1
|
Xu C, Wang Z, Chen C, Zhang Z, Zheng Y, Fu Z, Yang L, Xu Y, Niu L, Sun X, Liu J, Liu W. Ecological risk assessment of shallow groundwater pollution in industrial parks: A combined approach of chemical analysis and zebrafish embryo toxicity evaluation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118258. [PMID: 40315748 DOI: 10.1016/j.ecoenv.2025.118258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/27/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
This study offers a comprehensive approach to assess the ecological risks of groundwater pollution in industrial parks through integrating chemical analysis with biological toxicity testing. By analyzing 31 inorganic and 92 organic pollutants in groundwater from nine representative industrial parks and using zebrafish embryo toxicity assays to test the whole samples, we identified significant variations in pollutant profiles across different sites. In addition to common inorganic indicators like ammonia nitrogen and heavy metals, organic contaminants such as pyrethroids and volatile phenols were also prevalent. The Water Quality Index and Risk Quotient evaluation approaches identified high-risk areas in pharmaceutical-related industrial parks., which were also confirmed by zebrafish toxicity tests. However, despite some sites being classified as low-risk based on chemical analysis, significant toxicological effects, including mortality, reduced hatching rate, malformations and behavioral toxicity, were observed in bioassays. Correlation analysis further observed significant associations between toxicological outcomes and pollutants such as sulfate, linear alkylbenzene sulfonates, arsenic, iron, beryllium, volatile phenols, benzene, chlorobenzene, toluene, 1,2-dichloroethane, etridiazole, γ-BHC, pyrethroids and polychlorinated biphenyls. These findings emphasize the need to combine traditional chemical analysis with biological testing for a more holistic assessment of groundwater quality, offering valuable insights into pollution risks and contributing to more effective remediation and conservation strategies.
Collapse
Affiliation(s)
- Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zeng Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Interdisciplinary Research Academy (IRA) and College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Chuchu Chen
- Zhejiang Huanke Certification Center for Environment Co.,Ltd., Hangzhou 311100, China
| | - Zhouchi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuan Zheng
- Zhejiang Environmental Monitoring Engineering Co.Ltd., Hangzhou 310012, China
| | - Zhihui Fu
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Lihang Yang
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Yinyin Xu
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Lili Niu
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Interdisciplinary Research Academy (IRA) and College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Xiaohui Sun
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China.
| | - Jinsong Liu
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, China
| | - Weiping Liu
- Zhejiang Collaborative Innovation Center for Full-Process Monitoring and Green Governance of Emerging Contaminants, Interdisciplinary Research Academy (IRA) and College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
2
|
Bhatt P, Bhatt K, Huang Y, Li J, Wu S, Chen S. Biofilm formation in xenobiotic-degrading microorganisms. Crit Rev Biotechnol 2023; 43:1129-1149. [PMID: 36170978 DOI: 10.1080/07388551.2022.2106417] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
The increased presence of xenobiotics affects living organisms and the environment at large on a global scale. Microbial degradation is effective for the removal of xenobiotics from the ecosystem. In natural habitats, biofilms are formed by single or multiple populations attached to biotic/abiotic surfaces and interfaces. The attachment of microbial cells to these surfaces is possible via the matrix of extracellular polymeric substances (EPSs). However, the molecular machinery underlying the development of biofilms differs depending on the microbial species. Biofilms act as biocatalysts and degrade xenobiotic compounds, thereby removing them from the environment. Quorum sensing (QS) helps with biofilm formation and is linked to the development of biofilms in natural contaminated sites. To date, scant information is available about the biofilm-mediated degradation of toxic chemicals from the environment. Therefore, we review novel insights into the impact of microbial biofilms in xenobiotic contamination remediation, the regulation of biofilms in contaminated sites, and the implications for large-scale xenobiotic compound treatment.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Siyi Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, PR China
| |
Collapse
|
3
|
Chen X, Zhang S, Yi L, Liu Z, Ye X, Yu B, Shi S, Lu X. Evaluation of Biodegradation of BTEX in the Subsurface of a Petrochemical Site near the Yangtze River, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192416449. [PMID: 36554330 PMCID: PMC9778668 DOI: 10.3390/ijerph192416449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 05/06/2023]
Abstract
The contamination of soil and groundwater with BTEX (benzene, toluene, ethyl benzene, and xylenes) is a common issue at petrochemical sites, posing a threat to the ecosystems and human health. The goal of this study was to evaluate the biodegradation of BTEX in the subsurface of a petrochemical site near the Yangtze River, thus providing scientific basis for bioremediation of the contaminated site. Both molecular analysis of field samples and microcosm study in the laboratory were performed for the evaluation. Soil and groundwater samples were collected from the site. Microcosms were constructed with inoculum from the soil and incubated anaerobically in the presence of nitrate, ferric oxide, manganese oxide, sulfate, and sodium bicarbonate, respectively. The initial concentration of each component of BTEX (benzene, toluene, ethyl benzene, o-xylene) was 4-5 mg/L. Actinobacteria was dominant in the highly contaminated soil, while Proteobacteria was dominant in the slightly contaminated soil and the groundwater. The relative abundances of Firmicutes, Spirochaetes, and Caldiserica were higher in the highly contaminated soil and groundwater samples compared to those in the corresponding slightly contaminated samples. The relative abundances of predicted functions, such as carbohydrate transport and metabolism, nucleotide transport and metabolism, coenzyme transport and metabolism, amino acid transport and metabolism, etc., in the highly contaminated soil and groundwater samples were higher than those in the corresponding slightly contaminated samples. In microcosms, biodegradations of BTEX occurred, and the first-order rate constants in the presence of various electron acceptors had the following order: sulfate (0.08-0.10/d) > sodium bicarbonate (0.07-0.09/d) > ferric oxide (0.04-0.06/d) > nitrate (0.03-0.05/d) > manganese oxide (0.01-0.04/d).
