1
|
Awakawa T. Biosynthesis of unique natural product scaffolds by Fe(II)/αKG-dependent oxygenases. J Nat Med 2025; 79:303-313. [PMID: 39915427 PMCID: PMC11880133 DOI: 10.1007/s11418-025-01880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025]
Abstract
Fe(II)/αKG-dependent oxygenases are multifunctional oxidases responsible for the formation of unique natural product skeletons. Studies of these enzymes are important because the knowledge of their catalytic functions, enzyme structures, and reaction mechanisms can be used to create non-natural enzymes through mutation and synthesize non-natural compounds. In this review, I will introduce the research we have conducted on two fungal Fe(II)/αKG-dependent oxygenases, TlxI-J and TqaL. TlxI-J is the first Fe(II)/αKG-dependent oxygenase type enzyme heterodimer that catalyzes consecutive oxidation reactions, hydroxylation followed by retro-aldol or ketal formation, to form the complex skeletons of meroterpenoids. TqaL is the first naturally occurring aziridine synthase, and I will discuss the mechanism of its unique C-N bond formation in nonproteinogenic amino acid biosynthesis. This review will advance research on the discovery of new enzymes and the analysis of their functions by reviewing the structures and functions of these extraordinary Fe(II)/αKG-dependent oxygenases, and promote their use in the synthesis of new natural medicines.
Collapse
Affiliation(s)
- Takayoshi Awakawa
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
2
|
Maurer SJ, Petrarca de Albuquerque JL, McCallum ME. Recent Developments in the Biosynthesis of Aziridines. Chembiochem 2024; 25:e202400295. [PMID: 38830838 DOI: 10.1002/cbic.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Only 0.016 % of all known natural products contain an aziridine ring, but this unique structural feature imparts high reactivity and cytotoxicity to the compounds in which it is found. Until 2021, no naturally occurring aziridine-forming enzymes had been identified. Since 2021, the biosynthetic enzymes for ~10 % of known aziridine containing natural products have been identified and characterized. This article describes the recent advances in our understanding of enzyme-catalyzed aziridine formation in the context of historical methods for aziridine formation through synthetic chemistry.
Collapse
Affiliation(s)
- Sabina J Maurer
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| | | | - Monica E McCallum
- Department of Chemistry, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Al-Theyab N, Alrasheed O, Abuelizz HA, Liang M. Draft genome sequence of potato crop bacterial isolates and nanoparticles-intervention for the induction of secondary metabolites biosynthesis. Saudi Pharm J 2023; 31:783-794. [PMID: 37228327 PMCID: PMC10203779 DOI: 10.1016/j.jsps.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Insights about the effects of gold nanoparticles (AuNPs) on the biosynthetic manipulation of unknown microbe secondary metabolites could be a promising technique for prospective research on nano-biotechnology. Aim In this research, we aimed to isolate a fresh, non-domesticated unknown bacterium strain from a common scab of potato crop located in Saudi Arabia and study the metabolic profile. Methodology This was achieved through genomic DNA (gDNA) sequencing using Oxford Nanopore Technology. The genomic data were subjected to several bioinformatics tools, including canu-1.9 software, Prokka, DFAST, Geneious Prime, and AntiSMASH. We exposed the culture of the bacterial isolate with different concentrations of AuNPs and investigated the effects of AuNPs on secondary metabolites biosynthesis using several analytical techniques. Furthermore, Tandem-mass spectrometric (MS/MS) technique was optimized for the characterization of several significant sub-classes. Results The genomic draft sequence assembly, alignment, and annotation have verified the bacterial isolate as Priestia megaterium. This bacterium has secondary metabolites related to different biosynthetic gene clusters. AuNPs intervention showed an increase in the production of compounds with the molecular weights of 254 and 270 Da in a direct-dependent manner with the increase of the AuNPs concentrations. Conclusion The increase in the yields of compound 1 and 2 concomitantly with the increase in the concentration of the added AuNPs provide evidences about the effects of nanoparticles on the biosynthesis of the secondary metabolites. It contributes to the discovery of genes involved in different biosynthetic gene clusters (BGCs) and prediction of the structures of the natural products.
