1
|
Fushimi K, Nakai Y, Nishi A, Suzuki R, Ikegami M, Nimura R, Tomono T, Hidese R, Yasueda H, Tagawa Y, Hasunuma T. Development of the autonomous lab system to support biotechnology research. Sci Rep 2025; 15:6648. [PMID: 39994271 PMCID: PMC11850614 DOI: 10.1038/s41598-025-89069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, we developed the autonomous lab (ANL), which is a system based on robotics and artificial intelligence (AI) to conduct biotechnology experiments and formulate scientific hypotheses. This system was designed with modular devices and Bayesian optimization algorithms, allowing it to effectively run a closed loop from culturing to preprocessing, measurement, analysis, and hypothesis formulation. As a case study, we used the ANL to optimize medium conditions for a recombinant Escherichia coli strain, which overproduces glutamic acid. The results demonstrated that our autonomous system successfully replicated the experimental techniques, such as sample preparation and data measurement, and improved both the cell growth rate and the maximum cell growth. The ANL offers a versatile and scalable solution for various applications in the field of bioproduction, with the potential to improve efficiency and reliability of experimental processes in the future.
Collapse
Affiliation(s)
- Keiji Fushimi
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yusuke Nakai
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Akiko Nishi
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Ryo Suzuki
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Masahiro Ikegami
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Risa Nimura
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Taichi Tomono
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657- 8501, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657- 8501, Japan
- Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki, 305-8550, Japan
| | - Yusuke Tagawa
- Technology Research Laboratory, Shimadzu Corporation, 3-9-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan.
| | - Tomohisa Hasunuma
- Graduate School of Science, Innovation and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657- 8501, Japan.
| |
Collapse
|
2
|
Nguyen T, Meleski LWG, Belavatta MP, Gurumoorthi S, Zhang C, Heins A, Zeng A. A Consecutive Genome Engineering Method Reveals a New Phenotype and Regulation of Glucose and Glycerol Utilization in Clostridium Pasteurianum. Eng Life Sci 2025; 25:e202400026. [PMID: 39801562 PMCID: PMC11717147 DOI: 10.1002/elsc.202400026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Clostridium pasteurianum is a microorganism for production of 1,3-propanediol (1,3-PDO) and butanol, but suffers from lacking genetic tools for metabolic engineering to improve product titers. Furthermore, previous studies of C. pasteurianum have mainly focused on single genomic modification. The aim of this work is the development and application of a method for modification of multiple gene targets in the genome of C. pasteurianum. To this end, a new approach for consecutive genome engineering is presented for the first time using a method based on endogenous CRISPR-Cas machineries. A total of three genome modifications were consecutively introduced in the same mutant and the effect of combined changes on the genome was observed by 39% decreased specific glycerol consumption rate and 29% increased 1,3-PDO yield in mixed substrate fermentations at laboratory scale in comparison to the wildtype strain. Additionally, examination of the phenotype of the generated mutant strain led to discovery of 2,3-butanediol (2,3-BDO) production of up to 0.48 g L-1, and this metabolite was not reported to be produced by C. pasteurianum before. The developed procedure expands the genetic toolkit for C. pasteurianum and provides researchers an additional method which contributes to improved genetic accessibility of this strain.
Collapse
Affiliation(s)
- Tom Nguyen
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Luca W. G. Meleski
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - Minu P. Belavatta
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | | | - Chijian Zhang
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
- Hua An Tang Biotech Group Co., LtdGuangzhouChina
| | - Anna‐Lena Heins
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
| | - An‐Ping Zeng
- Institute of Bioprocess and Biosystems EngineeringHamburg University of TechnologyHamburgGermany
- Center of Synthetic Biology and Integrated BioengineeringSchool of EngineeringWestlake UniversityHangzhouChina
| |
Collapse
|
3
|
Rhein S, Costalunga R, Inderhees J, Gürtzgen T, Faupel TC, Shaheryar Z, Arrulo Pereira A, Othman A, Begemann K, Binder S, Stölting I, Dorta V, Nawroth PP, Fleming T, Oexle K, Prevot V, Nogueiras R, Meyhöfer S, Meyhöfer SM, Schwaninger M. The reactive pyruvate metabolite dimethylglyoxal mediates neurological consequences of diabetes. Nat Commun 2024; 15:5745. [PMID: 38987239 PMCID: PMC11237006 DOI: 10.1038/s41467-024-50089-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Complications of diabetes are often attributed to glucose and reactive dicarbonyl metabolites derived from glycolysis or gluconeogenesis, such as methylglyoxal. However, in the CNS, neurons and endothelial cells use lactate as energy source in addition to glucose, which does not lead to the formation of methylglyoxal and has previously been considered a safer route of energy consumption than glycolysis. Nevertheless, neurons and endothelial cells are hotspots for the cellular pathology underlying neurological complications in diabetes, suggesting a cause that is distinct from other diabetes complications and independent of methylglyoxal. Here, we show that in clinical and experimental diabetes plasma concentrations of dimethylglyoxal are increased. In a mouse model of diabetes, ilvb acetolactate-synthase-like (ILVBL, HACL2) is the enzyme involved in formation of increased amounts of dimethylglyoxal from lactate-derived pyruvate. Dimethylglyoxal reacts with lysine residues, forms Nε-3-hydroxy-2-butanonelysine (HBL) as an adduct, induces oxidative stress more strongly than other dicarbonyls, causes blood-brain barrier disruption, and can mimic mild cognitive impairment in experimental diabetes. These data suggest dimethylglyoxal formation as a pathway leading to neurological complications in diabetes that is distinct from other complications. Importantly, dimethylglyoxal formation can be reduced using genetic, pharmacological and dietary interventions, offering new strategies for preventing CNS dysfunction in diabetes.
Collapse
Affiliation(s)
- Sina Rhein
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Riccardo Costalunga
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Bioanalytic Core Facility, Center for Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Julica Inderhees
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
- Bioanalytic Core Facility, Center for Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Tammo Gürtzgen
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Teresa Christina Faupel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Zaib Shaheryar
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Adriana Arrulo Pereira
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Alaa Othman
- Bioanalytic Core Facility, Center for Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
- Functional Genomics Center Zurich, ETH Zurich, Zurich, Switzerland
| | - Kimberly Begemann
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Sonja Binder
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de, Compostela, Spain
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
| | - Konrad Oexle
- Neurogenetic Systems Analysis Group, Institute of Neurogenomics, Helmholtz, Munich, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S 1172, DISTALZ, EGID, Lille, France
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de, Compostela, Spain
| | - Svenja Meyhöfer
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
- Department of Medicine I, University Hospital Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Sebastian M Meyhöfer
- German Center for Diabetes Research (DZD), Munich, Neuherberg, Germany
- Institute for Endocrinology and Diabetes, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.
