1
|
Green EA, Hamaker NK, Lee KH. Comparison of vector elements and process conditions in transient and stable suspension HEK293 platforms using SARS-CoV-2 receptor binding domain as a model protein. BMC Biotechnol 2023; 23:7. [PMID: 36882740 PMCID: PMC9990576 DOI: 10.1186/s12896-023-00777-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Mammalian cell lines are frequently used as protein expression hosts because of their ability to correctly fold and assemble complex proteins, produce them at high titers, and confer post-translational modifications (PTMs) critical to proper function. Increasing demand for proteins with human-like PTMs, particularly viral proteins and vectors, have made human embryonic kidney 293 (HEK293) cells an increasingly popular host. The need to engineer more productive HEK293 platforms and the ongoing nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic presented an opportunity to study strategies to improve viral protein expression in transient and stable HEK293 platforms. RESULTS Initial process development was done at 24 deep well plate (DWP) -scale to screen transient processes and stable clonal cell lines for recombinant SARS-CoV-2 receptor binding domain (rRBD) titer. Nine DNA vectors that drove rRBD production under different promoters and optionally contained Epstein-Barr virus (EBV) elements to promote episomal expression were screened for transient rRBD production at 37 °C or 32 °C. Use of the cytomegalovirus (CMV) promoter to drive expression at 32 °C led to the highest transient protein titers, but inclusion of episomal expression elements did not augment titer. In parallel, four clonal cell lines with titers higher than that of the selected stable pool were identified in a batch screen. Flask-scale transient transfection and stable fed-batch processes were then established that produced rRBD up to 100 mg/L and 140 mg/L, respectively. While a bio-layer interferometry (BLI) assay was crucial for efficiently screening DWP batch titers, an enzyme-linked immunosorbent assay (ELISA) was used to compare titers from the flask-scale batches due to varying matrix effects from different cell culture media compositions. CONCLUSION Comparing yields from the flask-scale batches revealed that stable fed-batch cultures produced up to 2.1x more rRBD than transient processes. The stable cell lines developed in this work are the first reported clonal, HEK293-derived rRBD producers and have titers up to 140 mg/L. As stable production platforms are more economically favorable for long-term protein production at large scales, investigation of strategies to increase the efficiency of high-titer stable cell line generation in Expi293F or other HEK293 hosts is warranted.
Collapse
Affiliation(s)
- Erica A Green
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA
| | - Nathaniel K Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, Delaware, 19713, USA.
| |
Collapse
|
2
|
Martins SA, Santos J, Silva RDM, Rosa C, Cabo Verde S, Correia JDG, Melo R. How promising are HIV-1-based virus-like particles for medical applications. Front Cell Infect Microbiol 2022; 12:997875. [PMID: 36275021 PMCID: PMC9585283 DOI: 10.3389/fcimb.2022.997875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022] Open
Abstract
New approaches aimed at identifying patient-specific drug targets and addressing unmet clinical needs in the framework of precision medicine are a strong motivation for researchers worldwide. As scientists learn more about proteins that drive known diseases, they are better able to design promising therapeutic approaches to target those proteins. The field of nanotechnology has been extensively explored in the past years, and nanoparticles (NPs) have emerged as promising systems for target-specific delivery of drugs. Virus-like particles (VLPs) arise as auspicious NPs due to their intrinsic properties. The lack of viral genetic material and the inability to replicate, together with tropism conservation and antigenicity characteristic of the native virus prompted extensive interest in their use as vaccines or as delivery systems for therapeutic and/or imaging agents. Owing to its simplicity and non-complex structure, one of the viruses currently under study for the construction of VLPs is the human immunodeficiency virus type 1 (HIV-1). Typically, HIV-1-based VLPs are used for antibody discovery, vaccines, diagnostic reagent development and protein-based assays. This review will be centered on the use of HIV-1-based VLPs and their potential biomedical applications.
