidates for the improvement of tacrolimus production.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Fernando Santos-Beneit
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Silvia M Albillos
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
- Departamento de Biotecnología y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Paloma Liras
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain
| | - Antonio Rodríguez-García
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071, León, Spain.
- Instituto de Biotecnología de León, INBIOTEC, Avda. Real no. 1, 24006, León, Spain.
| |
Collapse
|
15
|
Ordóñez-Robles M, Santos-Beneit F, Rodríguez-García A, Martín JF. Analysis of the Pho regulon in Streptomyces tsukubaensis. Microbiol Res 2017; 205:80-87. [PMID: 28942849 DOI: 10.1016/j.micres.2017.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 01/15/2023]
Abstract
Phosphate regulation of antibiotic biosynthesis in Streptomyces has been studied due to the importance of this genus as a source of secondary metabolites with biological activity. Streptomyces tsukubaensis is the main producer of tacrolimus (or FK506), an immunosuppressant macrolide that generates important benefits for the pharmaceutical market. However, the production of tacrolimus is under a negative control by phosphate and, therefore, is important to know the molecular mechanism of this regulation. Despite its important role, there are no reports about the Pho regulon in S. tsukubaensis. In this work we combined transcriptional studies on the response to phosphate starvation with the search for PHO boxes in the whole genome sequence of S. tsukubaensis. As a result, we identified a set of genes responding to phosphate starvation and containing PHO boxes that include common Pho regulon members but also new species-specific candidates. In addition, we demonstrate for the first time the functional activity of PhoP from S. tsukubaensis through complementation studies in a Streptomyces coelicolor ΔphoP strain. For this purpose, we developed an anhydrotetracycline inducible system that can be applied to the controlled expression of target genes.
Collapse
Affiliation(s)
- María Ordóñez-Robles
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biotecnología de León, INBIOTEC, Avda. Real n°1, 24006 León, Spain
| | | | - Antonio Rodríguez-García
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biotecnología de León, INBIOTEC, Avda. Real n°1, 24006 León, Spain
| | - Juan F Martín
- Área de Microbiología, Departamento de Biología Molecular, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain.
| |
Collapse
|
16
|
Bauer JS, Fillinger S, Förstner K, Herbig A, Jones AC, Flinspach K, Sharma C, Gross H, Nieselt K, Apel AK. dRNA-seq transcriptional profiling of the FK506 biosynthetic gene cluster in Streptomyces tsukubaensis NRRL18488 and general analysis of the transcriptome. RNA Biol 2017; 14:1617-1626. [PMID: 28665778 DOI: 10.1080/15476286.2017.1341020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
FK506 (tacrolimus) is a valuable immunosuppressant produced by several Streptomyces strains. In the genome of the wild type producer Streptomyces tsukubaensis NRRL18488, FK506 biosynthesis is encoded by a gene cluster that spans 83.5 (kb). A whole transcriptome differential shotgun sequencing (dRNA-seq) of S. tsukubaensis was performed to analyze transcription at 2 different time points; before and during active FK506 production. In total, 8,914 transcription start sites were identified in either condition, which enabled precise determination of the 5'-UTR length of the corresponding transcripts as well as the identification of 2 consensus sequence motifs in the promoter regions. The transcription start sites of all gene operons within the FK506 cluster were identified, including 3 examples of leaderless RNA transcripts. These data provide detailed insight into the transcription of the FK506 biosynthetic gene cluster to support future regulatory studies, genetic manipulation, and industrial production.
Collapse
Affiliation(s)
- Judith S Bauer
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| | - Sven Fillinger
- c Integrative Transcriptomics, Center for Bioinformatics Tübingen, University of Tübingen , Germany
| | - Konrad Förstner
- e Research Center for Infectious Diseases , University of Würzburg , Würzburg , Germany , Core Unit Systems Medicine , Institute for Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Alexander Herbig
- d Max Planck Institute for the Science of Human History , Jena , Germany
| | - Adam C Jones
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany
| | - Katrin Flinspach
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany
| | - Cynthia Sharma
- e Research Center for Infectious Diseases , University of Würzburg , Würzburg , Germany , Core Unit Systems Medicine , Institute for Molecular Infection Biology, University of Würzburg , Würzburg , Germany
| | - Harald Gross
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| | - Kay Nieselt
- c Integrative Transcriptomics, Center for Bioinformatics Tübingen, University of Tübingen , Germany
| | - Alexander K Apel
- a Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , Tübingen , Germany.,b German Centre for Infection Research (DZIF), Partner Site Tübingen , Tübingen , Germany
| |
Collapse
|