- German Research Centre for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.
| |
Collapse
|
4
|
Sjöberg G, Reķēna A, Fornstad M, Lahtvee PJ, van Maris AJA. Evaluation of enzyme-constrained genome-scale model through metabolic engineering of anaerobic co-production of 2,3-butanediol and glycerol by Saccharomyces cerevisiae. Metab Eng 2024; 82:49-59. [PMID: 38309619 DOI: 10.1016/j.ymben.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Enzyme-constrained genome-scale models (ecGEMs) have potential to predict phenotypes in a variety of conditions, such as growth rates or carbon sources. This study investigated if ecGEMs can guide metabolic engineering efforts to swap anaerobic redox-neutral ATP-providing pathways in yeast from alcoholic fermentation to equimolar co-production of 2,3-butanediol and glycerol. With proven pathways and low product toxicity, the ecGEM solution space aligned well with observed phenotypes. Since this catabolic pathway provides only one-third of the ATP of alcoholic fermentation (2/3 versus 2 ATP per glucose), the ecGEM predicted a growth decrease from 0.36 h-1 in the reference to 0.175 h-1 in the engineered strain. However, this <3-fold decrease would require the specific glucose consumption rate to increase. Surprisingly, after the pathway swap the engineered strain immediately grew at 0.15 h-1 with a glucose consumption rate of 29 mmol (g CDW)-1 h-1, which was indeed higher than reference (23 mmol (g CDW)-1 h-1) and one of the highest reported for S. cerevisiae. The accompanying 2,3-butanediol- (15.8 mmol (g CDW)-1 h-1) and glycerol (19.6 mmol (g CDW)-1 h-1) production rates were close to predicted values. Proteomics confirmed that this increased consumption rate was facilitated by enzyme reallocation from especially ribosomes (from 25.5 to 18.5 %) towards glycolysis (from 28.7 to 43.5 %). Subsequently, 200 generations of sequential transfer did not improve growth of the engineered strain, showing the use of ecGEMs in predicting opportunity space for laboratory evolution. The observations in this study illustrate both the current potential, as well as future improvements, of ecGEMs as a tool for both metabolic engineering and laboratory evolution.
Collapse
Affiliation(s)
- Gustav Sjöberg
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Matilda Fornstad
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Antonius J A van Maris
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
5
|
Sugimura M, Seike T, Okahashi N, Izumi Y, Bamba T, Ishii J, Matsuda F. Improved 2,3-Butanediol Production Rate of Metabolically Engineered Saccharomyces cerevisiae by Deletion of RIM15 and Activation of Pyruvate Consumption Pathway. Int J Mol Sci 2023; 24:16378. [PMID: 38003568 PMCID: PMC10671664 DOI: 10.3390/ijms242216378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Saccharomyces cerevisiae is a promising host for the bioproduction of higher alcohols, such as 2,3-butanediol (2,3-BDO). Metabolically engineered S. cerevisiae strains that produce 2,3-BDO via glycolysis have been constructed. However, the specific 2,3-BDO production rates of engineered strains must be improved. To identify approaches to improving the 2,3-BDO production rate, we investigated the factors contributing to higher ethanol production rates in certain industrial strains of S. cerevisiae compared to laboratory strains. Sequence analysis of 11 industrial strains revealed the accumulation of many nonsynonymous substitutions in RIM15, a negative regulator of high fermentation capability. Comparative metabolome analysis suggested a positive correlation between the rate of ethanol production and the activity of the pyruvate-consuming pathway. Based on these findings, RIM15 was deleted, and the pyruvate-consuming pathway was activated in YHI030, a metabolically engineered S. cerevisiae strain that produces 2,3-BDO. The titer, specific production rate, and yield of 2,3-BDO in the test tube-scale culture using the YMS106 strain reached 66.4 ± 4.4 mM, 1.17 ± 0.017 mmol (g dry cell weight h)-1, and 0.70 ± 0.03 mol (mol glucose consumed)-1. These values were 2.14-, 2.92-, and 1.81-fold higher than those of the vector control, respectively. These results suggest that bioalcohol production via glycolysis can be enhanced in a metabolically engineered S. cerevisiae strain by deleting RIM15 and activating the pyruvate-consuming pathway.
Collapse
Affiliation(s)
- Masahiko Sugimura
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Taisuke Seike
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Fukuoka, Japan
| | - Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Hyogo, Japan
| | - Fumio Matsuda
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
6
|
Yatabe F, Seike T, Okahashi N, Ishii J, Matsuda F. Improvement of ethanol and 2,3-butanediol production in Saccharomyces cerevisiae by ATP wasting. Microb Cell Fact 2023; 22:204. [PMID: 37807050 PMCID: PMC10560415 DOI: 10.1186/s12934-023-02221-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND "ATP wasting" has been observed in 13C metabolic flux analyses of Saccharomyces cerevisiae, a yeast strain commonly used to produce ethanol. Some strains of S. cerevisiae, such as the sake strain Kyokai 7, consume approximately two-fold as much ATP as laboratory strains. Increased ATP consumption may be linked to the production of ethanol, which helps regenerate ATP. RESULTS This study was conducted to enhance ethanol and 2,3-butanediol (2,3-BDO) production in the S. cerevisiae strains, ethanol-producing strain BY318 and 2,3-BDO-producing strain YHI030, by expressing the fructose-1,6-bisphosphatase (FBPase) and ATP synthase (ATPase) genes to induce ATP dissipation. The introduction of a futile cycle for ATP consumption in the pathway was achieved by expressing various FBPase and ATPase genes from Escherichia coli and S. cerevisiae in the yeast strains. The production of ethanol and 2,3-BDO was evaluated using high-performance liquid chromatography and gas chromatography, and fermentation tests were performed on synthetic media under aerobic conditions in batch culture. The results showed that in the BY318-opt_ecoFBPase (expressing opt_ecoFBPase) and BY318-ATPase (expressing ATPase) strains, specific glucose consumption was increased by 30% and 42%, respectively, and the ethanol production rate was increased by 24% and 45%, respectively. In contrast, the YHI030-opt_ecoFBPase (expressing opt_ecoFBPase) and YHI030-ATPase (expressing ATPase) strains showed increased 2,3-BDO yields of 26% and 18%, respectively, and the specific production rate of 2,3-BDO was increased by 36%. Metabolomic analysis confirmed the introduction of the futile cycle. CONCLUSION ATP wasting may be an effective strategy for improving the fermentative biosynthetic capacity of S. cerevisiae, and increased ATP consumption may be a useful tool in some alcohol-producing strains.
Collapse
Affiliation(s)
- Futa Yatabe
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taisuke Seike
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Okahashi
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University Shimadzu, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, Hyogo, 657-8501, Japan
| | - Fumio Matsuda
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Analytical Innovation Research Laboratory, Graduate School of Engineering, Osaka University Shimadzu, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
7
|
Li Y, Zhao X, Yao M, Yang W, Han Y, Liu L, Zhang J, Liu J. Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase. Microb Cell Fact 2023; 22:165. [PMID: 37644496 PMCID: PMC10466699 DOI: 10.1186/s12934-023-02163-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
3-Hydroxybutanone (Acetoin, AC) and 2,3-butanediol (BD) are two essential four-carbon platform compounds with numerous pharmaceutical and chemical synthesis applications. AC and BD have two and three stereoisomers, respectively, while the application of the single isomer product in chemical synthesis is superior. AC and BD are glucose overflow metabolites produced by biological fermentation from a variety of microorganisms. However, the AC or BD produced by microorganisms using glucose is typically a mixture of various stereoisomers. This was discovered to be due to the simultaneous presence of multiple butanediol dehydrogenases (BDHs) in microorganisms, and AC and BD can be interconverted under BDH catalysis. In this paper, beginning with the synthesis pathways of microbial AC and BD, we review in detail the studies on the formation mechanisms of different stereoisomers of AC and BD, summarize the properties of different types of BDH that have been tabulated, and analyze the structural characteristics and affinities of different types of BDH by comparing them using literature and biological database data. Using microorganisms, recent research on the production of optically pure AC or BD was also reviewed. Limiting factors and possible solutions for chiral AC and BD production are discussed.
Collapse
Affiliation(s)
- Yuchen Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiangying Zhao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China.
