1
|
Zhang X, Liu G, Yan J. Paclitaxel biological synthesis promotes the innovation of anti-cancer drugs. Clin Transl Med 2025; 15:e70230. [PMID: 39924640 PMCID: PMC11807760 DOI: 10.1002/ctm2.70230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Affiliation(s)
- Xiaolin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Gang Liu
- School of Pharmaceutical SciencesTsinghua UniversityBeijingChina
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
2
|
Hua X, Wang YF, Jin X, Yu HY, Wang HH, Chen YZ, Wan NW. Biocatalytic enantioselective formation and ring-opening of oxetanes. Nat Commun 2025; 16:1170. [PMID: 39885154 PMCID: PMC11782660 DOI: 10.1038/s41467-025-56463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
Although biocatalysis offers complementary or alternative approaches to traditional synthetic methods, the limited range of available enzymatic reactions currently poses challenges in synthesizing a diverse array of desired compounds. Consequently, there is a significant demand for developing novel biocatalytic processes to enable reactions that were previously unattainable. Herein, we report the discovery and subsequent protein engineering of a unique halohydrin dehalogenase to develop a biocatalytic platform for enantioselective formation and ring-opening of oxetanes. This biocatalytic platform, exhibiting high efficiency, excellent enantioselectivity, and broad scopes, facilitates the preparative-scale synthesis of chiral oxetanes and a variety of chiral γ-substituted alcohols. Additionally, both the enantioselective oxetane formation and ring-opening processes are proven scalable for large-scale transformations at high substrate concentrations, and can be integrated efficiently in a one-pot, one-catalyst cascade system. This work expands the enzymatic toolbox for non-natural reactions and will promote further exploration of the catalytic repertoire of halohydrin dehalogenases in synthetic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Xia Hua
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yuan-Fei Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Xiao Jin
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Hong-Yin Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Hui-Hui Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Yong-Zheng Chen
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| | - Nan-Wei Wan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Chen CZ, Chen Y, Rizzo A, Chiu P. Intermolecular (4 + 3) Cycloadditions of Oxetanyl and Azetidinyl Enolsilanes. J Org Chem 2024; 89:17910-17916. [PMID: 39644264 DOI: 10.1021/acs.joc.4c02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
We report the intermolecular (4 + 3) cycloadditions of oxetanyl and azetidinyl enolsilanes with different dienes by silylium catalysis to generate bicyclic scaffolds. These enolsilanes were competent to react with furans, cyclopentadiene, and 1,3-cyclohexadiene to deliver cycloadducts in up to 96% yields.
Collapse
Affiliation(s)
- Chuck Zihao Chen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Yueyao Chen
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
- Laboratory for Synthetic Chemistry and Chemical Biology, Hong Kong Science Park, Shatin, Hong Kong 999077, People's Republic of China
| | - Antonio Rizzo
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Pauline Chiu
- Department of Chemistry and the State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
- Laboratory for Synthetic Chemistry and Chemical Biology, Hong Kong Science Park, Shatin, Hong Kong 999077, People's Republic of China
| |
Collapse
|
4
|
Han X, Hou J, Zhang H, Wang Z, Yao W. Phosphine-catalyzed enantioselective and diastereodivergent [3+2] cyclization for the construction of oxetane dispirooxindole skeletons. Chem Commun (Camb) 2024; 60:10736-10739. [PMID: 39246022 DOI: 10.1039/d4cc03610g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
We have developed a phosphine catalyzed asymmetric [3+2] cyclization of 3-oxetanone derived MBH carbonates with activated methyleneoxindole, to construct oxetane dispirooxindole skeletons. Diastereodivergent synthesis was realized via the control of the phosphine catalyst. The (-)-DIOP provides the syn diastereoisomers, while the spiro phosphine (R)-SITCP achieves the anti-epimers.