Collapse
Affiliation(s)
- Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Santos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rúben D. M. Silva
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cátia Rosa
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
3
|
Dekevic G, Tasto L, Czermak P, Salzig D. Statistical experimental designs to optimize the transient transfection of HEK 293 T cells and determine a transfer criterion from adherent cells to larger-scale cell suspension cultures. J Biotechnol 2022; 346:23-34. [DOI: 10.1016/j.jbiotec.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/20/2021] [Accepted: 01/15/2022] [Indexed: 02/04/2023]
|
4
|
Abstract
Transient gene expression (TGE) is an important tool for generating recombinant proteins in a short period of time. The human cell line HEK293 is widely used for this purpose since it can grow in suspension to a high cell density in serum-free media. In addition, this cell line is amenable to several transfection methods and produces recombinant proteins in satisfactory quantities for functional and structural analysis. This chapter describes the methodology for TGE using the Expi293 system, which provides higher expression levels than other HEK293-based systems.
Collapse
Affiliation(s)
- Haroldo Cid da Silva Junior
- Instituto de Tecnologia em Imunobiológicos (Bio-Manguinhos), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Chytła A, Gajdzik-Nowak W, Biernatowska A, Sikorski AF, Czogalla A. High-Level Expression of Palmitoylated MPP1 Recombinant Protein in Mammalian Cells. MEMBRANES 2021; 11:membranes11090715. [PMID: 34564532 PMCID: PMC8470630 DOI: 10.3390/membranes11090715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
Our recent studies have pointed to an important role of the MAGUK family member, MPP1, as a crucial molecule interacting with flotillins and involved in the lateral organization of the erythroid plasma membrane. The palmitoylation of MPP1 seems to be an important element in this process; however, studies on the direct effect of palmitoylation on protein–protein or protein–membrane interactions in vitro are still challenging due to the difficulties in obtaining functional post-translationally modified recombinant proteins and the lack of comprehensive protocols for the purification of palmitoylated proteins. In this work, we present an optimized approach for the high-yield overexpression and purification of palmitoylated recombinant MPP1 protein in mammalian HEK-293F cells. The presented approach facilitates further studies on the molecular mechanism of lateral membrane organization and the functional impact of the palmitoylation of MPP1, which could also be carried out for other palmitoylated proteins.
Collapse
Affiliation(s)
- Agnieszka Chytła
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.)
| | - Weronika Gajdzik-Nowak
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.)
| | - Agnieszka Biernatowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.)
- Correspondence: (A.B.); (A.C.); Tel.: +48-7-1375-417 (A.B.); +48-7-1375-6356 (A.C.)
| | - Aleksander F. Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland; (A.C.); (W.G.-N.)
- Correspondence: (A.B.); (A.C.); Tel.: +48-7-1375-417 (A.B.); +48-7-1375-6356 (A.C.)
| |
Collapse
|
6
|
Chimeric VLPs Based on HIV-1 Gag and a Fusion Rabies Glycoprotein Induce Specific Antibodies against Rabies and Foot-and-Mouth Disease Virus. Vaccines (Basel) 2021; 9:vaccines9030251. [PMID: 33809060 PMCID: PMC7999769 DOI: 10.3390/vaccines9030251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Foot and mouth disease is a livestock acute disease, causing economic losses in affected areas. Currently, control of this disease is performed by mandatory vaccination campaigns using inactivated viral vaccines. In this work, we describe the development of a chimeric VLP-based vaccine candidate for foot-and-mouth disease virus (FMDV), based on the co-expression of the HIV-1 Gag protein and a novel fusion rabies glycoprotein (RVG), which carries in its N-term the FMDV main antigen: the G-H loop. It is demonstrated by confocal microscopy that both Gag-GFP polyprotein and the G-H loop colocalize at the cell membrane and, that the Gag polyprotein of the HIV virus acts as a scaffold for enveloped VLPs that during the budding process acquires the proteins that are being expressed in the cell membrane. The obtained VLPs were spherical particles of 130 ± 40 nm in diameter (analyzed by TEM, Cryo-TEM and NTA) carrying an envelope membrane that efficiently display the GH-RVG on its surface (analyzed by gold immunolabeling). Immunostainings with a FMDV hyperimmune serum showed that the heterologous antigenic site, genetically fused to RVG, is recognized by specific G-H loop antibodies. Additionally, the cVLPs produced expose the G-H loop to the liquid surrounding (analyzed by specific ELISA). Finally, we confirmed that these FMD cVLPs are able to induce a specific humoral immune response, based on antibodies directed to the G-H loop in experimental animals.