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Mingjing Yao
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
| | - Wenli Yang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yanlei Han
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
| | - Liping Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jiaxiang Zhang
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Jianjun Liu
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Shandong Academy of Sciences), Jinan, 250013, China
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
8
|
Wei H, Wang W, Chou YC, Himmel ME, Chen X, Bomble YJ, Zhang M. Prospects for engineering Ralstonia eutropha and Zymomonas mobilis for the autotrophic production of 2,3-butanediol from CO 2 and H 2. ENGINEERING MICROBIOLOGY 2023; 3:100074. [PMID: 39629244 PMCID: PMC11610990 DOI: 10.1016/j.engmic.2023.100074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 12/07/2024]
Abstract
The decarbonization of the chemical industry and a shift toward circular economies because of high global CO2 emissions make CO2 an attractive feedstock for manufacturing chemicals. Moreover, H2 is a low-cost and carbon-free reductant because technologies such as solar-driven electrolysis and supercritical water (scH2O) gasification enable sustainable production of molecular hydrogen (H2). We review the recent advances in engineering Ralstonia eutropha, the representative species of "Knallgas" bacteria, for utilizing CO2 and H2 to autotrophically produce 2,3-butanediol (2,3-BDO). This assessment is focused on state-of-the-art approaches for splitting H2 to supply energy in the form of ATP and NADH to power cellular reactions and employing the Calvin-Benson-Bassham cycle for CO2 fixation. Major challenges and opportunities for application and future perspectives are discussed in the context of developing other promising CO2 and H2-utilizing microorganisms, exemplified by Zymomonas mobilis.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Wei Wang
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yat-Chen Chou
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| |
Collapse
|
9
|
Huo G, Foulquié-Moreno MR, Thevelein JM. Development of an industrial yeast strain for efficient production of 2,3-butanediol. Microb Cell Fact 2022; 21:199. [PMID: 36175998 PMCID: PMC9520875 DOI: 10.1186/s12934-022-01924-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/27/2022] [Indexed: 11/28/2022] Open
Abstract
As part of the transition from a fossil resources-based economy to a bio-based economy, the production of platform chemicals by microbial cell factories has gained strong interest. 2,3-butanediol (2,3-BDO) has various industrial applications, but its production by microbial fermentation poses multiple challenges. We have engineered the bacterial 2,3-BDO synthesis pathway, composed of AlsS, AlsD and BdhA, in a pdc-negative version of an industrial Saccharomyces cerevisiae yeast strain. The high concentration of glycerol caused by the excess NADH produced in the pathway from glucose to 2,3-BDO was eliminated by overexpression of NoxE and also in a novel way by combined overexpression of NDE1, encoding mitochondrial external NADH dehydrogenase, and AOX1, encoding a heterologous alternative oxidase expressed inside the mitochondria. This was combined with strong downregulation of GPD1 and deletion of GPD2, to minimize glycerol production while maintaining osmotolerance. The HGS50 strain produced a 2,3-BDO titer of 121.04 g/L from 250 g/L glucose, the highest ever reported in batch fermentation, with a productivity of 1.57 g/L.h (0.08 g/L.h per gCDW) and a yield of 0.48 g/g glucose or with 96% the closest to the maximum theoretical yield ever reported. Expression of Lactococcus lactis NoxE, encoding a water-forming NADH oxidase, combined with similar genetic modifications, as well as expression of Candida albicans STL1, also minimized glycerol production while maintaining high osmotolerance. The HGS37 strain produced 130.64 g/L 2,3-BDO from 280 g/L glucose, with productivity of 1.58 g/L.h (0.11 g/L.h per gCDW). Both strains reach combined performance criteria adequate for industrial implementation.
Collapse
Affiliation(s)
- Guangxin Huo
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - María R Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium.,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium. .,Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3001, Leuven-Heverlee, Flanders, Belgium. .,NovelYeast Bv, Open Bio-Incubator, Erasmus High School, Laarbeeklaan 121, B-1090, Brussels (Jette), Belgium.
| |
Collapse
|
10
|
Hazeena SH, Shurpali NJ, Siljanen H, Lappalainen R, Anoop P, Adarsh VP, Sindhu R, Pandey A, Binod P. Bioprocess development of 2, 3-butanediol production using agro-industrial residues. Bioprocess Biosyst Eng 2022; 45:1527-1537. [PMID: 35960335 PMCID: PMC9399043 DOI: 10.1007/s00449-022-02761-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
The valorization of agricultural and industrial wastes for fuel and chemical production benefits environmental sustainability. 2, 3-Butanediol (2,3-BDO) is a value-added platform chemical covering many industrial applications. Since the global market is increasing drastically, production rates have to increase. In order to replace the current petroleum-based 2,3-BDO production, renewable feedstock's ability has been studied for the past few decades. This study aims to find an improved bioprocess for producing 2,3-BDO from agricultural and industrial residues, consequently resulting in a low CO2 emission bioprocess. For this, screening of 13 different biomass samples for hydrolyzable sugars has been done. Alkali pretreatment has been performed with the processed biomass and enzyme hydrolysis performed using commercial cellulase. Among all biomass hydrolysate oat hull and spruce bark biomass could produce the maximum amount of total reducing sugars. Later oat hull and spruce bark biomass with maximum hydrolyzable sugars have been selected for submerged fermentation studies using Enterobacter cloacae SG1. After fermentation, 37.59 and 26.74 g/L of 2,3-BDO was obtained with oat hull and spruce bark biomass, respectively. The compositional analysis of each step of biomass processing has been performed and changes in each component have been evaluated. The compositional analysis has revealed that biomass composition has changed significantly after pretreatment and hydrolysis leading to a remarkable release of sugars which can be utilized by bacteria for 2,3-BDO production. The results have been found to be promising, showing the potential of waste biomass residues as a low-cost raw material for 2,3-BDO production and thus a new lead in an efficient waste management approach for less CO2 emission.
Collapse
Affiliation(s)
- Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Narasinha J Shurpali
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio campus, Kuopio, Finland.
- Natural Resources Institute Finland (Luke), Halolantie 31 A, 71750, Maaninka, FI, Finland.
| | - Henri Siljanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio campus, Kuopio, Finland
| | - Reijo Lappalainen
- Biomaterials Technology, Dept. of Applied Physics & SIB-Labs, University of Eastern Finland (Kuopio Campus), Yliopistonranta 1 F, 70211, Kuopio, FI, Finland
| | - Puthiyamdam Anoop
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Velayudhanpillai Prasannakumari Adarsh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, 248 007, Dehradun, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
11
|
Enantiopure meso-2,3-butanediol production by metabolically engineered Saccharomyces cerevisiae expressing 2,3-butanediol dehydrogenase from Klebsiella oxytoca. J Biotechnol 2022; 354:1-9. [PMID: 35644291 DOI: 10.1016/j.jbiotec.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
2,3-Butanediol (2,3-BDO) is a functional C4 compound with various industrial applications. It exists as three isomers, and racemic mixtures can be produced through chemical synthesis and fermentation using natural producers. In this study, Saccharomyces cerevisiae was engineered to produce enantiopure meso-2,3-BDO by eliminating BDH1 encoding (2 R,3 R)-butanediol dehydrogenase and introducing budC coding for acetoin reductase from Klebsiella oxytoca. The resulting strain produced 69.2 g/L of enantiopure meso-2,3-BDO production with a productivity of 1.5 g meso-2,3-BDO/L•h using cassava hydrolysates. Furthermore, improved titer and productivity of meso-2,3-BDO were achieved by resolving C2-auxotrophy. To decrease the acetoin accumulation, the budC gene was stably and strongly expressed throughout the chromosomal integration. The resulting strain produced 171 g/L of meso-2,3-BDO with 0.49 g meso-2,3-BDO /g glucose, which is 99.8 % of theoretical yield and a productivity of 1.8 g meso-2,3-BDO/L•h. These results will help facilitate the commercial production of enantiopure meso-2,3-BDO using the GRAS strain.