Collapse
Affiliation(s)
- Xuexia Chen
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shuai Zhang
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lijin Yi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhengwei Liu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266100, China
| | - Xiangyu Ye
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Yu
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shuai Shi
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaoxia Lu
- Ministry of Education Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Correspondence:
| |
Collapse
|
4
|
Zhou XQ, Qu XM, Yang Z, Zhao J, Hao YY, Feng J, Huang Q, Liu YR. Increased water inputs fuel microbial mercury methylation in upland soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129578. [PMID: 35853337 DOI: 10.1016/j.jhazmat.2022.129578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/28/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) can be converted to neurotoxic methylmercury (MeHg) by certain microbes typically in anaerobic environments, threatening human health due to its bioaccumulation in food webs. However, it is unclear whether and how Hg can be methylated in legacy aerobic uplands with increasing water. Here, we conducted a series of incubation experiments to investigate the effects of increased water content on MeHg production in two typical upland soils (i.e., long-term and short-term use). Results showed that marked MeHg production occurred in water-saturated upland soils, which was strongly correlated with the proportions of significantly stimulated Hg methylating taxon (i.e., Geobacter). Elevated temperature further enhanced MeHg production by blooming proportions of typical Hg methylators (i.e., Clostridium, Acetonema, and Geobacter). Water saturation could also enhance microbial Hg methylation by facilitating microbial syntrophy between non-Hg methylators and Hg methylators. Taken together, the present work suggests that uplands could turn into a potential MeHg reservoir in response to water inputs resulting from rainfall or anthropogenic irrigation.
Collapse
Affiliation(s)
- Xin-Quan Zhou
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Min Qu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States
| | - Jiating Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Yun-Yun Hao
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
5
|
van Leeuwen JA, Gerritse J, Hartog N, Ertl S, Parsons JR, Hassanizadeh SM. Anaerobic degradation of benzene and other aromatic hydrocarbons in a tar-derived plume: Nitrate versus iron reducing conditions. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104006. [PMID: 35439686 DOI: 10.1016/j.jconhyd.2022.104006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The anaerobic degradation of aromatic hydrocarbons in a plume originating from a Pintsch gas tar-DNAPL zone was investigated using molecular, isotopic- and microbial analyses. Benzene concentrations diminished at the relatively small meter scale dimensions of the nitrate reducing plume fringe. The ratio of benzene to toluene, ethylbenzene, xylenes and naphthalene (BTEXN) in the fringe zone compared to the plume zone, indicated relatively more loss of benzene in the fringe zone than TEXN. This was substantiated by changes in relative concentrations of BTEXN, and multi-element compound specific isotope analysis for δ2H and δ13C. This was supported by the presence of (abcA) genes, indicating the presumed benzene carboxylase enzyme in the nitrate-reducing plume fringe. Biodegradation of most hydrocarbon contaminants at iron reducing conditions in the plume core, appears to be quantitatively of greater significance due to the large volume of the plume core, rather than relatively faster biodegradation under nitrate reducing conditions at the smaller volume of the plume fringe. Contaminant concentration reductions by biodegradation processes were shown to vary distinctively between the source, plume (both iron-reducing) and fringe (nitrate-reducing) zones of the plume. High anaerobic microbial activity was detected in the plume zone as well as in the dense non aqueous phase liquid (DNAPL) containing source zone. Biodegradation of most, if not all, other water-soluble Pintsch gas tar aromatic hydrocarbon contaminants occur at the relatively large dimensions of the anoxic plume core. The highest diversity and concentrations of metabolites were detected in the iron-reducing plume core, where the sum of parent compounds of aromatic hydrocarbons was greater than 10 mg/L. The relatively high concentrations of metabolites suggest a hot spot for anaerobic degradation in the core of the plume downgradient but relatively close to the DNAPL containing source zone.
