1
|
Li L, Wang H, Hu J, Fang Y, Zhou F, Yu J, Chi R, Xiao C. Comparison of microbial communities in unleached and leached ionic rare earth mines. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17511-17523. [PMID: 38342835 DOI: 10.1007/s11356-024-32221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
The leaching of ionic rare earth elements has caused serious environmental pollution and ecological damage. Microorganisms play a crucial role in soil ecosystems and are one of the most important components of these systems. However, there are fewer studies related to the changes that occur in microbial community structure and diversity before and after leaching in ionic rare earth mines. In this study, Illumina high-throughput sequencing was used to examine the diversity and composition of soil microorganisms on the summit, hillside, and foot valley surfaces of unleached and leached mines after in situ leaching. The results showed that microbial diversity and abundance in the surface soil of the unleached mine were higher than those in the leached mine, and leaching had a significant impact on the microbial community of mining soil. pH was the main factor affecting the microbial community. Proteobacteria, Actinobacteriota, and Chloroflexi were phyla that showed high abundance in the soil. Network analysis showed that microbial interactions can improve microbial adaptation and stability in harsh environments. PICRUSt2 predictions indicate functional changes and linkages in soil microbial communities.
Collapse
Affiliation(s)
- Lingyan Li
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Haitao Wang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jingang Hu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yun Fang
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Fang Zhou
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ruan Chi
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Chunqiao Xiao
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Yan K, Luo YH, Li YJ, Du LP, Gui H, Chen SC. Trajectories of soil microbial recovery in response to restoration strategies in one of the largest and oldest open-pit phosphate mine in Asia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115215. [PMID: 37421785 DOI: 10.1016/j.ecoenv.2023.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Southwestern China has the largest geological phosphorus-rich mountain in the world, which is seriously degraded by mining activities. Understanding the trajectory of soil microbial recovery and identifying the driving factors behind such restoration, as well as conducting corresponding predictive simulations, can be instrumental in facilitating ecological rehabilitation. Here, high-throughput sequencing and machine learning-based approaches were employed to investigate restoration chronosequences under four restoration strategies (spontaneous re-vegetation with or without topsoil; artificial re-vegetation with or without the addition of topsoil) in one of the largest and oldest open-pit phosphate mines worldwide. Although soil phosphorus (P) is extremely high here (max = 68.3 mg/g), some phosphate solubilizing bacteria and mycorrhiza fungi remain as the predominant functional types. Soil stoichiometry ratios (C:P and N:P) closely relate to the bacterial variation, but soil P content contributes less to microbial dynamics. Meanwhile, as restoration age increases, denitrifying bacteria and mycorrhizal fungi significantly increased. Significantly, based on partial least squares path analysis, it was found that the restoration strategy is the primary factor that drives soil bacterial and fungal composition as well as functional types through both direct and indirect effects. These indirect effects arise from factors such as soil thickness, moisture, nutrient stoichiometry, pH, and plant composition. Moreover, its indirect effects constitute the main driving force towards microbial diversity and functional variation. Using a hierarchical Bayesian model, scenario analysis reveals that the recovery trajectories of soil microbes are contingent upon changes in restoration stage and treatment strategy; inappropriate plant allocation may impede the recovery of the soil microbial community. This study is helpful for understanding the dynamics of the restoration process in degraded phosphorus-rich ecosystems, and subsequently selecting more reasonable recovery strategies.
Collapse
Affiliation(s)
- Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201 Yunnan, China
| | - Ya-Huang Luo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yun-Ju Li
- The State Phosphorus Resource Development and Utilization Engineering Technology Research Centre, Yunnan Phosphate Chemical Group Co. Ltd, Kunming 650607, China
| | - Ling-Pan Du
- The State Phosphorus Resource Development and Utilization Engineering Technology Research Centre, Yunnan Phosphate Chemical Group Co. Ltd, Kunming 650607, China
| | - Heng Gui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Si-Chong Chen
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074 Hubei, China; Millennium Seed Bank, Royal Botanic Gardens Kew, Wakehurst, West Sussex RH17 6TN, UK.