Collapse
|
12
|
A Review on the Production of C4 Platform Chemicals from Biochemical Conversion of Sugar Crop Processing Products and By-Products. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development and commercialization of sustainable chemicals from agricultural products and by-products is necessary for a circular economy built on renewable natural resources. Among the largest contributors to the final cost of a biomass conversion product is the cost of the initial biomass feedstock, representing a significant challenge in effective biomass utilization. Another major challenge is in identifying the correct products for development, which must be able to satisfy the need for both low-cost, drop-in fossil fuel replacements and novel, high-value fine chemicals (and/or commodity chemicals). Both challenges can be met by utilizing wastes or by-products from biomass processing, which have very limited starting cost, to yield platform chemicals. Specifically, sugar crop processing (e.g., sugarcane, sugar beet) is a mature industry that produces high volumes of by-products with significant potential for valorization. This review focuses specifically on the production of acetoin (3-hydroxybutanone), 2,3-butanediol, and C4 dicarboxylic (succinic, malic, and fumaric) acids with emphasis on biochemical conversion and targeted upgrading of sugar crop products/by-products. These C4 compounds are easily derived from fermentations and can be converted into many different final products, including food, fragrance, and cosmetic additives, as well as sustainable biofuels and other chemicals. State-of-the-art literature pertaining to optimization strategies for microbial conversion of sugar crop byproducts to C4 chemicals (e.g., bagasse, molasses) is reviewed, along with potential routes for upgrading and valorization. Directions and opportunities for future research and industrial biotechnology development are discussed.
Collapse
|
13
|
PyMiner: A method for metabolic pathway design based on the uniform similarity of substrate-product pairs and conditional search. PLoS One 2022; 17:e0266783. [PMID: 35404943 PMCID: PMC9000129 DOI: 10.1371/journal.pone.0266783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/26/2022] [Indexed: 11/30/2022] Open
Abstract
Metabolic pathway design is an essential step in the course of constructing an efficient microbial cell factory to produce high value-added chemicals. Meanwhile, the computational design of biologically meaningful metabolic pathways has been attracting much attention to produce natural and non-natural products. However, there has been a lack of effective methods to perform metabolic network reduction automatically. In addition, comprehensive evaluation indexes for metabolic pathway are still relatively scarce. Here, we define a novel uniform similarity to calculate the main substrate-product pairs of known biochemical reactions, and develop further an efficient metabolic pathway design tool named PyMiner. As a result, the redundant information of general metabolic network (GMN) is eliminated, and the number of substrate-product pairs is shown to decrease by 81.62% on average. Considering that the nodes in the extracted metabolic network (EMN) constructed in this work is large in scale but imbalanced in distribution, we establish a conditional search strategy (CSS) that cuts search time in 90.6% cases. Compared with state-of-the-art methods, PyMiner shows obvious advantages and demonstrates equivalent or better performance on 95% cases of experimentally verified pathways. Consequently, PyMiner is a practical and effective tool for metabolic pathway design.
Collapse
|
14
|
Effectively Converting Cane Molasses into 2,3-Butanediol Using Clostridium ljungdahlii by an Integrated Fermentation and Membrane Separation Process. Molecules 2022; 27:molecules27030954. [PMID: 35164219 PMCID: PMC8839846 DOI: 10.3390/molecules27030954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Firstly, 2,3-butanediol (2,3-BDO) is a chemical platform used in several applications. However, the pathogenic nature of its producers and the expensive feedstocks used limit its scale production. In this study, cane molasses was used for 2,3-BDO production by a nonpathogenic Clostridium ljungdahlii. It was found that cane molasses alone, without the addition of other ingredients, was favorable for use as the culture medium for 2,3-BDO production. Compared with the control (i.e., the modified DSMZ 879 medium), the differential genes are mainly involved in the pathways of carbohydrate metabolism, membrane transport, and amino acid metabolism in the case of the cane molasses alone. However, when cane molasses alone was used, cell growth was significantly inhibited by KCl in cane molasses. Similarly, a high concentration of sugars (i.e., above 35 g/L) can inhibit cell growth and 2,3-BDO production. More seriously, 2,3-BDO production was inhibited by itself. As a result, cane molasses alone with an initial 35 g/L total sugars was suitable for 2,3-BDO production in batch culture. Finally, an integrated fermentation and membrane separation process was developed to maintain high 2,3-BDO productivity of 0.46 g·L−1·h−1. Meanwhile, the varied fouling mechanism indicated that the fermentation properties changed significantly, especially for the cell properties. Therefore, the integrated fermentation and membrane separation process was favorable for 2,3-BDO production by C. ljungdahlii using cane molasses.
Collapse
|
15
|
Mitsui R, Yamada R, Matsumoto T, Ogino H. Bioengineering for the industrial production of 2,3-butanediol by the yeast, Saccharomyces cerevisiae. World J Microbiol Biotechnol 2022; 38:38. [PMID: 35018511 DOI: 10.1007/s11274-021-03224-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/29/2021] [Indexed: 12/31/2022]
Abstract
Owing to issues, such as the depletion of petroleum resources and price instability, the development of biorefinery related technologies that produce fuels, electric power, chemical substances, among others, from renewable resources is being actively promoted. 2,3-Butanediol (2,3-BDO) is a key compound that can be used to produce various chemical substances. In recent years, 2,3-BDO production using biological processes has attracted extensive attention for achieving a sustainable society through the production of useful compounds from renewable resources. With the development of genetic engineering, metabolic engineering, synthetic biology, and other research field, studies on 2,3-BDO production by the yeast, Saccharomyces cerevisiae, which is safe and can be fabricated using an established industrial-scale cultivation technology, have been actively conducted. In this review, we sought to describe 2,3-BDO and its derivatives; discuss 2,3-BDO production by microorganisms, in particular S. cerevisiae, whose research and development has made remarkable progress; describe a method for separating and recovering 2,3-BDO from a microbial culture medium; and propose future prospects for the industrial production of 2,3-BDO by microorganisms.
Collapse
Affiliation(s)
- Ryosuke Mitsui
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
16
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
17
|
An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts. Nat Commun 2021; 12:5139. [PMID: 34446711 PMCID: PMC8390474 DOI: 10.1038/s41467-021-25233-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-free systems using crude cell extracts present appealing opportunities for designing biosynthetic pathways and enabling sustainable chemical synthesis. However, the lack of tools to effectively manipulate the underlying host metabolism in vitro limits the potential of these systems. Here, we create an integrated framework to address this gap that leverages cell extracts from host strains genetically rewired by multiplexed CRISPR-dCas9 modulation and other metabolic engineering techniques. As a model, we explore conversion of glucose to 2,3-butanediol in extracts from flux-enhanced Saccharomyces cerevisiae strains. We show that cellular flux rewiring in several strains of S. cerevisiae combined with systematic optimization of the cell-free reaction environment significantly increases 2,3-butanediol titers and volumetric productivities, reaching productivities greater than 0.9 g/L-h. We then show the generalizability of the framework by improving cell-free itaconic acid and glycerol biosynthesis. Our coupled in vivo/in vitro metabolic engineering approach opens opportunities for synthetic biology prototyping efforts and cell-free biomanufacturing.
Collapse
|
18
|
Lee JW, Lee YG, Jin YS, Rao CV. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production. Appl Microbiol Biotechnol 2021; 105:5751-5767. [PMID: 34287658 DOI: 10.1007/s00253-021-11436-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
2,3-Butanediol (2,3-BDO) is a promising commodity chemical with various industrial applications. While petroleum-based chemical processes currently dominate the industrial production of 2,3-BDO, fermentation-based production of 2,3-BDO provides an attractive alternative to chemical-based processes with regards to economic and environmental sustainability. The achievement of high 2,3-BDO titer, yield, and productivity in microbial fermentation is a prerequisite for the production of 2,3-BDO at large scales. Also, enantiopure production of 2,3-BDO production is desirable because 2,3-BDO stereoisomers have unique physicochemical properties. Pursuant to these goals, many metabolic engineering strategies to improve 2,3-BDO production from inexpensive sugars by Klebsiella oxytoca, Bacillus species, and Saccharomyces cerevisiae have been developed. This review summarizes the recent advances in metabolic engineering of non-pathogenic microorganisms to enable efficient and enantiopure production of 2,3-BDO. KEY POINTS: • K. oxytoca, Bacillus species, and S. cerevisiae have been engineered to achieve efficient 2,3-BDO production. • Metabolic engineering of non-pathogenic microorganisms enabled enantiopure production of 2,3-BDO. • Cost-effective 2,3-BDO production can be feasible by using renewable biomass.