Collapse
Affiliation(s)
- Xiao Han
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Jie Hou
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Haiyan Zhang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| | - Zhen Wang
- School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, P. R. China.
| | - Weijun Yao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
| |
Collapse
|
5
|
Thummajitsakul S, Suppasat T, Silprasit K. Glucosidase inhibition and compound identification of stingless bee honey and preserved fruits of Citrus japonica. Heliyon 2024; 10:e29740. [PMID: 38681540 PMCID: PMC11053177 DOI: 10.1016/j.heliyon.2024.e29740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Food preservation has many benefits, such as increasing shelf life, retaining nutritional values and biological activities. In the current study, total phenolic content (TCP), antioxidant and anti-glucosidase activities, and kinetic of glucose inhibition of stingless bee honey, honey mixed with fruits, and extracts of Citrus japonica were evaluated by measuring color of a reaction using a spectrophotometer. The result showed that high TPC was found in ethanol extract of C. japonica leaves and fruits (26.79 ± 6.94 and 12.79 ± 0.87 mg of gallic acid per g extract), while stingless bee honey revealed the highest antioxidant activity (1/EC50 = 0.2921) and honey mixed with fruits revealed the strongest anti-glucosidase activity (1/EC50 = 1.8181), significantly (P-value <0.05). Kinetic of glucosidase inhibition of honey were found as uncompetitive and mixed competitive inhibition, while the honey mixed with fruits showed mixed competitive inhibition. The FTIR and GC-MS analysis demonstrated the presence of several bioactive compounds. Very strong positive relationship between total phenolic content with GC-MS data was found (r = 0.926, P-value < 0.05). This knowledge confirmed that stingless bee honey and honey mixed with fruits had greater anti-diabatic potential in comparison with the extracts of C. japonica leaves and fruits.
Collapse
Affiliation(s)
- Sirikul Thummajitsakul
- Division of Health Promotion, Faculty of Physical Therapy, Srinakharinwirot University, 26120, Nakhon-Nayok, Thailand
| | - Tipwan Suppasat
- Biology Program, School of Science, University of Phayao, 56000, Phayao, Thailand
| | - Kun Silprasit
- Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, 10110, Bangkok, Thailand
| |
Collapse
|
6
|
Jiang B, Gao L, Wang H, Sun Y, Zhang X, Ke H, Liu S, Ma P, Liao Q, Wang Y, Wang H, Liu Y, Du R, Rogge T, Li W, Shang Y, Houk KN, Xiong X, Xie D, Huang S, Lei X, Yan J. Characterization and heterologous reconstitution of Taxus biosynthetic enzymes leading to baccatin III. Science 2024; 383:622-629. [PMID: 38271490 DOI: 10.1126/science.adj3484] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Paclitaxel is a well known anticancer compound. Its biosynthesis involves the formation of a highly functionalized diterpenoid core skeleton (baccatin III) and the subsequent assembly of a phenylisoserinoyl side chain. Despite intensive investigation for half a century, the complete biosynthetic pathway of baccatin III remains unknown. In this work, we identified a bifunctional cytochrome P450 enzyme [taxane oxetanase 1 (TOT1)] in Taxus mairei that catalyzes an oxidative rearrangement in paclitaxel oxetane formation, which represents a previously unknown enzyme mechanism for oxetane ring formation. We created a screening strategy based on the taxusin biosynthesis pathway and uncovered the enzyme responsible for the taxane oxidation of the C9 position (T9αH1). Finally, we artificially reconstituted a biosynthetic pathway for the production of baccatin III in tobacco.