| |
Collapse
|
3
|
Samad A, Degenhardt D, Séguin A, Morency MJ, Gagné P, Martineau C. Microbial community structural and functional differentiation in capped thickened oil sands tailings planted with native boreal species. Front Microbiol 2023; 14:1168653. [PMID: 37465026 PMCID: PMC10350512 DOI: 10.3389/fmicb.2023.1168653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The oil sands mining operations in Alberta have produced billions of m3 of tailings which must be reclaimed and integrated into various mine closure landforms, including terrestrial landforms. Microorganisms play a central role in nutrient cycling during the reclamation of disturbed landscapes, contributing to successful vegetation restoration and long-term sustainability. However, microbial community succession and response in reconstructed and revegetated tailings remain largely unexplored. This study aimed to monitor the structural and functional responses of microbial communities in tailings subjected to different capping and vegetation strategies over two growing seasons (GS). To achieve this, a column-based greenhouse experiment was conducted to investigate microbial communities in tailings that were capped with a layer (10 or 30 cm) of peat-mineral mix (PMM) and planted with either upland or wetland communities. DNA metabarcoding analysis of the bacterial 16S rRNA gene and fungal ITS2 region as well as shotgun metagenomics were used to asses the impact of treatments on microbial taxonomy and functions, respectively. Results showed that tailings microbial diversity and community composition changed considerably after two GS compared to baseline samples, while communities in the PMM capping layer were much more stable. Likewise, several microbial functions were significantly enriched in tailings after two GS. Interestingly, the impact of capping on bacterial communities in tailings varied depending on the plant community, leading to a higher number of differentially abundant taxa and to a decrease in Shannon diversity and evenness in the upland treatment but not in the wetland treatment. Moreover, while capping in the presence of wetland vegetation increased the energy-related metabolic functions (carbon, nitrogen, and sulfur), these functions were depleted by capping in the upland treatment. Fungi represented a small proportion of the microbial community in tailings, but the relative abundance of several taxa changed over time, while the capping treatments favored the growth of some beneficial taxa, notably the root endophyte Serendipita, in both upland and wetland columns. The results suggest that selecting the right combination of capping material and vegetation type may contribute to improve below-ground microbial processes and sustain plant growth in harsh environments such as oil sands tailings.
Collapse
Affiliation(s)
- Abdul Samad
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Dani Degenhardt
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Marie-Josée Morency
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Patrick Gagné
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| | - Christine Martineau
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec City, QC, Canada
| |
Collapse
|
4
|
Wen J, Wu Y, Zhu X, Lan M, Li X. Influence mechanism of plant litter mediated reduction of iron and sulfur on migration of potentially toxic elements from mercury-thallium mine waste. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 332:121742. [PMID: 37121301 DOI: 10.1016/j.envpol.2023.121742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/09/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
The decomposition of plant litter in soil changes soil nutrient content and plays an important role in regulating soil pH and availability of potentially toxic elements (PTEs). However, there remains limited studies on the mechanism under which litter influences the transport of PTEs in the process of ecological restoration. This study examined the effect of plant litter decomposition mediated reduction of iron and sulfur components on migration of PTEs from mercury-thallium mine waste. The results showed that the four kinds of litter alleviated the acidity of the waste, especially the Bpa and Tre litter. The nitro and nitroso groups produced by the decomposition of the litter were adsorbed onto the waste, thereby providing an electron transfer medium for iron reducing microorganisms, such as Geobacter. This promoted the reduction and release of Fe3+ to Fe2+ and reduced the electronegativity (El) value of waste. The reduced El promoted the adsorption of metal cations such as Hg and Tl to maintain electrical neutrality. However, it was not conducive to the adsorption of oxygen containing anions of As and Sb. An increase in litter resulted in an increase in reductivity of mercury-thallium mine waste. This maintained the reduction of Fe3+ to Fe2+ and changed or destroyed the structure of silicate minerals. PTEs, such as Tl, Hg, As, and Sb, were released, resulting in reductions in their residual fraction. However, the strong reduction conditions, especially the decomposition of Bpa, caused part of the released Hg(II) combining with S2- produced by the reduction of SO42- to form insoluble HgS, thereby reducing its migration. The findings could provide a theoretical basis to guide the situ-control and ecological restoration of PTEs in waste slag site.