Collapse
Affiliation(s)
- Nada Al-Theyab
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar Alrasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatem A. Abuelizz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mingtao Liang
- School of Biomedical Science and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
4
|
Cheng Y, Yi X, Zhang Y, He Q, Chen D, Cao W, Fang P, Liu W. Oxidase Heterotetramer Completes 1-Azabicyclo[3.1.0]hexane Formation with the Association of a Nonribosomal Peptide Synthetase. J Am Chem Soc 2023; 145:8896-8907. [PMID: 37043819 DOI: 10.1021/jacs.2c12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Ficellomycin, azinomycins, and vazabitide A are nonribosomal peptide natural products characterized by an amino acid unit that contains a similar 1-azabicyclo[3.1.0]hexane (ABCH) pharmacophore. This unit is derived from diamino-dihydroxy-heptanic acid (DADH); however, the process through which linear DADH is cyclized to furnish an ABCH ring system remains poorly understood. Based on the reconstitution of the route of the ABCH-containing unit by blending genes/enzymes involved in the biosynthesis of ficellomycin and azinomycins, we report that ABCH formation is completed by an oxidase heterotetramer with the association of a nonribosomal peptide synthetase (NRPS). The DADH precursor was prepared in Escherichia coli to produce a conjugate subjected to in vitro enzymatic hydrolysis for offloading from an amino-group carrier protein. To furnish an aziridine ring, DADH was processed by C7-hydroxyl sulfonation and sulfate elimination-coupled cyclization. Further cyclization leading to an azabicyclic hexane pharmacophore was proved to occur in the NRPS, where the oxidase heterotetramer functions in trans and catalyzes α,β-dehydrogenation to initiate the formation of a fused five-membered nitrogen heterocycle. The identity of ABCH was validated by utilization of the resultant ABCH-containing unit in the total biosynthesis of ficellomycin. Biochemical characterization, crystal structure, and site-specific mutagenesis rationalize the catalytic mechanism of the unusual oxidase heterotetramer.
Collapse
Affiliation(s)
- Yiyuan Cheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xuan Yi
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qingli He
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Weiguo Cao
- Department of Chemistry, Shanghai University, 99 Shangda Rd, Baoshan, Shanghai 200444, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
5
|
Kurosawa S, Okamura H, Yoshida A, Tomita T, Sone Y, Hasebe F, Shinada T, Takikawa H, Kosono S, Nishiyama M. Mechanisms of Sugar Aminotransferase-like Enzymes to Synthesize Stereoisomers of Non-proteinogenic Amino Acids in Natural Product Biosynthesis. ACS Chem Biol 2023; 18:385-395. [PMID: 36669120 DOI: 10.1021/acschembio.2c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
(2,6)-Diamino-(5,7)-dihydroxyheptanoic acid (DADH), a non-proteinogenic amino acid, is converted to 1-azabicyclo[3.1.0]hexane ring-containing amino acids that are subsequently incorporated into ficellomycin and vazabitide A. The present study revealed that the sugar aminotransferase-like enzymes Fic25 and Vzb9, with a high amino acid sequence identity (56%) to each other, synthesized stereoisomers of DADH with (6S) and (6R) configurations, respectively. The crystal structure of the Fic25 complex with a PLP-(6S)-N2-acetyl-DADH adduct indicated that Asn45 and Gln197 (Asn205 and Ala53 in Vzb9) were located at positions that affected the stereochemistry of DADH being synthesized. A modeling study suggested that amino acid substitutions between Fic25 and Vzb9 allowed the enzymes to bind to the substrate with almost 180° rotation in the C5-C7 portions of the DADH molecules, accompanied by a concomitant shift in their C1-C4 portions. In support of this result, the replacement of two corresponding residues in Fic25 and Vzb9 increased (6R) and (6S) stereoselectivities, respectively. The different stereochemistry at C6 of DADH resulted in a different stereochemistry/orientation of the aziridine portion of the 1-azabicyclo[3.1.0]hexane ring, which plays a crucial role in biological activity, between ficellomycin and vazabitide A. A phylogenic analysis suggested that Fic25 and Vzb9 evolved from sugar aminotransferases to produce unusual building blocks for expanding the structural diversity of secondary metabolites.