Collapse
Affiliation(s)
- Johan A van Leeuwen
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands.
| | - Jan Gerritse
- Deltares, Unit Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK Utrecht, the Netherlands
| | - Niels Hartog
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands; KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Siegmund Ertl
- Hydroisotop GmbH, Woelkestrasse 9, Sweitenkirchen 85301, Germany
| | - John R Parsons
- University of Amsterdam, Institute for Biodiversity and Ecosystem Dynamics, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - S Majid Hassanizadeh
- Utrecht University, Department of Earth Sciences, Environmental Hydrogeology Group, Princetonplein 9, 3584 CC Utrecht, the Netherlands
| |
Collapse
|
6
|
Advanced methods for RNA recovery from petroleum impacted soils. MethodsX 2021; 8:101503. [PMID: 34754774 PMCID: PMC8563465 DOI: 10.1016/j.mex.2021.101503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022] Open
Abstract
Microbially-mediated hydrocarbon degradation is well documented. However, how these microbial processes occur in complex subsurface petroleum impacted systems remains unclear, and this knowledge is needed to guide technologies to enhance microbial degradation effectively. Analysis of RNA derived from soils impacted by petroleum liquids would allow for analysis of active microbial communities, and a deeper understanding of the dynamic biochemistry occurring during site remediation. However, RNA analysis in soils impacted with petroleum liquids is challenging due to: (A) RNA being inherently unstable, and (B) petroleum impacted soils containing problematic levels of polymerase chain reaction (PCR) inhibitors that must be removed to yield high-purity RNA for downstream analysis. A previously published soil wash pretreatment step and a commercially available DNA extraction kit protocol were combined and modified to be able to purify RNA from soils containing petroleum liquids.A key modification involved reformulation of the pretreatment solution via replacing water as the diluent with a commercially-available RNA preservation solution. Methods were developed and demonstrated using cryogenically preserved soils from three former petroleum refineries. Results showed the new soil washing approach had no adverse effects on RNA recovery but did improve RNA quality, by PCR inhibitor removal, which in turn allows for characterization of active microbial communities present in petroleum impacted soils. In summary, our method for extracting RNA from petroleum-impacted soils provides a promising new tool for resolving metabolic processes at sites as they progress toward restoration via natural and/or engineered remediation.
Collapse
|
7
|
Toth CRA, Luo F, Bawa N, Webb J, Guo S, Dworatzek S, Edwards EA. Anaerobic Benzene Biodegradation Linked to the Growth of Highly Specific Bacterial Clades. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7970-7980. [PMID: 34041904 DOI: 10.1021/acs.est.1c00508] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reliance on bioremediation to remove benzene from anoxic environments has proven risky for decades but for unknown reasons. Research has revealed a strong link between anaerobic benzene biodegradation and the enrichment of highly specific microbes, including Thermincola in the family Peptococcaceae and the deltaproteobacterial Candidate Sva0485 clade. Using aquifer materials from Canadian Forces Base Borden, we compared five bioremediation approaches in batch microcosms. Under conditions simulating natural attenuation or sulfate biostimulation, benzene was not degraded after 1-2 years of incubation and no enrichment of known benzene-degrading microbes occurred. In contrast, nitrate-amended microcosms reported benzene biodegradation coincident with significant growth of Thermincola spp., along with a functional gene presumed to catalyze anaerobic benzene carboxylation (abcA). Inoculation with 2.5% of a methanogenic benzene-degrading consortium containing Sva0485 (Deltaproteobacteria ORM2) resulted in benzene biodegradation in the presence of sulfate or under methanogenic conditions. The presence of other hydrocarbon co-contaminants decreased the rates of benzene degradation by a factor of 2 to 4. Tracking the abundance of the abcA gene and 16S rRNA genes specific for benzene-degrading Thermincola and Sva0485 is recommended to monitor benzene bioremediation in anoxic groundwater systems to further uncover growth-rate-limiting conditions for these two intriguing phylotypes.
Collapse
Affiliation(s)
- Courtney R A Toth
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Fei Luo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Nancy Bawa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jennifer Webb
- SiREM, 130 Stone Road West, Guelph, Ontario N1G 3Z2, Canada
| | - Shen Guo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | | | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
8
|
Melkonian C, Fillinger L, Atashgahi S, da Rocha UN, Kuiper E, Olivier B, Braster M, Gottstein W, Helmus R, Parsons JR, Smidt H, van der Waals M, Gerritse J, Brandt BW, Röling WFM, Molenaar D, van Spanning RJM. High biodiversity in a benzene-degrading nitrate-reducing culture is sustained by a few primary consumers. Commun Biol 2021; 4:530. [PMID: 33953314 PMCID: PMC8099898 DOI: 10.1038/s42003-021-01948-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
A key question in microbial ecology is what the driving forces behind the persistence of large biodiversity in natural environments are. We studied a microbial community with more than 100 different types of species which evolved in a 15-years old bioreactor with benzene as the main carbon and energy source and nitrate as the electron acceptor. Using genome-centric metagenomics plus metatranscriptomics, we demonstrate that most of the community members likely feed on metabolic left-overs or on necromass while only a few of them, from families Rhodocyclaceae and Peptococcaceae, are candidates to degrade benzene. We verify with an additional succession experiment using metabolomics and metabarcoding that these few community members are the actual drivers of benzene degradation. As such, we hypothesize that high species richness is maintained and the complexity of a natural community is stabilized in a controlled environment by the interdependencies between the few benzene degraders and the rest of the community members, ultimately resulting in a food web with different trophic levels.