Collapse
Affiliation(s)
- Jichang Wen
- Institute of New Rural Development, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China
| | - Yonggui Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Xinwei Zhu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Meiyan Lan
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xinying Li
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
Long Z, Bing H, Zhu H, Wu Y. Soil covering measure mitigates vanadium loss during short-term simulated rainfall in the vanadium titano-magnetite tailings reservoir. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117201. [PMID: 36603266 DOI: 10.1016/j.jenvman.2022.117201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Soil covering is an operative measure to decline pollutant release in tailings reservoirs and promote vegetation restoration, yet urgent research still needs to probe into pollutant leaching and migration in the artifact technology under extreme precipitation. Here, a soil column leaching experiment was designed to explore the migration and behaviors of vanadium (V) in the system of vanadium titano-magnetite tailings (VTMTs) covered by soils with different depths (5 cm, 10 cm, and 15 cm). Chemical fractions of V in the VTMTs and covered soils were analyzed to decipher the mechanisms underlying the V migration. We found a limited V leaching (0.26-0.52 μg/L, <0.01% of total V) in the columns during the experiments, and V in the VTMTs was not apt to be leached or migrate upward to the overlying soils. The soil volumes overlaid had nonsignificant effect on the V behaviors in the VTMTs (P > 0.05), because of the dominant and stable residual V (96.4% of total V) in the tailings. Although acid soluble V might be transformed to oxidizable V, it was resupplied by the fractions of weak-bound V in the solid phases during the leaching experiments. The mineral metal (hydr)oxides (e.g., aluminum, iron) determined the V behaviors in the VTMTs via absorption effect, and the high affinity of V to organic matters probably prevented its migration throughout the overlying soils. The results indicate that soil covering measure in the VTMTs reservoirs effectively reduces V migration or release from the tailings through leaching or upward migration, which provides a significant guidance for vegetation restoration in V-rich tailings reservoirs.
Collapse
Affiliation(s)
- Zhijie Long
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610066, China.
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - He Zhu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
6
|
Thouin H, Norini MP, Battaglia-Brunet F, Gautret P, Crampon M, Le Forestier L. Temporal evolution of surface and sub-surface geochemistry and microbial communities of Pb-rich mine tailings during phytostabilization: A one-year pilot-scale study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115538. [PMID: 35772273 DOI: 10.1016/j.jenvman.2022.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Old mine waste repositories can present health and/or environmental issues linked to their erosion, inducing dissemination of metals and metalloids in air and water that can be attenuated through phytostabilization. Here, the effect of this widespread phytomanagement option on the biogeochemistry of a Pb-rich mine waste was evaluated with a laboratory pilot-scale experiment giving access to the non-saturated and saturated zones below the rhizosphere compartment. Amendment of the tailings surface with biochar, manure and iron-oxide-rich ochre promoted growth of the seeded Agrostis capillaris plants. These events were accompanied by an increase of pH and a decrease of Pb concentration in pore water of the surface layer, and by a transient increase of Pb, Zn, and Ba concentrations in the deeper saturated levels. Macroscopic and microscopic observations (SEM) suggest that Pb was immobilized in A. capillaris rhizosphere through mechanical entrapment of tailing particles. Microbial taxonomic and metabolic diversities increased in the amended phytostabilized surface levels, with a rise of the proportion of heterotrophic micro-organisms. Below the surface, a transient modification of microbial communities was observed in the non-saturated and saturated levels, however 11 months after seeding, the prokaryotic community of the deepest saturated zone was close to that of the initial tailings. pH and water saturation seemed to be the main parameters driving prokaryotic communities' structures. Results obtained at pilot-scale will help to precisely evaluate the impacts of phytostabilization on the temporal evolution of reactions driving the fate of pollutants inside the tailings dumps.