Collapse
Affiliation(s)
- Sumire Kurosawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hironori Okamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayako Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Sone
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumihito Hasebe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka 558-8585, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Kosono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Tao H, Ushimaru R, Awakawa T, Mori T, Uchiyama M, Abe I. Stereoselectivity and Substrate Specificity of the Fe(II)/α-Ketoglutarate-Dependent Oxygenase TqaL. J Am Chem Soc 2022; 144:21512-21520. [DOI: 10.1021/jacs.2c08116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takayoshi Awakawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda 386-8567, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Kurosawa S, Hasebe F, Okamura H, Yoshida A, Matsuda K, Sone Y, Tomita T, Shinada T, Takikawa H, Kuzuyama T, Kosono S, Nishiyama M. Molecular Basis for Enzymatic Aziridine Formation via Sulfate Elimination. J Am Chem Soc 2022; 144:16164-16170. [PMID: 35998388 DOI: 10.1021/jacs.2c07243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural products containing an aziridine ring, such as mitomycin C and azinomycin B, exhibit antitumor activities by alkylating DNA via their aziridine rings; however, the biosynthetic mechanisms underlying the formation of these rings have not yet been elucidated. We herein investigated the biosynthesis of vazabitide A, the structure of which is similar to that of azinomycin B, and demonstrated that Vzb10/11, with no similarities to known enzymes, catalyzed the formation of the aziridine ring via sulfate elimination. To elucidate the detailed reaction mechanism, crystallization of Vzb10/11 and the homologous enzyme, AziU3/U2, in the biosynthesis of azinomycin B was attempted, and the structure of AziU3/U2, which had a new protein fold overall, was successfully determined. The structural analysis revealed that these enzymes adjusted the dihedral angle between the amino group and the adjacent sulfate group of the substrate to almost 180° and enhanced the nucleophilicity of the C6-amino group temporarily, facilitating the SN2-like reaction to form the aziridine ring. The present study reports for the first time the molecular basis for aziridine ring formation.
Collapse
Affiliation(s)
- Sumire Kurosawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumihito Hasebe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hironori Okamura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ayako Yoshida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kenichi Matsuda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yusuke Sone
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeo Tomita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan
| | - Hirosato Takikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomohisa Kuzuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Saori Kosono
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Makoto Nishiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Zin NM, Ismail A, Mark DR, Westrop G, Schniete JK, Herron PR. Adaptation to Endophytic Lifestyle Through Genome Reduction by Kitasatospora sp. SUK42. Front Bioeng Biotechnol 2021; 9:740722. [PMID: 34712653 PMCID: PMC8545861 DOI: 10.3389/fbioe.2021.740722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/20/2021] [Indexed: 01/02/2023] Open
Abstract
Endophytic actinobacteria offer great potential as a source of novel bioactive compounds. In order to investigate the potential for the production of secondary metabolites by endophytes, we recovered a filamentous microorgansism from the tree Antidesma neurocarpum Miq. After phenotypic analysis and whole genome sequencing we demonstrated that this organism, SUK42 was a member of the actinobacterial genus Kitasatospora. This strain has a small genome in comparison with other type strains of this genus and has lost metabolic pathways associated with Stress Response, Nitrogen Metabolism and Secondary Metabolism. Despite this SUK42 can grow well in a laboratory environment and encodes a core genome that is consistent with other members of the genus. Finally, in contrast to other members of Kitasatospora, SUK42 encodes saccharide secondary metabolite biosynthetic gene clusters, one of which with similarity to the acarviostatin cluster, the product of which displays α-amylase inhibitory activity. As extracts of the host plant demonstrate this inhibitory activity, it suggests that the potential medicinal properties of A. neurocarpum Miq might be provided by the endophytic partner and illustrate the potential for exploitation of endophytes for clinical or industrial uses.