Collapse
Affiliation(s)
- Jae Won Lee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ye-Gi Lee
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Vivek N, Hazeena SH, Alphy MP, Kumar V, Magdouli S, Sindhu R, Pandey A, Binod P. Recent advances in microbial biosynthesis of C3 - C5 diols: Genetics and process engineering approaches. BIORESOURCE TECHNOLOGY 2021; 322:124527. [PMID: 33340948 DOI: 10.1016/j.biortech.2020.124527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Diols derived from renewable feedstocks have significant commercial interest in polymer, pharmaceutical, cosmetics, flavors and fragrances, food and feed industries. In C3-C5 diols biological processes of 1,3-propanediol, 1,2-propanediol and 2,3-butanediol have been commercialized as other isomers are non-natural metabolites and lack natural biosynthetic pathways. However, the developments in the field of systems and synthetic biology paved a new path to learn, build, construct, and test for efficient chassis strains. The current review addresses the recent advancements in metabolic engineering, construction of novel pathways, process developments aimed at enhancing in production of C3-C5 diols. The requisites on developing an efficient and sustainable commercial bioprocess for C3-C5 diols were also discussed.
Collapse
Affiliation(s)
- Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sara Magdouli
- Centre technologique des résidus industriels, University of Quebec in Abitibi Témiscamingue, Quebec, Canada
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
21
|
OHair J, Jin Q, Yu D, Wu J, Wang H, Zhou S, Huang H. Non-sterile fermentation of food waste using thermophilic and alkaliphilic Bacillus licheniformis YNP5-TSU for 2,3-butanediol production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 120:248-256. [PMID: 33310601 DOI: 10.1016/j.wasman.2020.11.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
Conversion of food waste into 2,3-butanediol (2,3-BDO) via microbial fermentation provides a promising way to reduce waste disposal to landfills and produce sustainable chemicals. However, sterilization of food waste, an energy- and capital-costly process, is generally required before fermentation to avoid any contamination, which reduces the energy net output and economic feasibility of food waste fermentation. In this study, we investigated the non-sterile fermentation of food waste to produce 2,3-BDO using a newly isolated thermophilic and alkaliphilic B. licheniformis YNP5-TSU. Three unitary food waste samples (i.e., pepper, pineapple, cabbage wastes) and one miscellaneous food waste mixture were respectively inoculated with B. licheniformis YNP5-TSU under non-sterile conditions. At 50 °C and an initial pH of 9.0, B. licheniformis YNP5-TSU was able to consume all sugars in food waste and produce 5.2, 5.9, 5.9 and 4.3 g/L of 2,3-BDO within 24 h from pepper, pineapple, cabbage and miscellaneous wastes, respectively, corresponding to a yield of 0.40, 0.38, 0.41 and 0.41 g 2,3-BDO/g sugar. These 2,3-BDO concentrations and yields from the non-sterile fermentations were comparable to those from the traditional sterile fermentations, which produced 4.0-6.8 g/L of 2,3-BDO with yields of 0.31-0.48 g 2,3-BDO/g sugar. Moreover, B. licheniformis was able to ferment various food wastes (pepper, pineapple and miscellaneous wastes) without any external nutrient addition and produce similar 2,3-BDO quantities. The non-sterile fermentation of food waste using novel thermophilic and alkaliphilic B. licheniformis YNP5-TSU provides a robust and energy-efficient approach to convert food waste to high-value chemicals.
Collapse
Affiliation(s)
- Joshua OHair
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Qing Jin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Dajun Yu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Jian Wu
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Hengjian Wang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington St. SW, Blacksburg, VA 24061, USA
| | - Suping Zhou
- Department of Agricultural & Environmental Sciences, Tennessee State University, 3500 John Merritt Blvd, Nashville, TN 37209, USA.
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, 1230 Washington St. SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
22
|
Cui DY, Wei YN, Lin LC, Chen SJ, Feng PP, Xiao DG, Lin X, Zhang CY. Increasing Yield of 2,3,5,6-Tetramethylpyrazine in Baijiu Through Saccharomyces cerevisiae Metabolic Engineering. Front Microbiol 2020; 11:596306. [PMID: 33324376 PMCID: PMC7726194 DOI: 10.3389/fmicb.2020.596306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022] Open
Abstract
Baijiu is a traditional distilled beverage in China with a rich variety of aroma substances. 2,3,5,6-tetramethylpyrazine (TTMP) is an important component in Baijiu and has the function of promoting cardiovascular and cerebrovascular health. During the brewing of Baijiu, the microorganisms in jiuqu produce acetoin and then synthesize TTMP, but the yield of TTMP is very low. In this work, 2,3-butanediol dehydrogenase (BDH) coding gene BDH1 and another BDH2 gene were deleted or overexpressed to evaluate the effect on the content of acetoin and TTMP in Saccharomyces cerevisiae. The results showed that the acetoin synthesis of strain α5-D1B2 was significantly enhanced by disrupting BDH1 and overexpressing BDH2, leading to a 2.6-fold increase of TTMP production up to 10.55 mg/L. To further improve the production level of TTMP, the α-acetolactate synthase (ALS) of the pyruvate decomposition pathway was overexpressed to enhance the synthesis of diacetyl. However, replacing the promoter of the ILV2 gene with a strong promoter (PGK1p) to increase the expression level of the ILV2 gene did not result in further increased diacetyl, acetoin and TTMP production. Based on these evidences, we constructed the diploid strains AY-SB1 (ΔBDH1:loxP/ΔBDH1:loxP) and AY-SD1B2 (ΔBDH1:loxP-PGK1p-BDH2-PGK1t/ΔBDH1:loxP-PGK1p-BDH2-PGK1t) to ensure the fermentation performance of the strain is more stable in Baijiu brewing. The concentration of TTMP in AY-SB1 and AY-SD1B2 was 7.58 and 9.47 mg/L, respectively, which represented a 2.3- and 2.87-fold increase compared to the parental strain. This work provides an example for increasing TTMP production in S. cerevisiae by genetic engineering, and highlight a novel method to improve the quality and beneficial health attributes of Baijiu.
Collapse
Affiliation(s)
- Dan-Yao Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Ya-Nan Wei
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Liang-Cai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Shi-Jia Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Peng-Peng Feng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Dong-Guang Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, China
| | - Xue Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China.,Key Laboratory of Wuliangye-flavor Liquor Solid-state Fermentation, China National Light Industry, Yibin, China
| |
Collapse
|
23
|
Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, Labeeuw L, McCauley JI, Kuzhiuparambil U, Ray P, Kahlke T, Ralph PJ. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. FRONTIERS IN PLANT SCIENCE 2020; 11:279. [PMID: 32256509 PMCID: PMC7090149 DOI: 10.3389/fpls.2020.00279] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/24/2020] [Indexed: 05/18/2023]
Abstract
Mankind has recognized the value of land plants as renewable sources of food, medicine, and materials for millennia. Throughout human history, agricultural methods were continuously modified and improved to meet the changing needs of civilization. Today, our rapidly growing population requires further innovation to address the practical limitations and serious environmental concerns associated with current industrial and agricultural practices. Microalgae are a diverse group of unicellular photosynthetic organisms that are emerging as next-generation resources with the potential to address urgent industrial and agricultural demands. The extensive biological diversity of algae can be leveraged to produce a wealth of valuable bioproducts, either naturally or via genetic manipulation. Microalgae additionally possess a set of intrinsic advantages, such as low production costs, no requirement for arable land, and the capacity to grow rapidly in both large-scale outdoor systems and scalable, fully contained photobioreactors. Here, we review technical advancements, novel fields of application, and products in the field of algal biotechnology to illustrate how algae could present high-tech, low-cost, and environmentally friendly solutions to many current and future needs of our society. We discuss how emerging technologies such as synthetic biology, high-throughput phenomics, and the application of internet of things (IoT) automation to algal manufacturing technology can advance the understanding of algal biology and, ultimately, drive the establishment of an algal-based bioeconomy.