Collapse
|
7
|
Lavado-García J, Cervera L, Gòdia F. An Alternative Perfusion Approach for the Intensification of Virus-Like Particle Production in HEK293 Cultures. Front Bioeng Biotechnol 2020; 8:617. [PMID: 32637402 PMCID: PMC7318772 DOI: 10.3389/fbioe.2020.00617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/20/2020] [Indexed: 01/11/2023] Open
Abstract
Virus-like particles (VLPs) have gained interest over the last years as recombinant vaccine formats, as they generate a strong immune response and present storage and distribution advantages compared to conventional vaccines. Therefore, VLPs are being regarded as potential vaccine candidates for several diseases. One requirement for their further clinical testing is the development of scalable processes and production platforms for cell-based viral particles. In this work, the extended gene expression (EGE) method, which consists in consecutive media replacements combined with cell retransfections, was successfully optimized and transferred to a bioreactor operating in perfusion. A process optimization using design of experiments (DoE) was carried out to obtain optimal values for the time of retransfection, the cell specific perfusion rate (CSPR) and transfected DNA concentration, improving 86.7% the previously reported EGE protocol in HEK293. Moreover, it was successfully implemented at 1.5L bioreactor using an ATF as cell retention system achieving concentrations of 6.8·1010 VLP/mL. VLP interaction with the ATF hollow fibers was studied via confocal microscopy, field emission scanning electron microscopy, and nanoparticle tracking analysis to design a bioprocess capable of separating unassembled Gag monomers and concentrate VLPs in one step.
Collapse
Affiliation(s)
- Jesús Lavado-García
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Gòdia
- Grup d'Enginyeria Cellular i Bioprocés, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Lavado-García J, Jorge I, Cervera L, Vázquez J, Gòdia F. Multiplexed Quantitative Proteomic Analysis of HEK293 Provides Insights into Molecular Changes Associated with the Cell Density Effect, Transient Transfection, and Virus-Like Particle Production. J Proteome Res 2020; 19:1085-1099. [DOI: 10.1021/acs.jproteome.9b00601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jesús Lavado-García
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Inmaculada Jorge
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Laura Cervera
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional Investigaciones Cardiovasculares (CNIC), C/Melchor Fernández Almagro 3, Madrid 28029, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Francesc Gòdia
- Grup d’Enginyeria Cellular i Bioprocés, Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
9
|
Puente-Massaguer E, Lecina M, Gòdia F. Application of advanced quantification techniques in nanoparticle-based vaccine development with the Sf9 cell baculovirus expression system. Vaccine 2020; 38:1849-1859. [PMID: 31911032 DOI: 10.1016/j.vaccine.2019.11.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/24/2022]
Abstract
Nanoparticles generated by recombinant technologies are receiving increased interest in several applications, particularly the use of virus like particles (VLPs) for the generation of safer vaccines. The characterization and quantification of these nanoparticles with complex structures is very relevant for a better comprehension of the production systems and should circumvent the limitations of the most conventional quantification techniques often used. Here, we applied confocal microscopy, flow virometry and nanoparticle tracking analysis (NTA) to assess the production process of Gag virus-like particles (VLPs) in the Sf9 cell/baculovirus expression vector system (BEVS). These novel techniques were implemented in an optimization workflow based on Design of Experiments (DoE) and desirability functions to determine the best production conditions. A higher level of sensitivity was observed for NTA and confocal microscopy but flow virometry proved to be more accurate. Interestingly, extracellular vesicles were detected as an important source of contamination of this system. The synergistic interplay of viable cell concentration at infection (CCI), multiplicity of infection (MOI) and time of harvest (TOH) was assessed on five objective responses: VLP assembly, baculovirus infection, VLP production, cell viability and VLP productivity. Two global optimal conditions were defined, one targeting the maximal yield of VLPs and the other providing a balance between production and assembled VLPs. In both cases, a low MOI proved to be the best condition to achieve the highest VLP production and productivity yields. Cryo-EM analysis of nanoparticles produced in these conditions showed the typical size and morphology of HIV-1 VLPs. This study presents an integrative approach based on the combination of DoE and direct nanoparticle quantification techniques to comprehensively optimize the production of VLPs and other viral-based biotherapeutics.