Collapse
Affiliation(s)
- Noraziah M Zin
- School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Aishah Ismail
- School of Diagnostic and Applied Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - David R Mark
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Gareth Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jana K Schniete
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Paul R Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
9
|
Kalra A, Bagchi V, Paraskevopoulou P, Das P, Ai L, Sanakis Y, Raptopoulos G, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics 2021; 40:1974-1996. [PMID: 35095166 PMCID: PMC8797515 DOI: 10.1021/acs.organomet.1c00267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent research has highlighted the key role played by the electron affinity of the active metal-nitrene/imido oxidant as the driving force in nitrene additions to olefins to afford valuable aziridines. The present work showcases a library of Co(II) reagents that, unlike the previously examined Mn(II) and Fe(II) analogues, demonstrate reactivity trends in olefin aziridinations that cannot be solely explained by the electron affinity criterion. A family of Co(II) catalysts (17 members) has been synthesized with the assistance of a trisphenylamido-amine scaffold decorated by various alkyl, aryl, and acyl groups attached to the equatorial amidos. Single-crystal X-ray diffraction analysis, cyclic voltammetry and EPR data reveal that the high-spin Co(II) sites (S = 3/2) feature a minimal [N3N] coordination and span a range of 1.4 V in redox potentials. Surprisingly, the Co(II)-mediated aziridination of styrene demonstrates reactivity patterns that deviate from those anticipated by the relevant electrophilicities of the putative metal nitrenes. The representative L4Co catalyst (-COCMe3 arm) is operating faster than the L8Co analogue (-COCF3 arm), in spite of diminished metal-nitrene electrophilicity. Mechanistic data (Hammett plots, KIE, stereocontrol studies) reveal that although both reagents follow a two-step reactivity path (turnover-limiting metal-nitrene addition to the C b atom of styrene, followed by product-determining ring-closure), the L4Co catalyst is associated with lower energy barriers in both steps. DFT calculations indicate that the putative [L4Co]NTs and [L8Co]NTs species are electronically distinct, inasmuch as the former exhibits a single-electron oxidized ligand arm. In addition, DFT calculations suggest that including London dispersion corrections for L4Co (due to the polarizability of the tert-Bu substituent) can provide significant stabilization of the turnover-limiting transition state. This study highlights how small ligand modifications can generate stereoelectronic variants that in certain cases are even capable of overriding the preponderance of the metal-nitrene electrophilicity as a driving force.
Collapse
Affiliation(s)
- Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yiannis Sanakis
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR "Demokritos", Athens 15310, Greece
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
10
|
Crits-Christoph A, Bhattacharya N, Olm MR, Song YS, Banfield JF. Transporter genes in biosynthetic gene clusters predict metabolite characteristics and siderophore activity. Genome Res 2021; 31:239-250. [PMID: 33361114 PMCID: PMC7849407 DOI: 10.1101/gr.268169.120] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022]
Abstract
Biosynthetic gene clusters (BGCs) are operonic sets of microbial genes that synthesize specialized metabolites with diverse functions, including siderophores and antibiotics, which often require export to the extracellular environment. For this reason, genes for transport across cellular membranes are essential for the production of specialized metabolites and are often genomically colocalized with BGCs. Here, we conducted a comprehensive computational analysis of transporters associated with characterized BGCs. In addition to known exporters, in BGCs we found many importer-specific transmembrane domains that co-occur with substrate binding proteins possibly for uptake of siderophores or metabolic precursors. Machine learning models using transporter gene frequencies were predictive of known siderophore activity, molecular weights, and a measure of lipophilicity (log P) for corresponding BGC-synthesized metabolites. Transporter genes associated with BGCs were often equally or more predictive of metabolite features than biosynthetic genes. Given the importance of siderophores as pathogenicity factors, we used transporters specific for siderophore BGCs to identify both known and uncharacterized siderophore-like BGCs in genomes from metagenomes from the infant and adult gut microbiome. We find that 23% of microbial genomes from premature infant guts have siderophore-like BGCs, but only 3% of those assembled from adult gut microbiomes do. Although siderophore-like BGCs from the infant gut are predominantly associated with Enterobacteriaceae and Staphylococcus, siderophore-like BGCs can be identified from taxa in the adult gut microbiome that have rarely been recognized for siderophore production. Taken together, these results show that consideration of BGC-associated transporter genes can inform predictions of specialized metabolite structure and function.