Collapse
Affiliation(s)
| | - Marie-Paule Norini
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Fabienne Battaglia-Brunet
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France; BRGM, BP 36009, 45060, Orléans Cedex 2, France
| | - Pascale Gautret
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| | | | - Lydie Le Forestier
- Université d'Orléans, CNRS, BRGM, ISTO, UMR 7327, 45071, Orléans, France
| |
Collapse
|
7
|
Liu H, Yuan R, Sarkodie EK, Tang J, Jiang L, Miao B, Liu X, Zhang S. Insight into functional microorganisms in wet–dry conversion to alleviate the toxicity of chromium fractions in red soil. Front Microbiol 2022; 13:977171. [PMID: 36033890 PMCID: PMC9399814 DOI: 10.3389/fmicb.2022.977171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Soil contamination with potentially toxic element such as chromium (Cr) poses a threat to the environment and human health. The environmental toxicity of Cr is related not only to the total Cr content but also to the distribution of Cr fractions. In this study, laboratory simulation experiments were conducted to explore the characteristics of Cr fractions and responses of the functional microbial community during dynamic leaching and static drying processes. The results showed that acid-soluble Cr and reducible Cr transformed into other relatively stable fractions under dry conditions, and ammonium nitrogen promoted the transformation. Nitrate-nitrogen was significantly positively correlated with Cr fractions in the wet stage (p < 0.05), while ammonium nitrogen showed the same relation in the dry process. Analysis of the microbial community showed that the bacterial and fungal genera Flavihumibacter, Altererythrobacter, Methylobacillus, Flavisolibacter, Lysobacter, and Cladosporium were related to the Cr fractions (acid-soluble Cr, reducible Cr, and oxidizable Cr) under wet conditions, while the microbial genera Ellin6067, MND1, and Ramlibacter were related to Cr fractions under dry conditions. Moreover, the proliferation of the functional microbial genera Methylobacillus, Ellin6067, and MND1 related to Cr fractions in the wet–dry conversion process alleviated the environmental toxicity of Cr. These findings provide useful information for the remediation of Cr-contaminated soils by monitoring the distribution fractions of Cr and the functional microbial community under wet–dry conditions.
Collapse
Affiliation(s)
- Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Ruiling Yuan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Emmanuel Konadu Sarkodie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Jiahui Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Bo Miao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
| | - Siyuan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Changsha, China
- *Correspondence: Siyuan Zhang,
| |
Collapse
|
8
|
Kim JH, Chan KL, Mahoney N, Cheng LW, Tautges N, Scow K. Rapid elimination of foodborne and environmental fungal contaminants by benzo analogs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:2800-2806. [PMID: 31975411 DOI: 10.1002/jsfa.10288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Contamination of food or the environment by fungi, especially those resistant to conventional fungicides or drugs, represents a hazard to human health. The objective of this study is to identify safe, natural antifungal agents that can remove fungal pathogens or contaminants rapidly from food and / or environmental sources. RESULTS Fifteen antifungal compounds (nine benzo derivatives as candidates; six conventional fungicides as references) were investigated. Three benzo analogs, namely octyl gallate (OG), trans-cinnamaldehyde (CA), and 2-hydroxy-5-methoxybenzaldehyde (2H5M), at 1 g L-1 (3.54 mmol), 1 mL L-1 (7.21 mmol), 1 mL L-1 (5.39 mmol), respectively, achieved ≥99.9% fungal death after 0.5, 2.5 or 24 h of treatments, respectively, in in vitro phosphate-buffered saline (PBS) bioassay. However, when OG, CA, and 2H5M were examined in commercial food matrices, organic apple, or grape juices, only CA maintained a similar level of antifungal activity, compared with a PBS bioassay. trans-Cinnamaldehyde showed higher antifungal activity at pH 3.5, equivalent to that of commercial fruit juices, than at pH 5.6. In soil sample tests, the application of 1 mL L-1 (7.21 mmol) CA to conventional maize / tomato soil samples (pH 6.8) for 2.5 h resulted in ≥99.9% fungal death, indicating CA could also eliminate fungal contaminants in soil. While the conventional fungicide thiabendazole exerted antifungal activity comparable to CA, thiabendazole enhanced the production of carcinogenic aflatoxins by Aspergillus flavus, an undesirable side effect. CONCLUSION trans-Cinnamaldehyde could be developed as a potent antifungal agent in food processing or soil sanitation by reducing the time / cost necessary for fungal removal. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Jong H Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Kathleen L Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Noreen Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Nicole Tautges
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| | - Kate Scow
- Department of Land, Air and Water Resources, University of California, Davis, CA, USA
| |
Collapse
|
9
|
Constantinescu P, Neagoe A, Nicoară A, Grawunder A, Ion S, Onete M, Iordache V. Implications of spatial heterogeneity of tailing material and time scale of vegetation growth processes for the design of phytostabilisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1057-1069. [PMID: 31539938 DOI: 10.1016/j.scitotenv.2019.07.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Phytostabilisation projects for tailing dams depend on processes occurring at spatial scales of 106 m2 and at decadal time scales. Most experiments supporting the design and monitoring of such projects have much smaller spatial and time scales. Usually, they are only designed for one single scale. Here, we report the results of three coupled experiments performed at pot, lysimeter and field plot scales using six sampling periodstimes from 3 to 20 months. The work explicitly accounts for the sampling times when evaluating the effects of amendments on the performance of plants grown in tailing substrates. Two treatments with potentially complementary roles were applied: zeolites to decrease availability of Cd, Cu, Pb and Zn and green fertilizer to increase the availability of nutrients. Zeolites have a positive influence on plant development, especially in the early stages. Analyses of the pooled datasets for all sampling times revealed the possibility of predicting plant physiological variables, such as protein concentrations, pigments and oxidative stress enzyme activities, as a function of the factors extracted by principal component analysis from the metal concentrations in plants, phosphorus concentrations in plants, and sampling times. Two potentially general methodological rules were extracted: account for the spatial geochemical variability of tailings, and cover the broadest possible range of time scales by experiments. The proposed experimental methodology can be of general use for the design of tailing dam remediation technologies with improvements involving the set of measured variables and sampling frequency and by carefully relating the costs to the institutional aspects of tailing dam management.