Collapse
Affiliation(s)
- Chrats Melkonian
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Lucas Fillinger
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Esther Kuiper
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Brett Olivier
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martin Braster
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Willi Gottstein
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rick Helmus
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - John R Parsons
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Jan Gerritse
- Unit Subsurface and Groundwater Systems, Deltares, Utrecht, The Netherlands
| | - Bernd W Brandt
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilfred F M Röling
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Douwe Molenaar
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rob J M van Spanning
- Department of Molecular Cell Biology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Saraiva JP, Worrich A, Karakoç C, Kallies R, Chatzinotas A, Centler F, Nunes da Rocha U. Mining Synergistic Microbial Interactions: A Roadmap on How to Integrate Multi-Omics Data. Microorganisms 2021; 9:microorganisms9040840. [PMID: 33920040 PMCID: PMC8070991 DOI: 10.3390/microorganisms9040840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Mining interspecies interactions remain a challenge due to the complex nature of microbial communities and the need for computational power to handle big data. Our meta-analysis indicates that genetic potential alone does not resolve all issues involving mining of microbial interactions. Nevertheless, it can be used as the starting point to infer synergistic interspecies interactions and to limit the search space (i.e., number of species and metabolic reactions) to a manageable size. A reduced search space decreases the number of additional experiments necessary to validate the inferred putative interactions. As validation experiments, we examine how multi-omics and state of the art imaging techniques may further improve our understanding of species interactions’ role in ecosystem processes. Finally, we analyze pros and cons from the current methods to infer microbial interactions from genetic potential and propose a new theoretical framework based on: (i) genomic information of key members of a community; (ii) information of ecosystem processes involved with a specific hypothesis or research question; (iii) the ability to identify putative species’ contributions to ecosystem processes of interest; and, (iv) validation of putative microbial interactions through integration of other data sources.
Collapse
Affiliation(s)
- Joao Pedro Saraiva
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Anja Worrich
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Canan Karakoç
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Rene Kallies
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Antonis Chatzinotas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Florian Centler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; (J.P.S.); (A.W.); (C.K.); (R.K.); (A.C.); (F.C.)
- Correspondence:
| |
Collapse
|
10
|
Walker AM, Leigh MB, Mincks SL. Patterns in Benthic Microbial Community Structure Across Environmental Gradients in the Beaufort Sea Shelf and Slope. Front Microbiol 2021; 12:581124. [PMID: 33584606 PMCID: PMC7876419 DOI: 10.3389/fmicb.2021.581124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The paradigm of tight pelagic-benthic coupling in the Arctic suggests that current and future fluctuations in sea ice, primary production, and riverine input resulting from global climate change will have major impacts on benthic ecosystems. To understand how these changes will affect benthic ecosystem function, we must characterize diversity, spatial distribution, and community composition for all faunal components. Bacteria and archaea link the biotic and abiotic realms, playing important roles in organic matter (OM) decomposition, biogeochemical cycling, and contaminant degradation, yet sediment microbial communities have rarely been examined in the North American Arctic. Shifts in microbial community structure and composition occur with shifts in OM inputs and contaminant exposure, with implications for shifts in ecological function. Furthermore, the characterization of benthic microbial communities provides a foundation from which to build focused experimental research. We assessed diversity and community structure of benthic prokaryotes in the upper 1 cm of sediments in the southern Beaufort Sea (United States and Canada), and investigated environmental correlates of prokaryotic community structure over a broad spatial scale (spanning 1,229 km) at depths ranging from 17 to 1,200 m. Based on hierarchical clustering, we identified four prokaryotic assemblages from the 85 samples analyzed. Two were largely delineated by the markedly different environmental conditions in shallow shelf vs. upper continental slope sediments. A third assemblage was mainly comprised of operational taxonomic units (OTUs) shared between the shallow shelf and upper slope assemblages. The fourth assemblage corresponded to sediments receiving heavier OM loading, likely resulting in a shallower anoxic layer. These sites may also harbor microbial mats and/or methane seeps. Substructure within these assemblages generally reflected turnover along a longitudinal gradient, which may be related to the quantity and composition of OM deposited to the seafloor; bathymetry and the Mackenzie River were the two major factors influencing prokaryote distribution on this scale. In a broader geographical context, differences in prokaryotic community structure between the Beaufort Sea and Norwegian Arctic suggest that benthic microbes may reflect regional differences in the hydrography, biogeochemistry, and bathymetry of Arctic shelf systems.