Collapse
Affiliation(s)
- Eduard Puente-Massaguer
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Martí Lecina
- IQS School of Engineering, Universitat Ramón Llull, Barcelona, Spain
| | - Francesc Gòdia
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
10
|
Fernandes B, Vidigal J, Correia R, Carrondo MJT, Alves PM, Teixeira AP, Roldão A. Adaptive laboratory evolution of stable insect cell lines for improved HIV-Gag VLPs production. J Biotechnol 2019; 307:139-147. [PMID: 31697977 DOI: 10.1016/j.jbiotec.2019.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 10/25/2022]
Abstract
Adaptive laboratory evolution (ALE) has been extensively used to modulate the phenotype of industrial model organisms (e.g. Escherichia. coli and Saccharomyces cerevisae) towards a specific trait. Nevertheless, its application to animal cells, and in particular to insect cell lines, has been very limited. In this study, we describe employing an ALE method to improve the production of HIV-Gag virus-like particles (VLPs) in stable Sf-9 and High Five cell lines. Serial batch transfer was used for evolution experiments. During the ALE process, cells were cultured under controlled hypothermic conditions (22 °C instead of standard 27 °C) for a prolonged period of time (over 3 months), which allowed the selection of a population of cells with improved phenotype. Adapted cells expressed up to 26-fold (Sf-9 cells) and 10-fold (High Five cells) more Gag-VLPs than non-adapted cells cultured at standard conditions. The production of HIV Gag-VLPs in adapted, stable insect Sf-9 cell lines was successfully demonstrated at bioreactor scale. The Gag-VLPs produced at 22 °C and 27 °C were comparable, both in size and morphology, thus confirming the null impact of adaptation process and hypothermic culture conditions on VLP's quality. This work demonstrates the suitability of ALE as a powerful method for improving yields in stable insect cell lines producing VLPs.
Collapse
Affiliation(s)
- Bárbara Fernandes
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - João Vidigal
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ricardo Correia
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal; ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
11
|
González-Domínguez I, Grimaldi N, Cervera L, Ventosa N, Gòdia F. Impact of physicochemical properties of DNA/PEI complexes on transient transfection of mammalian cells. N Biotechnol 2019; 49:88-97. [DOI: 10.1016/j.nbt.2018.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/24/2018] [Accepted: 09/29/2018] [Indexed: 12/26/2022]
|
12
|
Nanoscale characterization coupled to multi-parametric optimization of Hi5 cell transient gene expression. Appl Microbiol Biotechnol 2018; 102:10495-10510. [DOI: 10.1007/s00253-018-9423-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 01/08/2023]
|
13
|
Fuenmayor J, Cervera L, Rigau C, Gòdia F. Enhancement of HIV-1 VLP production using gene inhibition strategies. Appl Microbiol Biotechnol 2018; 102:4477-4487. [DOI: 10.1007/s00253-018-8930-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/06/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
14
|
Gutiérrez-Granados S, Cervera L, Kamen AA, Gòdia F. Advancements in mammalian cell transient gene expression (TGE) technology for accelerated production of biologics. Crit Rev Biotechnol 2018; 38:918-940. [DOI: 10.1080/07388551.2017.1419459] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sonia Gutiérrez-Granados
- Departament d’Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Cervera
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Francesc Gòdia
- Departament d’Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|