Collapse
Affiliation(s)
- Michele Fabris
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD, Australia
| | - Raffaela M. Abbriano
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Donna L. Sutherland
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Audrey S. Commault
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Christopher C. Hall
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Leen Labeeuw
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Janice I. McCauley
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Parijat Ray
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| | - Peter J. Ralph
- Climate Change Cluster (C3), University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
24
|
Huang S, Geng A. High-copy genome integration of 2,3-butanediol biosynthesis pathway in Saccharomyces cerevisiae via in vivo DNA assembly and replicative CRISPR-Cas9 mediated delta integration. J Biotechnol 2020; 310:13-20. [PMID: 32006629 DOI: 10.1016/j.jbiotec.2020.01.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
CRISPR Cas9 system is becoming an emerging genome-editing platform and has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. In this study, we developed a novel replicative and integrative CRISPR Cas9 genome-editing platform for large DNA construct in vivo assembly, replication, and high-copy genome integration in Saccharomyces cerevisiae. It harnessed advantages of autonomous replicative sequence in S. cerevisiae, in vivo DNA assembly, CRISPR Cas9, and delta integration. Enhanced green fluorescent protein was used as a marker to confirm large DNA construct in vivo assembly and genome integration. Based on this platform, an efficient 2,3- BDO producing yeast strain was rapidly constructed with up to 25-copy genome integration of 2,3-BDO biosynthesis pathway. Further strain engineering was conducted by multiplex disruption of ADH1, PDC1, PDC5 and MTH1 using a 2μ-based replicative CRISPR Cas9 plasmid containing donor DNAs. As a result, the 2,3-BDO titer was improved by 3.9 folds compared to that obtained by the initially engineered yeast and 50.5 g/L 2,3-BDO was produced by the final engineered yeast strain 36aS5-CFBDO in fed-batch fermentation without strain evolution and process optimization. This study demonstrated that the new replicative and integrative CRISPR Cas9 genome-editing platform was promising in generating an efficient 2,3-BDO-producing S. cerevisiae strain.
Collapse
Affiliation(s)
- Shuangcheng Huang
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore.
| | - Anli Geng
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore.
| |
Collapse
|
25
|
Kim HJ, Lee WH, Turner TL, Kwak S, Jin YS. An extra copy of the β-glucosidase gene improved the cellobiose fermentation capability of an engineered Saccharomyces cerevisiae strain. 3 Biotech 2019; 9:367. [PMID: 31588391 DOI: 10.1007/s13205-019-1899-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/16/2019] [Indexed: 01/06/2023] Open
Abstract
In a previously engineered Saccharomyces cerevisiae recombinant, the cellobiose fermentation rate was significantly lower than the glucose fermentation rate. Thus, we implemented a genome-wide perturbation library to find gene targets for improving the cellobiose fermentation capability of the yeast strain. Unexpectedly, we discovered a transformant that contained an additional β-glucosidase gene (gh1-1), possibly through homologous recombination between the plasmids. The additional β-glucosidase led to the fastest cellobiose fermentation activity among all the transformants evaluated, and the strain demonstrated significantly higher β-glucosidase activity than the control strain, especially during the initial exponential growth phase. The present work revealed the benefit of the extra gh1-1 copy for efficient cellobiose fermentation in the engineered S. cerevisiae strain.
Collapse
Affiliation(s)
- Hyo Jin Kim
- 1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 3Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
- 4Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354 Republic of Korea
| | - Won-Heong Lee
- 1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 5Bioenergy Science and Technology, Chonnam National University, Gwangju, 61186 Korea
| | - Timothy Lee Turner
- 1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 6Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Suryang Kwak
- 1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Yong-Su Jin
- 1Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- 2Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| |
Collapse
|
26
|
Kim JW, Lee YG, Kim SJ, Jin YS, Seo JH. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. J Biotechnol 2019; 304:31-37. [PMID: 31421146 DOI: 10.1016/j.jbiotec.2019.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/06/2019] [Accepted: 08/14/2019] [Indexed: 01/14/2023]
Abstract
2,3-Butanediol (2,3-BD) can be produced at high titers by engineered Saccharomyces cerevisiae by abolishing the ethanol biosynthetic pathway and introducing the bacterial butanediol-producing pathway. However, production of 2,3-BD instead of ethanol by engineered S. cerevisiae has resulted in glycerol production because of surplus NADH accumulation caused by a lower degree of reduction (γ = 5.5) of 2,3-BD than that (γ = 6) of ethanol. In order to eliminate glycerol production and resolve redox imbalance during 2,3-BD production, both GPD1 and GPD2 coding for glycerol-3-phosphate dehydrogenases were disrupted after overexpressing NADH oxidase from Lactococcus lactis. As disruption of the GPD genes caused growth defects due to limited supply of C2 compounds, Candida tropicalis PDC1 was additionally introduced to provide a necessary amount of C2 compounds while minimizing ethanol production. The resulting strain (BD5_T2 nox_dGPD1,2_CtPDC1) produced 99.4 g/L of 2,3-BD with 0.5 g/L glycerol accumulation in a batch culture. The fed-batch fermentation led to production of 108.6 g/L 2,3-BD with a negligible amount of glycerol production, resulting in a high BD yield (0.462 g2,3-BD/gglucose) corresponding to 92.4 % of the theoretical yield. These results demonstrate that glycerol-free production of 2,3-BD by engineered yeast is feasible.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Repubilc of Korea
| | - Ye-Gi Lee
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Repubilc of Korea
| | - Soo-Jung Kim
- Department of Food Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61822, USA
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Repubilc of Korea.
| |
Collapse
|
27
|
Heyman B, Lamm R, Tulke H, Regestein L, Büchs J. Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production. Microb Cell Fact 2019; 18:78. [PMID: 31053124 PMCID: PMC6498610 DOI: 10.1186/s12934-019-1126-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Production of 2,3-butanediol from renewable resources is a promising measure to decrease the consumption of fossil resources in the chemical industry. One of the most influential parameters on biotechnological 2,3-butanediol production is the oxygen availability during the cultivation. As 2,3-butanediol is produced under microaerobic process conditions, a well-controlled oxygen supply is the key parameter to control biomass formation and 2,3-butanediol production. As biomass is on the one hand not the final product, but on the other hand the essential biocatalyst, the optimal compromise between biomass formation and 2,3-butanediol production has to be defined. RESULTS A shake flask methodology is presented to evaluate the effects of oxygen availability on 2,3-butanediol production with Bacillus licheniformis DSM 8785 by variation of the filling volume. A defined two-stage cultivation strategy was developed to investigate the metabolic response to different defined maximum oxygen transfer capacities at equal initial growth conditions. The respiratory quotient was measured online to determine the point of glucose depletion, as 2,3-butanediol is consumed afterwards. Based on this strategy, comparable results to stirred tank reactors were achieved. The highest space-time yield (1.3 g/L/h) and a 2,3-butanediol concentration of 68 g/L combined with low acetoin concentrations and avoided glycerol formation were achieved at a maximum oxygen transfer capacity of 13 mmol/L/h. The highest overall 2,3-butanediol concentration of 78 g/L was observed at a maximum oxygen transfer capacity of 4 mmol/L/h. CONCLUSIONS The presented shake flask approach reduces the experimental effort and costs providing a fast and reliable methodology to investigate the effects of oxygen availability. This can be applied especially on product and by-product formation under microaerobic conditions. Utilization of the maximum oxygen transfer capacity as measure for the oxygen availability allows for an easy adaption to other bioreactor setups and scales.