Collapse
Affiliation(s)
- Alexis M Walker
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Mary Beth Leigh
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Sarah L Mincks
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
11
|
Han X, Wang F, Zhang D, Feng T, Zhang L. Nitrate-assisted biodegradation of polycyclic aromatic hydrocarbons (PAHs) in the water-level-fluctuation zone of the three Gorges Reservoir, China: Insights from in situ microbial interaction analyses and a microcosmic experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115693. [PMID: 33002789 DOI: 10.1016/j.envpol.2020.115693] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
An increase in polycyclic aromatic hydrocarbon (PAH) pollution poses significant challenges to human and ecosystem health in the Three Gorges Reservoir (TGR) of the Yangtze River. Based on the combination of PAH analysis with qPCR and high-throughput sequencing of bacteria, 32 topsoil samples collected from 16 sites along the TGR were used to investigate the distribution and biodegradation pathways of PAHs in the water-level-fluctuation zone (WLFZ). The results indicated that the concentrations of PAHs were 43.8-228.2 and 30.8-206.3 ng/g soil (dry weight) under the high- and low-water-level (HWL and LWL) conditions, respectively. The PAH concentration in urban areas was higher than that in rural areas. Under both the HWL and LWL conditions, the abundance of the bamA gene, a biomarker of anaerobic PAH biodegradation, was significantly higher than that of the ring-hydroxylating-dioxygenase (RHD) gene, a biomarker of aerobic PAH biodegradation. The abundance of the bamA gene was significantly positively correlated with PAHs (R2 = 0.8), and the biodegradation percentage of PAHs incubated anaerobically was greater than that in the aerobically incubated microcosm experiments. These data implicated a key role of the anaerobic pathway in PAH biodegradation. Co-occurrence network analysis suggested that anaerobic Anaerolineaceae, Dechloromonas, Bacteroidetes_vadin HA17 and Geobacter were key participants in the biodegradation of PAHs. The diversity analysis of functional bacteria based on the bamA gene and microcosm experiments further demonstrated that nitrate was the primary electron acceptor for PAH biodegradation. These findings provide a new perspective on the mechanism of PAH biodegradation in the TGR and knowledge that can be used to develop strategies for environmental management.
Collapse
Affiliation(s)
- Xinkuan Han
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Fengwen Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China.
| | - Ting Feng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
12
|
Hao DC, Li XJ, Xiao PG, Wang LF. The Utility of Electrochemical Systems in Microbial Degradation of Polycyclic Aromatic Hydrocarbons: Discourse, Diversity and Design. Front Microbiol 2020; 11:557400. [PMID: 33193139 PMCID: PMC7644954 DOI: 10.3389/fmicb.2020.557400] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially high molecular weight PAHs, are carcinogenic and mutagenic organic compounds that are difficult to degrade. Microbial remediation is a popular method for the PAH removal in diverse environments and yet it is limited by the lack of electron acceptors. An emerging solution is to use the microbial electrochemical system, in which the solid anode is used as an inexhaustible electron acceptor and the microbial activity is stimulated by biocurrent in situ to ensure the PAH removal and avoid the defects of bioremediation. Based on the extensive investigation of recent literatures, this paper summarizes and comments on the research progress of PAH removal by the microbial electrochemical system of diversified design, enhanced measures and functional microorganisms. First, the bioelectrochemical degradation of PAHs is reviewed in separate and mixed PAH degradation, and the removal performance of PAHs in different system configurations is compared with the anode modification, the enhancement of substrate and electron transfer, the addition of chemical reagents, and the combination with phytoremediation. Second, the key functional microbiota including PAH degrading microbes and exoelectrogens are overviewed as well as the reduced microbes without competitive advantage. Finally, the typical representations of electrochemical activity especially the internal resistance, power density and current density of systems and influence factors are reviewed with the correlation analysis between PAH removal and energy generation. Presently, most studies focused on the anode modification in the bioelectrochemical degradation of PAHs and actually more attentions need to be paid to enhance the mass transfer and thus larger remediation radius, and other smart designs are also proposed, especially that the combined use of phytoremediation could be an eco-friendly and sustainable approach. Additionally, exoelectrogens and PAH degraders are partially overlapping, but the exact functional mechanisms of interaction network are still elusive, which could be revealed with the aid of advanced bioinformatics technology. In order to optimize the efficacy of functional community, more advanced techniques such as omics technology, photoelectrocatalysis and nanotechnology should be considered in the future research to improve the energy generation and PAH biodegradation rate simultaneously.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Xiao-Jing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Lian-Feng Wang
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| |
Collapse
|
13
|
Wang J, Sun Z. Effects of different carbon sources on 2,4,6-trichlorophenol degradation in the activated sludge process. Bioprocess Biosyst Eng 2020; 43:2143-2152. [DOI: 10.1007/s00449-020-02400-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
|
14
|
Han X, Peng S, Zhang L, Lu P, Zhang D. The Co-occurrence of DNRA and Anammox during the anaerobic degradation of benzene under denitrification. CHEMOSPHERE 2020; 247:125968. [PMID: 32069733 DOI: 10.1016/j.chemosphere.2020.125968] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
It was revealed that Anammox process promotes the anaerobic degradation of benzene under denitrification. This study investigates the effect of dissimilatory nitrate reduction to ammonium (DNRA) and exogenous ammonium on anaerobic ammonium oxidation bacteria (AnAOB) during the anaerobic degradation of benzene under denitrification. The results indicate that anammox occurs synergistically with organisms using the DNRA pathway, such as Draconibacterium and Ignavibacterium. Phylogenetic analysis showed 64% (16/25) and 36% (5/25) hzsB gene sequences, a specific biomarker of AnAOB, belonged to Candidatus 'Brocadia fuldiga' and Candidatus 'Kuenenia', respectively. Exogenous ammonium addition enhanced the anammox process and accelerated benzene degradation at a 1.89-fold higher average rate compared to that in the absence of exogenous ammonium and AnAOB belonged to Ca. 'Kuenenia' (84%) and Ca. 'Brocadia fuldiga' (16%). These results indicate that Ca. 'Brocadia fuldiga' could also play a role in DNRA. However, the diversity of abcA and bamA, the key anaerobic benzene metabolism biomarkers, remained unchanged. These findings suggest that anammox occurrence may be coupled with DNRA or exogenous ammonium and that anammox promotes anaerobic benzene degradation under denitrifying conditions. The results of this study contribute to understanding the co-occurrence of DNRA and Anammox and help explore their involvement in degradation of benzene, which will be crucial for directing remediation strategies of benzene-contaminated anoxic environment.