Collapse
Affiliation(s)
- Bin Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haijun Wang
- Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yaping Sun
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaolin Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shengchao Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Qinggang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yue Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huan Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yugeng Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Ran Du
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Torben Rogge
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wei Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xingyao Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Daoxin Xie
- Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Peking-Tsinghua Center for Life Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
7
|
Huang G, Hucek D, Cierpicki T, Grembecka J. Applications of oxetanes in drug discovery and medicinal chemistry. Eur J Med Chem 2023; 261:115802. [PMID: 37713805 PMCID: PMC12045526 DOI: 10.1016/j.ejmech.2023.115802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The compact and versatile oxetane motifs have gained significant attention in drug discovery and medicinal chemistry campaigns. This review presents an overview of the diverse applications of oxetanes in clinical and preclinical drug candidates targeting various human diseases, including cancer, viral infections, autoimmune disorders, neurodegenerative conditions, metabolic disorders, and others. Special attention is given to biologically active oxetane-containing compounds and their disease-related targets, such as kinases, epigenetic and non-epigenetic enzymes, and receptors. The review also details the effect of the oxetane motif on important properties, including aqueous solubility, lipophilicity, pKa, P-glycoprotein (P-gp) efflux, metabolic stability, conformational preferences, toxicity profiles (e.g., cytochrome P450 (CYP) suppression and human ether-a-go-go related gene (hERG) inhibition), pharmacokinetic (PK) properties, potency, and target selectivity. We anticipate that this work will provide valuable insights that can drive future discoveries of novel bioactive oxetane-containing small molecules, enabling their effective application in combating a wide range of human diseases.
Collapse
Affiliation(s)
- Guang Huang
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Devon Hucek
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Intano J, Riel LP, Lim J, Robinson JR, Howell AR. 1,6-Dioxo-2-azaspiro[3.4]oct-2-enes and Related Spirocycles: Heterocycles from [3 + 2] Nitrile Oxide Cycloadditions with 2-Methyleneoxetanes, -Thietanes, and -Azetidines. J Org Chem 2023. [PMID: 38016079 DOI: 10.1021/acs.joc.3c01624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Isoxazolines and 4-membered heterocycles are significant structural motifs in numerous synthetic intermediates and natural products. [3 + 2] Cycloadditions between enol ethers and nitrile oxides have been well studied; however, nitrile oxide cycloadditions with 4-membered heterocycles to give spiroisoxazolines are unreported. Here, we showcase the regio- and diastereoselective [3 + 2] nitrile oxide cycloadditions of 2-methyleneoxetanes, -azetidines, and -thietanes to give an array of 1,6-dioxo-2-azaspiro[3.4]oct-2-enes and related spirocycles. 2D NMR experiments suggested that most of the observed diastereoselectivities were dictated by steric interactions; however, dipolarophiles with H bonding donors reversed the stereochemical outcome. X-ray crystallography confirmed the structural assignments.
Collapse
Affiliation(s)
- Jose Intano
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Louis P Riel
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jacky Lim
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Amy R Howell
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
9
|
Dembitsky VM. Bioactive Steroids Bearing Oxirane Ring. Biomedicines 2023; 11:2237. [PMID: 37626733 PMCID: PMC10452232 DOI: 10.3390/biomedicines11082237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This review explores the biological activity and structural diversity of steroids and related isoprenoid lipids, with a particular focus on compounds containing an oxirane ring. These natural compounds are derived from fungi, fungal endophytes, as well as extracts of plants, algae, and marine invertebrates. To evaluate their biological activity, an extensive examination of refereed literature sources was conducted, including in vivo and in vitro studies and the utilization of the QSAR method. Notable properties observed among these compounds include strong anti-inflammatory, antineoplastic, antiproliferative, anti-hypercholesterolemic, antiparkinsonian, diuretic, anti-eczematic, anti-psoriatic, and various other activities. Throughout this review, 3D graphs illustrating the activity of individual steroids are presented, accompanied by images of selected terrestrial or marine organisms. Furthermore, this review provides explanations for specific types of biological activity associated with these compounds. The data presented in this review are of scientific interest to the academic community and carry practical implications in the fields of pharmacology and medicine. By analyzing the biological activity and structural diversity of steroids and related isoprenoid lipids, this review offers valuable insights that contribute to both theoretical understanding and applied research. This review draws upon data from various authors to compile information on the biological activity of natural steroids containing an oxirane ring.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
10
|
Yang P, Jia Q, Song S, Huang X. [2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat Prod Rep 2023. [DOI: 10.1039/d2np00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the structural diversity, bioactivities, and biomimetic synthesis of [2 + 2]-type cyclobutane natural products, along with discussion of their biosynthesis, stereochemical analysis, racemic occurrence, and biomimetic synthesis.