Collapse
Affiliation(s)
- Benedikt Heyman
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Robin Lamm
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Hannah Tulke
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Lars Regestein
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.,Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
28
|
Deaner M, Holzman A, Alper HS. Modular Ligation Extension of Guide RNA Operons (LEGO) for Multiplexed dCas9 Regulation of Metabolic Pathways in Saccharomyces cerevisiae. Biotechnol J 2018; 13:e1700582. [PMID: 29663663 DOI: 10.1002/biot.201700582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/23/2018] [Indexed: 02/01/2023]
Abstract
Metabolic engineering typically utilizes a suboptimal step-wise gene target optimization approach to parse a highly connected and regulated cellular metabolism. While the endonuclease-null CRISPR/Cas system has enabled gene expression perturbations without genetic modification, it has been mostly limited to small sets of gene targets in eukaryotes due to inefficient methods to assemble and express large sgRNA operons. In this work, we develop a TEF1p-tRNA expression system and demonstrate that the use of tRNAs as splicing elements flanking sgRNAs provides higher efficiency than both Pol III and ribozyme-based expression across a variety of single sgRNA and multiplexed contexts. Next, we devise and validate a scheme to allow modular construction of tRNA-sgRNA (TST) operons using an iterative Type IIs digestion/ligation extension approach, termed CRISPR-Ligation Extension of sgRNA Operons (LEGO). This approach enables facile construction of large TST operons. We demonstrate this utility by constructing a metabolic rewiring prototype for 2,3-butanediol production in 2 distinct yeast strain backgrounds. These results demonstrate that our approach can act as a surrogate for traditional genetic modification on a much shorter design-cycle timescale.
Collapse
Affiliation(s)
- Matthew Deaner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712
| | - Allison Holzman
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712
| |
Collapse
|
29
|
Microbial conversion of xylose into useful bioproducts. Appl Microbiol Biotechnol 2018; 102:9015-9036. [PMID: 30141085 DOI: 10.1007/s00253-018-9294-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Microorganisms can produce a number of different bioproducts from the sugars in plant biomass. One challenge is devising processes that utilize all of the sugars in lignocellulosic hydrolysates. D-xylose is the second most abundant sugar in these hydrolysates. The microbial conversion of D-xylose to ethanol has been studied extensively; only recently, however, has conversion to bioproducts other than ethanol been explored. Moreover, in the case of yeast, D-xylose may provide a better feedstock for the production of bioproducts other than ethanol, because the relevant pathways are not subject to glucose-dependent repression. In this review, we discuss how different microorganisms are being used to produce novel bioproducts from D-xylose. We also discuss how D-xylose could be potentially used instead of glucose for the production of value-added bioproducts.
Collapse
|
30
|
Hans S, Gimpel M, Glauche F, Neubauer P, Cruz-Bournazou MN. Automated Cell Treatment for Competence and Transformation of Escherichia coli in a High-Throughput Quasi-Turbidostat Using Microtiter Plates. Microorganisms 2018; 6:E60. [PMID: 29941834 PMCID: PMC6163857 DOI: 10.3390/microorganisms6030060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/10/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic engineering and genome editing strategies often lead to large strain libraries of a bacterial host. Nevertheless, the generation of competent cells is the basis for transformation and subsequent screening of these strains. While preparation of competent cells is a standard procedure in flask cultivations, parallelization becomes a challenging task when working with larger libraries and liquid handling stations as transformation efficiency depends on a distinct physiological state of the cells. We present a robust method for the preparation of competent cells and their transformation. The strength of the method is that all cells on the plate can be maintained at a high growth rate until all cultures have reached a defined cell density regardless of growth rate and lag phase variabilities. This allows sufficient transformation in automated high throughput facilities and solves important scheduling issues in wet-lab library screenings. We address the problem of different growth rates, lag phases, and initial cell densities inspired by the characteristics of continuous cultures. The method functions on a fully automated liquid handling platform including all steps from the inoculation of the liquid cultures to plating and incubation on agar plates. The key advantage of the developed method is that it enables cell harvest in 96 well plates at a predefined time by keeping fast growing cells in the exponential phase as in turbidostat cultivations. This is done by a periodic monitoring of cell growth and a controlled dilution specific for each well. With the described methodology, we were able to transform different strains in parallel. The transformants produced can be picked and used in further automated screening experiments. This method offers the possibility to transform any combination of strain- and plasmid library in an automated high-throughput system, overcoming an important bottleneck in the high-throughput screening and the overall chain of bioprocess development.
Collapse
Affiliation(s)
- Sebastian Hans
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, D-13357 Berlin, Germany.
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, D-13357 Berlin, Germany.
| | - Florian Glauche
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, D-13357 Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, D-13357 Berlin, Germany.
| | - Mariano Nicolas Cruz-Bournazou
- Chair of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Ackerstraße 76, D-13357 Berlin, Germany.
| |
Collapse
|
31
|
Expression of Saccharomyces cerevisiae cDNAs to enhance the growth of non-ethanol-producing S. cerevisiae strains lacking pyruvate decarboxylases. J Biosci Bioeng 2018; 126:317-321. [PMID: 29636254 DOI: 10.1016/j.jbiosc.2018.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/05/2018] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
Abstract
Metabolic engineering of Saccharomyces cerevisiae often requires a restriction on the ethanol biosynthesis pathway. The non-ethanol-producing strains, however, are slow growers. In this study, a cDNA library constructed from S. cerevisiae was used to improve the slow growth of non-ethanol-producing S. cerevisiae strains lacking all pyruvate decarboxylase enzymes (Pdc-, YSM021). Among the obtained 120 constructs expressing cDNAs, 34 transformants showed a stable phenotype with quicker growth. Sequence analysis showed that the open reading frames of PDC1, DUG1 (Cys-Gly metallo-di-peptidase in the glutathione degradation pathway), and TEF1 (translational elongation factor EF-1 alpha) genes were inserted into the plasmids of 32, 1, and 1 engineered strains, respectively. DUG1 function was confirmed by the construction of YSM021 pGK416-DUG1 strain because the specific growth rate of YSM021 pGK416-DUG1 (0.032 ± 0.0005 h-1) was significantly higher than that of the control strains (0.029 ± 0.0008 h-1). This suggested that cysteine supplied from glutathione was probably used for cell growth and for construction of Fe-S clusters. The results showed that the overexpression of cDNAs is a promising approach to engineer S. cerevisiae metabolism.