Collapse
Affiliation(s)
- Xinkuan Han
- Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Shuchan Peng
- Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Lilan Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Peili Lu
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| | - Daijun Zhang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China; Department of Environmental Science, Chongqing University, 174 Shapingba Road, Chongqing, 400044, China.
| |
Collapse
|
15
|
Zhou Y, Zou Q, Fan M, Xu Y, Chen Y. Highly efficient anaerobic co-degradation of complex persistent polycyclic aromatic hydrocarbons by a bioelectrochemical system. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:120945. [PMID: 31421548 DOI: 10.1016/j.jhazmat.2019.120945] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) that undergo long-distance migration and have strong biological toxicity are a great threat to the health of ecosystems. In this study, the biodegradation characteristics and combined effects of mixed PAHs in bioelectrochemical systems (BESs) were studied. The results showed that, compared with a mono-carbon source, low-molecular-weight PAHs (LMW PAHs)-naphthalene (NAP) served as the co-substrate to promote the degradation of phenanthrene (PHE) and pyrene (PYR). The maximum degradation rates of PHE and PYR were 89.20% and 51.40% at 0.2500 mg/L in NAP-PHE and NAP-PYR at the degradation time of 120 h, respectively. Intermediate products were also detected, which indicated that the appending of relatively LMW PAHs had different effects on the metabolism of high-molecular-weight PAHs (HMW PAHs). The microbe species under different substrates (NAP-B, PHE-B, PYR-B, NAP-PHE, NAP-PYR, PHE-PYR) are highly similar, although the structure of the microbial community changed on the anode in the BES. In this study, the degradation regularity of mixed PAHs in BES was studied and provided theoretical guidance for the effective co-degradation of PAHs in the environment.
Collapse
Affiliation(s)
- Yukang Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qingping Zou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Mengjie Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yuan Xu
- College of Architecture and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yingwen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
16
|
Nitz H, Duarte M, Jauregui R, Pieper DH, Müller JA, Kästner M. Identification of benzene-degrading Proteobacteria in a constructed wetland by employing in situ microcosms and RNA-stable isotope probing. Appl Microbiol Biotechnol 2019; 104:1809-1820. [DOI: 10.1007/s00253-019-10323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/30/2019] [Accepted: 12/15/2019] [Indexed: 11/24/2022]
|
17
|
Palma E, Espinoza Tofalos A, Daghio M, Franzetti A, Tsiota P, Cruz Viggi C, Papini MP, Aulenta F. Bioelectrochemical treatment of groundwater containing BTEX in a continuous-flow system: Substrate interactions, microbial community analysis, and impact of sulfate as a co-contaminant. N Biotechnol 2019; 53:41-48. [DOI: 10.1016/j.nbt.2019.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 11/28/2022]
|
18
|
Martínez-Gutiérrez E, Cuervo-López FDM, Texier AC, Gómez J. Physiologic impact of 2-chlorophenol on denitrification process in mixture with different electron sources. 3 Biotech 2019; 9:190. [PMID: 31065490 DOI: 10.1007/s13205-019-1723-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/17/2019] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to evaluate the physiologic behavior of sludge in the absence and presence of 2-chlorophenol (2-CP) with different electron donors (phenol, glucose, and acetate) during denitrification process. In batch assays with phenol in the presence of 2-CP, a significant decrease of phenol consumption efficiencies (E phenol) up to 99% was observed regarding the cultures without 2-CP. However, in most of the cases, nitrate consumption efficiencies ( E NO 3 - ), and yields of nitrogen gas ( Y N 2 ) and bicarbonate ( Y HCO 3 - ) were high, showing that the denitrifying respiratory process successfully occurred with phenol and 2-CP. The specific consumption rates of nitrate ( q NO 3 - ) and phenol (q phenol) decreased up to 6.0 and 32.3 times, respectively. In assays with glucose in the presence of 2-CP, the denitrifying performance was not significantly altered in terms of efficiencies and product yields; however, q NO 3 - was up to 1.6 times smaller than that obtained without 2-CP whereas q glucose was increased up to 1.17 times. In assays with acetate plus 2-CP, the E NO 3 - , E acetate, and Y N 2 values remained high but 2-CP caused a decrease in Y HCO 3 - . Moreover, q NO 3 - and q acetate increased up to 1.4 and 2.0 times, respectively. These results show that the negative or positive effects of 2-CP on denitrification process depend on the type and concentration of electron source. The obtained physiologic and kinetic information might be useful to define strategies to maintain successful denitrification processes in wastewater treatment bioreactors fed with 2-CP.