Collapse
Affiliation(s)
- Peiyuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qi Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
11
|
Fan PH, Geng Y, Romo AJ, Zhong A, Zhang J, Yeh YC, Lee YH, Liu HW. Two Radical SAM Enzymes Are Necessary and Sufficient for the In Vitro Production of the Oxetane Nucleoside Antiviral Agent Albucidin. Angew Chem Int Ed Engl 2022; 61:e202210362. [PMID: 36064953 PMCID: PMC9561071 DOI: 10.1002/anie.202210362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/09/2022]
Abstract
Oxetanocin A and albucidin are two oxetane natural products. While the biosynthesis of oxetanocin A has been described, less is known about albucidin. In this work, the albucidin biosynthetic gene cluster is identified in Streptomyces. Heterologous expression in a nonproducing strain demonstrates that the genes alsA and alsB are necessary and sufficient for albucidin biosynthesis confirming a previous study (Myronovskyi et al. Microorganisms 2020, 8, 237). A two-step construction of albucidin 4'-phosphate from 2'-deoxyadenosine monophosphate (2'-dAMP) is shown to be catalyzed in vitro by the cobalamin dependent radical S-adenosyl-l-methionine (SAM) enzyme AlsB, which catalyzes a ring contraction, and the radical SAM enzyme AlsA, which catalyzes elimination of a one-carbon fragment. Isotope labelling studies show that AlsB catalysis begins with stereospecific H-atom transfer of the C2'-pro-R hydrogen from 2'-dAMP to 5'-deoxyadenosine, and that the eliminated one-carbon fragment originates from C3' of 2'-dAMP.
Collapse
Affiliation(s)
- Po-Hsun Fan
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yujie Geng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Anthony J. Romo
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aoshu Zhong
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiawei Zhang
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Cheng Yeh
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Yu-Hsuan Lee
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hung-wen Liu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Fan PH, Geng Y, Romo AJ, Zhong A, Zhang J, Yeh YC, Lee YH, Liu HW. Two Radical SAM Enzymes Are Necessary and Sufficient for the In Vitro Production of the Oxetane Nucleoside Antiviral Agent Albucidin. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Po-Hsun Fan
- The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yujie Geng
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Anthony J Romo
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Aoshu Zhong
- The University of Texas at Austin College of Pharmacy College of Pharmacy 78712-1139 Austin UNITED STATES
| | - Jiawei Zhang
- The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yu-Cheng Yeh
- UT Austin: The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Yu-Hsuan Lee
- UT Austin: The University of Texas at Austin Chemistry The University of Texas at Austin 78712-1139 Austin UNITED STATES
| | - Hung-wen Liu
- University of Texas at Austin Phar-Med Chem/3.206 1 University Station A1935PHR 3.206B 78712-0128 Austin UNITED STATES
| |
Collapse
|
13
|
Sachdeva H, Khaturia S, Saquib M, Khatik N, Khandelwal AR, Meena R, Sharma K. Oxygen- and Sulphur-Containing Heterocyclic Compounds as Potential Anticancer Agents. Appl Biochem Biotechnol 2022; 194:6438-6467. [PMID: 35900713 DOI: 10.1007/s12010-022-04099-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
Oxygen- and sulphur-based heterocycles form the core structure of many biologically active molecules as well as U.S. FDA-approved drugs. Moreover, they possess broad range of biological activities, viz. anticancer, antiinflammatory, antioxidant, antitumour, antibacterial, antiviral, antidiabetic, anticonvulsant, anti-tubercular, analgesic, anti-leishmanial, antimalarial, antifungal, and anti-histaminic, Hence, O- and S-based heterocycles are gaining more attention in recent years on the road to the discovery of innovative anticancer drugs after the extensive investigation of nitrogen-based heterocycles as anticancer agents. Several attempts have been made to synthesize fused oxygen- and sulphur-based heterocyclic derivatives as joining one heterocyclic moiety with another may lead to improvement in the biological profile of a molecule. Humans have been cursed with cancer since long time. Despite the development of several heterocyclic anticancer medications such as 5-fluorouracil, doxorubicin, methotrexate, and daunorubicin, cure of cancer is difficult. Hence, researchers are trying to synthesize new fused/spiro heterocyclic molecules to discover novel anticancer drugs which may show promising anticancer effects with fewer side effects. Furthermore, fused heterocycles behave as DNA intercalating agents which have the ability to interact with DNA, leading to cell death thereby exerting anticancer effect. This review article highlights the synthesis and anticancer potentiality of oxygen- and sulphur-containing heterocyclic compounds covering the period from 2011 to 2021.