Collapse
Affiliation(s)
- Paula Constantinescu
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Aurora Neagoe
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Andrei Nicoară
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania
| | - Anja Grawunder
- Institute of Geosciences, Friedrich Schiller University, Burgweg 11, 07749 Jena, Germany.
| | - Stelian Ion
- "Gheorghe Mihoc - Caius Iacob" Institute of Statistical Mathematics and Applied Mathematics, Romanian Academy, Calea 13 Septembrie no. 13, 050711 Bucharest, Romania
| | - Marilena Onete
- Bucharest Institute of Biology, Romanian Academy, Splaiul Independentei no. 296, Bucharest, Romania
| | - Virgil Iordache
- Research Centre for Ecological Services (CESEC), University of Bucharest, Aleea Portocalelor no. 1-3, 060101, Romania.
| |
Collapse
|
10
|
Effects of Amendments on Soil Microbial Diversity, Enzyme Activity and Nutrient Accumulation after Assisted Phytostabilization of an Extremely Acidic Metalliferous Mine Soil. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current criteria for successful phytostabilization of metalliferous mine wastelands have paid much attention to soil physico-chemical properties and vegetation characteristics. However, it remains poorly understood as to how the soil microbial community responds to phytostabilization practices. To explore the effects of amendments on the microbial community after assisted phytostabilization of an extremely acidic metalliferous mine soil (pH < 3), a pot experiment was performed in which different amendments and/or combinations including lime, nitrogen-phosphorus-potassium (NPK) compound fertilizer, phosphate fertilizer and river sediment were applied. Our results showed the following: (1) The amendments significantly increased soil microbial activity and biomass C, being 2.6–4.9 and 1.9–4.1 times higher than those in the controls, respectively. (2) The activities of dehydrogenase, cellulase and urease increased by 0.9–7.5, 2.2–6.8 and 6.7–17.9 times while acid phosphatase activity decreased by 58.6%–75.1% after the application of the amendments by comparison with the controls. (3) All the amendments enhanced the nutrient status of the mine soil, with organic matter, total nitrogen and total phosphorus increased by 5.7–7.8, 3.1–6.8 and 1.1–1.9 times, relative to the mine soil. In addition, there were strong positive correlations between soil microbial community parameters and nutrient factors, suggesting that they were likely to be synergistic. From an economic view, the combination of lime (25 t ha−1) and sediment from the Pearl River (30%) was optimal for functional rehabilitation of the microbial community in the extremely acidic metalliferous mine soil studied.