Collapse
Affiliation(s)
- Emir Martínez-Gutiérrez
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, Iztapalapa, C.P. 09340 Mexico City, Mexico
| | - Flor de María Cuervo-López
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, Iztapalapa, C.P. 09340 Mexico City, Mexico
| | - Anne-Claire Texier
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, Iztapalapa, C.P. 09340 Mexico City, Mexico
| | - Jorge Gómez
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Vicentina, Iztapalapa, C.P. 09340 Mexico City, Mexico
| |
Collapse
|
19
|
Yi Z, Jin Y, Xiao Y, Chen L, Tan L, Du A, He K, Liu D, Luo H, Fang Y, Zhao H. Unraveling the Contribution of High Temperature Stage to Jiang-Flavor Daqu, a Liquor Starter for Production of Chinese Jiang-Flavor Baijiu, With Special Reference to Metatranscriptomics. Front Microbiol 2019; 10:472. [PMID: 30930875 PMCID: PMC6423406 DOI: 10.3389/fmicb.2019.00472] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
Jiang-flavor (JF) daqu is a liquor starter used for production of JF baijiu, a well-known distilled liquor in China. Although a high temperature stage (70°C) is necessary for qualifying JF daqu, little is known regarding its active microbial community and functional enzymes, along with its role in generating flavor precursors for JF baijiu aroma. In this investigation, based on metatranscriptomics, fungi, such as Aspergillus and Penicillium, were identified as the most active microbial members and 230 carbohydrate-active enzymes were identified as potential saccharifying enzymes at 70°C of JF daqu. Notably, most of enzymes in identified carbohydrate and energy pathways showed lower expression levels at 70°C of JF daqu than those at the high temperature stage (62°C) of Nong-flavor (NF) daqu, indicating lowering capacities of saccharification and fermentation by high temperature stage. Moreover, many enzymes, especially those related to the degradation of aromatic compounds, were only detected with low expression levels at 70°C of JF daqu albeit not at 62°C of NF daqu, indicating enhancing capacities of generating special trace aroma compounds in JF daqu by high temperature stage. Additionally, most of enzymes related to those capacities were highly expressed at 70°C by fungal genus of Aspergillus, Coccidioides, Paracoccidioides, Penicillium, and Rasamsonia. Therefore, this study not only sheds light on the crucial functions of high temperature stage but also paves the way to improve the quality of JF baijiu and provide active community and functional enzymes for other fermentation industries.
Collapse
Affiliation(s)
- Zhuolin Yi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yao Xiao
- Analytical and Testing Center, Sichuan University of Science and Engineering, Zigong, China
| | - Lanchai Chen
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Tan
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Anping Du
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Kaize He
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Dayu Liu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
| | - Huibo Luo
- Bioengineering College, Sichuan University of Science and Engineering, Zigong, China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Hai Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
20
|
Keller AH, Kleinsteuber S, Vogt C. Anaerobic Benzene Mineralization by Nitrate-Reducing and Sulfate-Reducing Microbial Consortia Enriched From the Same Site: Comparison of Community Composition and Degradation Characteristics. MICROBIAL ECOLOGY 2018; 75:941-953. [PMID: 29124312 DOI: 10.1007/s00248-017-1100-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/26/2017] [Indexed: 05/22/2023]
Abstract
Benzene mineralization under nitrate-reducing conditions was successfully established in an on-site reactor continuously fed with nitrate and sulfidic, benzene-containing groundwater extracted from a contaminated aquifer. Filling material from the reactor columns was used to set up anoxic enrichment cultures in mineral medium with benzene as electron donor and sole organic carbon source and nitrate as electron acceptor. Benzene degradation characteristics and community composition under nitrate-reducing conditions were monitored and compared to those of a well-investigated benzene-mineralizing consortium enriched from the same column system under sulfate-reducing conditions. The nitrate-reducing cultures degraded benzene at a rate of 10.1 ± 1.7 μM d-1, accompanied by simultaneous reduction of nitrate to nitrite. The previously studied sulfate-reducing culture degraded benzene at similar rates. Carbon and hydrogen stable isotope enrichment factors determined for nitrate-dependent benzene degradation differed significantly from those of the sulfate-reducing culture (ΛH/C nitrate = 12 ± 3 compared to ΛH/C sulfate = 28 ± 3), indicating different benzene activation mechanisms under the two conditions. The nitrate-reducing community was mainly composed of Betaproteobacteria, Ignavibacteria, and Anaerolineae. Azoarcus and a phylotype related to clone Dok59 (Rhodocyclaceae) were the dominant genera, indicating an involvement in nitrate-dependent benzene degradation. The primary benzene degrader of the sulfate-reducing consortium, a phylotype belonging to the Peptococcaceae, was absent in the nitrate-reducing consortium.