Collapse
Affiliation(s)
- Alexander Crits-Christoph
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
- Innovative Genomics Institute, Berkeley, California 94720, USA
| | - Nicholas Bhattacharya
- Department of Mathematics, University of California, Berkeley, California 94720, USA
| | - Matthew R Olm
- Department of Microbiology and Immunology, Stanford University, California 94305, USA
| | - Yun S Song
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA
- Department of Statistics, University of California, Berkeley, California 94720, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
| | - Jillian F Banfield
- Innovative Genomics Institute, Berkeley, California 94720, USA
- Department of Microbiology and Immunology, Stanford University, California 94305, USA
- Chan Zuckerberg Biohub, San Francisco, California 94158, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
11
|
Yue R, Li M, Wang Y, Guan Y, Zhang J, Yan Z, Liu F, Lu F, Zhang H. Insight into enzyme-catalyzed aziridine formation mechanism in ficellomycin biosynthesis. Eur J Med Chem 2020; 204:112639. [PMID: 32712437 DOI: 10.1016/j.ejmech.2020.112639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
Ficellomycin is an aziridine-containing antibiotic, produced by Streptomyces ficellus. Based on the newly identified ficellomycin gene cluster and the assigned functions of its genes, a possible pathway for aziridine ring formation in ficellomycin was proposed, which is a complex process involving at least 3 enzymatic steps. To obtain support for the proposed mechanism, the targeted genes encoding sulfate adenylyltransferase, adenylsulfate kinase, and a putative sulfotransferase were respectively disrupted and the subsequent analysis of their fermentation products revealed that all the three genes were involved in aziridine formation. To further confirm the mechanism, the key gene encoding a putative sulfotransferase was over expressed in Escherichia coli Rosseta (DE3). Enzyme assays indicated that the expressed sulfotransferase could specifically transfer a sulfo group from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) onto the hydroxyl group of (R)-(-)-2-pyrrolidinemethanol. This introduces a good leaving group in the form of the sulfated hydroxyl moiety, which is then converted into an aziridine ring through an intramolecular nucleophilic attack by the adjacent secondary amine. The sulfation/intramolecular cyclization reaction sequence maybe a general strategy for aziridine biosynthesis in microorganisms. Discovery of this mechanism revealed an enzyme-catalyzed route for the synthesis of aziridine-containing reagents and provided an important insight into the functional diversity of sulfotransferases.
Collapse
Affiliation(s)
- Rong Yue
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Meng Li
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Yue Wang
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Ying Guan
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Jing Zhang
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Zhongli Yan
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China
| | - Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, College of Bioengineering, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
12
|
Kurosawa S, Matsuda K, Hasebe F, Shiraishi T, Shin-Ya K, Kuzuyama T, Nishiyama M. Guanidyl modification of the 1-azabicyclo[3.1.0]hexane ring in ficellomycin essential for its biological activity. Org Biomol Chem 2020; 18:5137-5144. [PMID: 32582897 DOI: 10.1039/d0ob00339e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 1-azabicyclo[3.1.0]hexane ring is a key moiety in natural products for biological activities against bacteria, fungi, and tumor through DNA alkylation. Ficellomycin is a dipeptide that consists of l-valine and a non-proteinogenic amino acid with the 1-azabicyclo[3.1.0]hexane ring structure. Although the biosynthetic gene cluster of ficellomycin has been identified, the biosynthetic pathway currently remains unclear. We herein report the final stage of ficellomycin biosynthesis involving ring modifications and successive dipeptide formation. After the ring is formed, the hydroxy group of the ring is converted into the guanidyl unit by three enzymes, which include an aminotransferase with a novel inter ω-ω amino-transferring activity. In the last step, the resulting 1-azabicyclo[3.1.0]hexane ring-containing amino acid is connected with l-valine by an amino acid ligase to yield ficellomycin. The present study revealed a new machinery that expands the structural and biological diversities of natural products.