Collapse
|
11
|
Li Y, Wu Z, Dong X, Jia Z, Sun Q. Variance in bacterial communities, potential bacterial carbon sequestration and nitrogen fixation between light and dark conditions under elevated CO 2 in mine tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:234-242. [PMID: 30366324 DOI: 10.1016/j.scitotenv.2018.10.253] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 05/20/2023]
Abstract
This study is the first to show the response of bacterial communities with primary carbon and nitrogen fixers to elevated CO2 (eCO2) in light and dark conditions based on 6 months of culture growth. Carbon sequestration and nitrogen fixation were analyzed by 13C and 15N isotope labeling using 13C-labeled CO2 and 15N-labeled N2, followed by pyrosequencing and DNA-based stable isotope probing (SIP) to identify carbon fixers and nitrogen fixers. The results indicated that eCO2 decreased the Chao 1 richness, and the eCO2-light treatment exhibited the highest Shannon diversity. In addition, eCO2 (in either light or dark conditions) greatly increased the relative abundances of bacteria belonging to the classes Betaproteobacteria and Alphaproteobacteria. The 13C atom % in the mine tailings increased from 1.108 to 1.84 ± 0.11 under light conditions and 1.52 ± 0.17 under dark conditions after 6 months of culture growth. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) form I-coding gene (cbbL) copy numbers were 164.30-fold and 40.36-fold higher than RubisCO form II-coding gene (cbbM) copy numbers in the heavy fractions with a buoyant density of 1.7388 g·mL-1 relative to the buoyant density gradients of DNA fractions obtained under eCO2-light and eCO2-dark treatment, respectively. The Proteobacteria-like cbbL genes were dominant in the carbon fixers. In addition, the 15N atom % in the mine tailings increased from 0.366 to 0.454 ± 0.021 in light conditions and 0.437 ± 0.018 in dark conditions. Furthermore, uncultured nitrogen-fixing bacteria were the dominant nitrogen fixers in light conditions, and bacteria harboring the Bradyrhizobium-like nifH and Leptospirillum-like nifH genes were the dominant nitrogen fixers in dark conditions. These first data for a mine tailing ecosystem are inconsistent with those obtained for a range of other ecosystems, in which the effects of CO2 were limited to several nonphotoautotrophic communities and different nitrogen fixers.
Collapse
Affiliation(s)
- Yang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Zhaojun Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Xingchen Dong
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
12
|
Baldrian P. The known and the unknown in soil microbial ecology. FEMS Microbiol Ecol 2019; 95:5281230. [DOI: 10.1093/femsec/fiz005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/08/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the CAS, Vídeňská 1083, 14220 Praha 4, Czech Republic
| |
Collapse
|
13
|
Li Y, Wu Z, Dong X, Wang D, Qiu H, Jia Z, Sun Q. Glucose-induced changes in the bacterial communities of mine tailings at different acidification stages. Can J Microbiol 2018; 65:201-213. [PMID: 30452287 DOI: 10.1139/cjm-2017-0782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ecological restoration technologies applied to tailings can influence the associated bacterial communities. However, it is unknown if the shifts in these bacterial communities are caused by increased organic carbon. Glucose-induced respiration and high-throughput sequencing were used to assess the microbial activity and bacterial communities, respectively. Glucose addition increased the microbial activity, and glucose + ammonium nitrate addition resulted in slightly higher CO2 emission than did glucose addition alone, suggesting that carbon and nitrogen limited microbial community growth. In neutral pH tailings, the bacterial taxa that increased by glucose addition were assigned to the phyla Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Planctomycetes. However, the bacterial taxa that increased by glucose addition in acidic tailings only belonged to the phylum Actinobacteria (maximum increase of 43.78%). In addition, the abundances of the total nitrogen-fixing genera and of the genus Arthrobacter (representing approximately 97.89% of the total nitrogen-fixing genera) increased by glucose addition in acidic tailings (maximum increase of 46.98%). In contrast, the relative abundances of the total iron- and (or) sulfur-oxidizing bacteria decreased (maximum decrease of 10.41%) in response to the addition of glucose. These findings indicate that the addition of organic carbon is beneficial to the development of bacterial communities in mine tailings.
Collapse
Affiliation(s)
- Yang Li
- a School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, P.R. China.,b State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, P.R. China
| | - Zhaojun Wu
- a School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, P.R. China
| | - Xingchen Dong
- c College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu Province, P.R. China
| | - Dongmei Wang
- b State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, P.R. China
| | - Huizhen Qiu
- c College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu Province, P.R. China
| | - Zhongjun Jia
- b State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, P.R. China
| | - Qingye Sun
- a School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, P.R. China
| |
Collapse
|
14
|
Sergaki C, Lagunas B, Lidbury I, Gifford ML, Schäfer P. Challenges and Approaches in Microbiome Research: From Fundamental to Applied. FRONTIERS IN PLANT SCIENCE 2018; 9:1205. [PMID: 30174681 PMCID: PMC6107787 DOI: 10.3389/fpls.2018.01205] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/26/2018] [Indexed: 05/07/2023]
Abstract
We face major agricultural challenges that remain a threat for global food security. Soil microbes harbor enormous potentials to provide sustainable and economically favorable solutions that could introduce novel approaches to improve agricultural practices and, hence, crop productivity. In this review we give an overview regarding the current state-of-the-art of microbiome research by discussing new technologies and approaches. We also provide insights into fundamental microbiome research that aim to provide a deeper understanding of the dynamics within microbial communities, as well as their interactions with different plant hosts and the environment. We aim to connect all these approaches with potential applications and reflect how we can use microbial communities in modern agricultural systems to realize a more customized and sustainable use of valuable resources (e.g., soil).