Collapse
Affiliation(s)
- Andreas H Keller
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Carsten Vogt
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, 04318, Leipzig, Germany.
| |
Collapse
|
21
|
Wu Q, Wang H, Yi C. Preparation of photo-Fenton heterogeneous catalyst (Fe-TS-1 zeolite) and its application in typical azo dye decoloration. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci Rep 2018. [PMID: 29540736 PMCID: PMC5852087 DOI: 10.1038/s41598-018-22617-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this study, we report transcription of genes involved in aerobic and anaerobic benzene degradation pathways in a benzene-degrading denitrifying continuous culture. Transcripts associated with the family Peptococcaceae dominated all samples (21-36% relative abundance) indicating their key role in the community. We found a highly transcribed gene cluster encoding a presumed anaerobic benzene carboxylase (AbcA and AbcD) and a benzoate-coenzyme A ligase (BzlA). Predicted gene products showed >96% amino acid identity and similar gene order to the corresponding benzene degradation gene cluster described previously, providing further evidence for anaerobic benzene activation via carboxylation. For subsequent benzoyl-CoA dearomatization, bam-like genes analogous to the ones found in other strict anaerobes were transcribed, whereas gene transcripts involved in downstream benzoyl-CoA degradation were mostly analogous to the ones described in facultative anaerobes. The concurrent transcription of genes encoding enzymes involved in oxygenase-mediated aerobic benzene degradation suggested oxygen presence in the culture, possibly formed via a recently identified nitric oxide dismutase (Nod). Although we were unable to detect transcription of Nod-encoding genes, addition of nitrite and formate to the continuous culture showed indication for oxygen production. Such an oxygen production would enable aerobic microbes to thrive in oxygen-depleted and nitrate-containing subsurface environments contaminated with hydrocarbons.
Collapse
|
23
|
van der Waals MJ, Pijls C, Sinke AJC, Langenhoff AAM, Smidt H, Gerritse J. Anaerobic degradation of a mixture of MtBE, EtBE, TBA, and benzene under different redox conditions. Appl Microbiol Biotechnol 2018; 102:3387-3397. [PMID: 29478141 PMCID: PMC5852185 DOI: 10.1007/s00253-018-8853-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 11/30/2022]
Abstract
The increasing use of biobased fuels and fuel additives can potentially change the typical fuel-related contamination in soil and groundwater. Anaerobic biotransformation of the biofuel additive ethyl tert-butyl ether (EtBE), as well as of methyl tert-butyl ether (MtBE), benzene, and tert-butyl alcohol (TBA, a possible oxygenate metabolite), was studied at an industrially contaminated site and in the laboratory. Analysis of groundwater samples indicated that in the field MtBE was degraded, yielding TBA as major product. In batch microcosms, MtBE was degraded under different conditions: unamended control, with medium without added electron acceptors, or with ferrihydrite or sulfate (with or without medium) as electron acceptor, respectively. Degradation of EtBE was not observed under any of these conditions tested. TBA was partially depleted in parallel with MtBE. Results of microcosm experiments with MtBE substrate analogues, i.e., syringate, vanillate, or ferulate, were in line with the hypothesis that the observed TBA degradation is a cometabolic process. Microcosms with ferulate, syringate, isopropanol, or diethyl ether showed EtBE depletion up to 86.5% of the initial concentration after 83 days. Benzene was degraded in the unamended controls, with medium without added electron acceptors and with ferrihydrite, sulfate, or chlorate as electron acceptor, respectively. In the presence of nitrate, benzene was only degraded after addition of an anaerobic benzene-degrading community. Nitrate and chlorate hindered MtBE, EtBE, and TBA degradation.
Collapse
Affiliation(s)
- Marcelle J van der Waals
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, the Netherlands. .,Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Charles Pijls
- Tauw, Handelskade 37, 7400 AC, Deventer, the Netherlands
| | - Anja J C Sinke
- BP International Limited, Sunbury on Thames, Middlesex, TW167BP, UK
| | - Alette A M Langenhoff
- Department of Environmental Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG, Wageningen, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Jan Gerritse
- Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK, Utrecht, the Netherlands
| |
Collapse
|