Collapse
Affiliation(s)
- Sumire Kurosawa
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan.
| | - Kenichi Matsuda
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan.
| | - Fumihito Hasebe
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan.
| | - Taro Shiraishi
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan. and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tomohisa Kuzuyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan. and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan
| | - Makoto Nishiyama
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan. and Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8567, Japan
| |
Collapse
|
13
|
Semi-rational mutagenesis of an industrial Streptomyces fungicidicus strain for improved enduracidin productivity. Appl Microbiol Biotechnol 2020; 104:3459-3471. [DOI: 10.1007/s00253-020-10488-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
|
14
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
15
|
Ogawara H. Comparison of Antibiotic Resistance Mechanisms in Antibiotic-Producing and Pathogenic Bacteria. Molecules 2019; 24:E3430. [PMID: 31546630 PMCID: PMC6804068 DOI: 10.3390/molecules24193430] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022] Open
Abstract
Antibiotic resistance poses a tremendous threat to human health. To overcome this problem, it is essential to know the mechanism of antibiotic resistance in antibiotic-producing and pathogenic bacteria. This paper deals with this problem from four points of view. First, the antibiotic resistance genes in producers are discussed related to their biosynthesis. Most resistance genes are present within the biosynthetic gene clusters, but some genes such as paromomycin acetyltransferases are located far outside the gene cluster. Second, when the antibiotic resistance genes in pathogens are compared with those in the producers, resistance mechanisms have dependency on antibiotic classes, and, in addition, new types of resistance mechanisms such as Eis aminoglycoside acetyltransferase and self-sacrifice proteins in enediyne antibiotics emerge in pathogens. Third, the relationships of the resistance genes between producers and pathogens are reevaluated at their amino acid sequence as well as nucleotide sequence levels. Pathogenic bacteria possess other resistance mechanisms than those in antibiotic producers. In addition, resistance mechanisms are little different between early stage of antibiotic use and the present time, e.g., β-lactam resistance in Staphylococcus aureus. Lastly, guanine + cytosine (GC) barrier in gene transfer to pathogenic bacteria is considered. Now, the resistance genes constitute resistome composed of complicated mixture from divergent environments.
Collapse
Affiliation(s)
- Hiroshi Ogawara
- HO Bio Institute, 33-9, Yushima-2, Bunkyo-ku, Tokyo 113-0034, Japan.
- Department of Biochemistry, Meiji Pharmaceutical University, 522-1, Noshio-2, Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
16
|
McErlean M, Overbay J, Van Lanen S. Refining and expanding nonribosomal peptide synthetase function and mechanism. J Ind Microbiol Biotechnol 2019; 46:493-513. [PMID: 30673909 PMCID: PMC6460464 DOI: 10.1007/s10295-018-02130-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are involved in the biosynthesis of numerous peptide and peptide-like natural products that have been exploited in medicine, agriculture, and biotechnology, among other fields. As a consequence, there have been considerable efforts aimed at understanding how NRPSs orchestrate the assembly of these natural products. This review highlights several recent examples that continue to expand upon the fundamental knowledge of NRPS mechanism and includes (1) the discovery of new NRPS substrates and the mechanism by which these sometimes structurally complex substrates are made, (2) the characterization of new NRPS activities and domains that function during the process of peptide assembly, and (3) the various catalytic strategies that are utilized to release the NRPS product. These findings continue to strengthen the predictive power for connecting genes to products, thereby facilitating natural product discovery and development in the Genomics Era.
Collapse
Affiliation(s)
- Matt McErlean
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan Overbay
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Steven Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
17
|
Bagchi V, Kalra A, Das P, Paraskevopoulou P, Gorla S, Ai L, Wang Q, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Comparative Nitrene-Transfer Chemistry to Olefinic Substrates Mediated by a Library of Anionic Mn(II) Triphenylamido-Amine Reagents and M(II) Congeners (M = Fe, Co, Ni) Favoring Aromatic over Aliphatic Alkenes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01941] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Patrina Paraskevopoulou
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Saidulu Gorla
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Qiuwen Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
18
|
Ficellomycin: an aziridine alkaloid antibiotic with potential therapeutic capacity. Appl Microbiol Biotechnol 2018; 102:4345-4354. [DOI: 10.1007/s00253-018-8934-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|