Collapse
Affiliation(s)
- Chrysi Sergaki
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Chrysi Sergaki,
| | - Beatriz Lagunas
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ian Lidbury
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Miriam L. Gifford
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
15
|
Li ZY, Yang SX, Peng XZ, Li FM, Liu J, Shu HY, Lian ZH, Liao B, Shu WS, Li JT. Field comparison of the effectiveness of agricultural and nonagricultural organic wastes for aided phytostabilization of a Pb-Zn mine tailings pond in Hunan Province, China. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1264-1273. [PMID: 31274025 DOI: 10.1080/15226514.2018.1474434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/16/2018] [Accepted: 04/02/2018] [Indexed: 06/09/2023]
Abstract
To date, very few attempts have been made to systematically compare the effectiveness of agricultural and nonagricultural organic wastes for aided phytostabilization of mine tailings under field conditions. In this study, we performed a field trial to compare the effectiveness of three agricultural organic wastes: chicken manure (CM), crop straw (CS), and spent mushroom compost (SMC), with that of three nonagricultural organic wastes, municipal sludge (MS), medicinal herb residues (MHR), and sweet sorghum vinasse (SSV) for aided phytostabilization of a Pb-Zn mine tailings pond in Hunan Province, China. Eight plant species naturally established in the vicinity of the mine were selected and seeded onto trial plots. It was found that the CM-amended plots had the highest (p < 0.05) vegetation cover (86%) and biomass production (881 g m-2), compared to other treatments. CM was also one of the best amendments in terms of improving soil nutrient status, increasing activities of soil enzymes, and immobilizing soil Pb. In addition, CM-amended plots were characterized by their higher microbial diversity and distinct microbial community structure as compared to the control plots. MS was the second best amendment in promoting vegetation cover (71%) and biomass production (461 g m-2), and it performed as well as CM for improving nutrient status, immobilizing heavy metals, and increasing the activities of enzymes in the mine tailings. Suggestions for further lines of research are made in order to develop future investigations.
Collapse
Affiliation(s)
- Zhao-Yang Li
- a State Key Laboratory of Biocontrol, and School of Life Sciences , Sun Yat-sen University , Guangzhou , People's Republic of China
- b College of Biology and Environmental Sciences and Key Laboratory of Plant Resource Conservation and Utilization (Jishou University) College of Hunan Province , Jishou University , Jishou , People's Republic of China
| | - Sheng-Xiang Yang
- b College of Biology and Environmental Sciences and Key Laboratory of Plant Resource Conservation and Utilization (Jishou University) College of Hunan Province , Jishou University , Jishou , People's Republic of China
- c College of Resources and Environment , Zunyi Normal University , Zunyi , People's Republic of China
| | - Xi-Zhu Peng
- b College of Biology and Environmental Sciences and Key Laboratory of Plant Resource Conservation and Utilization (Jishou University) College of Hunan Province , Jishou University , Jishou , People's Republic of China
| | - Feng-Mei Li
- b College of Biology and Environmental Sciences and Key Laboratory of Plant Resource Conservation and Utilization (Jishou University) College of Hunan Province , Jishou University , Jishou , People's Republic of China
| | - Jun Liu
- a State Key Laboratory of Biocontrol, and School of Life Sciences , Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Hao-Yue Shu
- a State Key Laboratory of Biocontrol, and School of Life Sciences , Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Zheng-Han Lian
- a State Key Laboratory of Biocontrol, and School of Life Sciences , Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Bin Liao
- a State Key Laboratory of Biocontrol, and School of Life Sciences , Sun Yat-sen University , Guangzhou , People's Republic of China
| | - Wen-Sheng Shu
- d School of Life Sciences , South China Normal University , Guangzhou , People's Republic of China
| | - Jin-Tian Li
- a State Key Laboratory of Biocontrol, and School of Life Sciences , Sun Yat-sen University , Guangzhou , People's Republic of China
- d School of Life Sciences , South China Normal University , Guangzhou , People's Republic of China
| |
Collapse
|