Collapse
Affiliation(s)
- Harshita Sachdeva
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India.
| | - Sarita Khaturia
- Department of Chemistry, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh (Sikar), Rajasthan, India
| | - Mohammad Saquib
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Narsingh Khatik
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | | | - Ravina Meena
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| | - Khushboo Sharma
- Department of Chemistry, University of Rajasthan, 302004, Jaipur, Rajasthan, India
| |
Collapse
|
14
|
Srivastava V, Singh PK, Tivari S, Singh PP. Visible light photocatalysis in the synthesis of pharmaceutically relevant heterocyclic scaffolds. Org Chem Front 2022. [DOI: 10.1039/d1qo01602d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light and photoredox catalysis have emerged as a powerful and long-lasting tool for organic synthesis, demonstrating the importance of a variety of chemical bond formation methods.
Collapse
Affiliation(s)
- Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Pravin K. Singh
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad, Prayagraj 211002, India
| | - Praveen P. Singh
- Department of Chemistry, United College of Engineering & Research, Naini, Prayagraj 211010, India
| |
Collapse
|
15
|
Malarney KP, Kc S, Schmidt VA. Recent strategies used in the synthesis of saturated four-membered heterocycles. Org Biomol Chem 2021; 19:8425-8441. [PMID: 34546272 DOI: 10.1039/d1ob00988e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The importance and prevalance of O-, N-, and S-atom containing saturated four-membered ring motifs in biologically active molecules and potential therapeutics continues to drive efforts in their efficient synthetic preparation. In this review, general and recent strategies for the synthesis of these heterocycles are presented. Due to the limited potential bond disconnections, retrosynthetic strategies are broadly limited to cyclizations and cycloadditions. Nonetheless, diverse approaches for accessing cyclization precursors have been developed, ranging from nucleophilic substitution to C-H functionalization. Innovative methods for substrate activation have been developed for cycloadditions under photochemical and thermal conditions. Advances in accessing oxetanes, azetidines, and thietanes remain active areas of research with continued breakthroughs anticipated to enable future applications.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| | - Shekhar Kc
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| | - Valerie A Schmidt
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| |
Collapse
|
16
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Antitumor Profile of Carbon-Bridged Steroids (CBS) and Triterpenoids. Mar Drugs 2021; 19:324. [PMID: 34205074 PMCID: PMC8228860 DOI: 10.3390/md19060324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
This review focuses on the rare group of carbon-bridged steroids (CBS) and triterpenoids found in various natural sources such as green, yellow-green, and red algae, marine sponges, soft corals, ascidians, starfish, and other marine invertebrates. In addition, this group of rare lipids is found in amoebas, fungi, fungal endophytes, and plants. For convenience, the presented CBS and triterpenoids are divided into four groups, which include: (a) CBS and triterpenoids containing a cyclopropane group; (b) CBS and triterpenoids with cyclopropane ring in the side chain; (c) CBS and triterpenoids containing a cyclobutane group; (d) CBS and triterpenoids containing cyclopentane, cyclohexane or cycloheptane moieties. For the comparative characterization of the antitumor profile, we have added several semi- and synthetic CBS and triterpenoids, with various additional rings, to identify possible promising sources for pharmacologists and the pharmaceutical industry. About 300 CBS and triterpenoids are presented in this review, which demonstrate a wide range of biological activities, but the most pronounced antitumor profile. The review summarizes biological activities both determined experimentally and estimated using the well-known PASS software. According to the data obtained, two-thirds of CBS and triterpenoids show moderate activity levels with a confidence level of 70 to 90%; however, one third of these lipids demonstrate strong antitumor activity with a confidence level exceeding 90%. Several CBS and triterpenoids, from different lipid groups, demonstrate selective action on different types of tumor cells such as renal cancer, sarcoma, pancreatic cancer, prostate cancer, lymphocytic leukemia, myeloid leukemia, liver cancer, and genitourinary cancer with varying degrees of confidence. In addition, the review presents graphical images of the antitumor profile of both individual CBS and triterpenoids groups and individual compounds.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, Bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