Collapse
|
32
|
A Bibliometric Study of Scientific Publications regarding Hemicellulose Valorization during the 2000–2016 Period: Identification of Alternatives and Hot Topics. CHEMENGINEERING 2018. [DOI: 10.3390/chemengineering2010007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Ishii J, Morita K, Ida K, Kato H, Kinoshita S, Hataya S, Shimizu H, Kondo A, Matsuda F. A pyruvate carbon flux tugging strategy for increasing 2,3-butanediol production and reducing ethanol subgeneration in the yeast Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:180. [PMID: 29983743 PMCID: PMC6020211 DOI: 10.1186/s13068-018-1176-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/16/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae is a promising host cell for producing a wide range of chemicals. However, attempts to metabolically engineer Crabtree-positive S. cerevisiae invariably face a common issue: how to reduce dominant ethanol production. Here, we propose a yeast metabolic engineering strategy for decreasing ethanol subgeneration involving tugging the carbon flux at an important hub branching point (e.g., pyruvate). Tugging flux at a central glycolytic overflow metabolism point arising from high glycolytic activity may substantially increase higher alcohol production in S. cerevisiae. We validated this possibility by testing 2,3-butanediol (2,3-BDO) production, which is routed via pyruvate as the important hub compound. RESULTS By searching for high-activity acetolactate synthase (ALS) enzymes that catalyze the important first-step reaction in 2,3-BDO biosynthesis, and tuning several fermentation conditions, we demonstrated that a stronger pyruvate pulling effect (tugging of pyruvate carbon flux) is very effective for increasing 2,3-BDO production and reducing ethanol subgeneration by S. cerevisiae. To further confirm the validity of the pyruvate carbon flux tugging strategy, we constructed an evolved pyruvate decarboxylase (PDC)-deficient yeast (PDCΔ) strain that lacked three isozymes of PDC. In parallel with re-sequencing to identify genomic mutations, liquid chromatography-tandem mass spectrometry analysis of intermediate metabolites revealed significant accumulation of pyruvate and NADH in the evolved PDCΔ strain. Harnessing the high-activity ALS and additional downstream enzymes in the evolved PDCΔ strain resulted in a high yield of 2,3-BDO (a maximum of 0.41 g g-1 glucose consumed) and no ethanol subgeneration, thereby confirming the utility of our strategy. Using this engineered strain, we demonstrated a high 2,3-BDO titer (81.0 g L-1) in a fed-batch fermentation using a high concentration of glucose as the sole carbon source. CONCLUSIONS We demonstrated that the pyruvate carbon flux tugging strategy is very effective for increasing 2,3-BDO production and decreasing ethanol subgeneration in Crabtree-positive S. cerevisiae. High activity of the common first-step enzyme for the conversion of pyruvate, which links to both the TCA cycle and amino acid biosynthesis, is likely important for the production of various chemicals by S. cerevisiae.
Collapse
Affiliation(s)
- Jun Ishii
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Keisuke Morita
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Kengo Ida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Hiroko Kato
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Shohei Kinoshita
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Shoko Hataya
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | - Fumio Matsuda
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| |
Collapse
|
34
|
Kim SJ, Sim HJ, Kim JW, Lee YG, Park YC, Seo JH. Enhanced production of 2,3-butanediol from xylose by combinatorial engineering of xylose metabolic pathway and cofactor regeneration in pyruvate decarboxylase-deficient Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2017; 245:1551-1557. [PMID: 28651874 DOI: 10.1016/j.biortech.2017.06.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to produce 2,3-butanediol (2,3-BDO) from xylose efficiently by modulation of the xylose metabolic pathway in engineered Saccharomyces cerevisiae. Expression of the Scheffersomyces stipitis transaldolase and NADH-preferring xylose reductase in S. cerevisiae improved xylose consumption rate by a 2.1-fold and 2,3-BDO productivity by a 1.8-fold. Expression of the Lactococcus lactis noxE gene encoding NADH oxidase also increased 2,3-BDO yield by decreasing glycerol accumulation. Additionally, the disadvantage of C2-dependent growth of pyruvate decarboxylase-deficient (Pdc-) S. cerevisiae was overcome by expression of the Candida tropicalis PDC1 gene. A fed-batch fermentation of the BD5X-TXmNP strain resulted in 96.8g/L 2,3-BDO and 0.58g/L-h productivity from xylose, which were 15.6- and 2-fold increases compared with the corresponding values of the BD5X strain. It was concluded that facilitation of the xylose metabolic pathway, oxidation of NADH and relief of C2-dependency synergistically triggered 2,3-BDO production from xylose in Pdc-S. cerevisiae.
Collapse
Affiliation(s)
- Soo-Jung Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Department of Bio and Fermentation Convergence Technology and BK21 Plus Program, Kookmin University, Seoul 03084, Republic of Korea
| | - Hee-Jin Sim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Woo Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ye-Gi Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology and BK21 Plus Program, Kookmin University, Seoul 03084, Republic of Korea
| | - Jin-Ho Seo
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
35
|
Enhanced production of xylitol from xylose by expression of Bacillus subtilis arabinose:H + symporter and Scheffersomyces stipitis xylose reductase in recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 2017; 107:7-14. [DOI: 10.1016/j.enzmictec.2017.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 11/17/2022]
|
36
|
Yamada R, Wakita K, Mitsui R, Nishikawa R, Ogino H. Efficient production of 2,3-butanediol by recombinant Saccharomyces cerevisiae through modulation of gene expression by cocktail δ-integration. BIORESOURCE TECHNOLOGY 2017; 245:1558-1566. [PMID: 28522198 DOI: 10.1016/j.biortech.2017.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, the expression of 4 genes encoding α-acetolactate synthase, α-acetolactate decarboxylase, 2,3-butanediol dehydrogenase, and NADH oxidase was modulated using a previously developed cocktail δ-integration strategy. The resultant strain, YPH499/dPdAdG/BD6-10, was used in a fed-batch cultivation for the production of 2,3-butanediol. The concentration, production rate, and yield obtained were 80.0g/L, 4.00g/L/h, and 41.7%, respectively. The production rate and yield of the compound obtained are higher for this strain compared to reports published for Saccharomyces cerevisiae so far. The cocktail δ-integration strategy allows for modulation of multiple gene expression, without the exact knowledge of rate-limiting steps, and therefore, could be used as a promising strategy for the production of bio-based chemicals in recombinant S. cerevisiae.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Kazuki Wakita
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Ryosuke Mitsui
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Riru Nishikawa
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
37
|
Roggenkamp E, Giersch RM, Wedeman E, Eaton M, Turnquist E, Schrock MN, Alkotami L, Jirakittisonthon T, Schluter-Pascua SE, Bayne GH, Wasko C, Halloran M, Finnigan GC. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains. Front Microbiol 2017; 8:1773. [PMID: 28979241 PMCID: PMC5611381 DOI: 10.3389/fmicb.2017.01773] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae continues to serve as a powerful model system for both basic biological research and industrial application. The development of genome-wide collections of individually manipulated strains (libraries) has allowed for high-throughput genetic screens and an emerging global view of this single-celled Eukaryote. The success of strain construction has relied on the innate ability of budding yeast to accept foreign DNA and perform homologous recombination, allowing for efficient plasmid construction (in vivo) and integration of desired sequences into the genome. The development of molecular toolkits and “integration cassettes” have provided fungal systems with a collection of strategies for tagging, deleting, or over-expressing target genes; typically, these consist of a C-terminal tag (epitope or fluorescent protein), a universal terminator sequence, and a selectable marker cassette to allow for convenient screening. However, there are logistical and technical obstacles to using these traditional genetic modules for complex strain construction (manipulation of many genomic targets in a single cell) or for the generation of entire genome-wide libraries. The recent introduction of the CRISPR/Cas gene editing technology has provided a powerful methodology for multiplexed editing in many biological systems including yeast. We have developed four distinct uses of the CRISPR biotechnology to generate yeast strains that utilizes the conversion of existing, commonly-used yeast libraries or strains. We present Cas9-based, marker-less methodologies for (i) N-terminal tagging, (ii) C-terminally tagging yeast genes with 18 unique fusions, (iii) conversion of fluorescently-tagged strains into newly engineered (or codon optimized) variants, and finally, (iv) use of a Cas9 “gene drive” system to rapidly achieve a homozygous state for a hypomorphic query allele in a diploid strain. These CRISPR-based methods demonstrate use of targeting universal sequences previously introduced into a genome.
Collapse
Affiliation(s)
- Emily Roggenkamp
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Rachael M Giersch
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Emily Wedeman
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Muriel Eaton
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Emily Turnquist
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Madison N Schrock
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Linah Alkotami
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Thitikan Jirakittisonthon
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State UniversityManhattan, KS, United States
| | | | - Gareth H Bayne
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Cory Wasko
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| |
Collapse
|