17
|
Imran M, Mehmood R, Hussain R, Irfan A, Sumrra SH, Abbas S, Assiri MA, Khalid N, Fareed A, Saleem M, Al-Sehemi AG. Meteloxetin (1) Novel Phenolic Amino-Oxetane Cholinesterase Inhibitors from Datura metel Linn and First-Principle Investigations. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-020-05237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Sagaya Jansi R, Khusro A, Agastian P, Alfarhan A, Al-Dhabi NA, Arasu MV, Rajagopal R, Barcelo D, Al-Tamimi A. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143539. [PMID: 33234268 PMCID: PMC7833357 DOI: 10.1016/j.scitotenv.2020.143539] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 05/04/2023]
Abstract
In the current scenario, the increasing prevalence of diverse microbial infections as well as emergence and re-emergence of viral epidemics with high morbidity and mortality rates are major public health threat. Despite the persistent production of antiviral drugs and vaccines in the global market, viruses still remain as one of the leading causes of deadly human diseases. Effective control of viral diseases, particularly Zika virus disease, Nipah virus disease, Severe acute respiratory syndrome, Coronavirus disease, Herpes simplex virus infection, Acquired immunodeficiency syndrome, and Ebola virus disease remain promising goal amidst the mutating viral strains. Current trends in the development of antiviral drugs focus solely on testing novel drugs or repurposing drugs against potential targets of the viruses. Compared to synthetic drugs, medicines from natural resources offer less side-effect to humans and are often cost-effective in the productivity approaches. This review intends not only to emphasize on the major viral disease outbreaks in the past few decades and but also explores the potentialities of natural substances as antiviral traits to combat viral pathogens. Here, we spotlighted a comprehensive overview of antiviral components present in varied natural sources, including plants, fungi, and microorganisms in order to identify potent antiviral agents for developing alternative therapy in future.
Collapse
Affiliation(s)
- R Sagaya Jansi
- Department of Bioinformatics, Stella Maris College, Chennai, India
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India.
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Damia Barcelo
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
| | - Amal Al-Tamimi
- Ecology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Ermolenko EV, Imbs AB, Gloriozova TA, Poroikov VV, Sikorskaya TV, Dembitsky VM. Chemical Diversity of Soft Coral Steroids and Their Pharmacological Activities. Mar Drugs 2020; 18:613. [PMID: 33276570 PMCID: PMC7761492 DOI: 10.3390/md18120613] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
The review is devoted to the chemical diversity of steroids produced by soft corals and their determined and potential activities. There are about 200 steroids that belong to different types of steroids such as secosteroids, spirosteroids, epoxy- and peroxy-steroids, steroid glycosides, halogenated steroids, polyoxygenated steroids and steroids containing sulfur or nitrogen heteroatoms. Of greatest interest is the pharmacological activity of these steroids. More than 40 steroids exhibit antitumor and related activity with a confidence level of over 90 percent. A group of 32 steroids shows anti-hypercholesterolemic activity with over 90 percent confidence. Ten steroids exhibit anti-inflammatory activity and 20 steroids can be classified as respiratory analeptic drugs. Several steroids exhibit rather rare and very specific activities. Steroids exhibit anti-osteoporotic properties and can be used to treat osteoporosis, as well as have strong anti-eczemic and anti-psoriatic properties and antispasmodic properties. Thus, this review is probably the first and exclusive to present the known as well as the potential pharmacological activities of 200 marine steroids.
Collapse
Affiliation(s)
- Ekaterina V. Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Andrey B. Imbs
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, bldg. 8, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Tatyana V. Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
| | - Valery M. Dembitsky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia; (E.V.E.); (A.B.I.); (T.V.S.)
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
20
|
Dembitsky VM. Antitumor and hepatoprotective activity of natural and synthetic neo steroids. Prog Lipid Res 2020; 79:101048. [PMID: 32603672 DOI: 10.1016/j.plipres.2020.101048] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/21/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023]
Abstract
In this review, steroids with a tertiary butyl group, which are usually called neo steroids, are a small group of natural lipids isolated from higher plants, fungi, marine sponges, and yeast. In addition, steroids with a tertiary butyl group have been synthesized in some laboratories in Canada, USA, Europe, and Japan and their biological activity was studied. Some natural neo steroids demonstrate antitumor or hepatoprotective activities. In addition, synthetic neo steroids exhibit anticancer and neuroprotective properties. However, to confirm the above data, both practical and clinical experimental studies are necessary. Nevertheless, the results may be useful for pharmacologists, chemists, biochemists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada.
| |
Collapse
|
21
|
Sikorsky TV, Ermolenko EV, Gloriozova TA, Dembitsky VM. Mini Review: Anticancer activity of diterpenoid peroxides. VIETNAM JOURNAL OF CHEMISTRY 2020. [DOI: 10.1002/vjch.202000014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Tatyana V. Sikorsky
- A. V. Zhirmunsky National Scientific Center of Marine Biology; Vladivostok 690041 Russia
| | - Ekaterina V. Ermolenko
- A. V. Zhirmunsky National Scientific Center of Marine Biology; Vladivostok 690041 Russia
| | | | - Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College; 3000 College Drive South Lethbridge Canada AB T1K 1L6
| |
Collapse
|
22
|
Dembitsky VM, Dzhemileva L, Gloriozova T, D'yakonov V. Natural and synthetic drugs used for the treatment of the dementia. Biochem Biophys Res Commun 2020; 524:772-783. [PMID: 32037088 DOI: 10.1016/j.bbrc.2020.01.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 01/07/2023]
Abstract
This review is devoted to comparative pharmacological analysis of synthetic drugs such as memantine and its isomers, as well as tacrine, velnacrine, rivastigmine, and donepezil, with natural alkaloids, terpenoids, and triterpenoid peroxides, which are used to treat dementia, Alzheimer's and Parkinson's diseases, myasthenia gravis and other neurodegenerative diseases. Recently discovered by French scientists from Marseille triterpenoid hydroperoxides demonstrate high activity as potential therapeutic agents for the treatment of dementia. The information presented in this review is of great interest to pharmacologists, medical chemists, physiologists, neurologists and doctors, as well as for the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada.
| | - Lilya Dzhemileva
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075, Russia.
| | - Tatyana Gloriozova
- Institute of Biomedical Chemistry, Russian Academy of Sciences, Moscow, 119121, Russia.
| | - Vladimir D'yakonov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa, 450075, Russia.
| |
Collapse
|
23
|
Naturally occurring of α,β-diepoxy-containing compounds: origin, structures, and biological activities. Appl Microbiol Biotechnol 2019; 103:3249-3264. [PMID: 30852659 DOI: 10.1007/s00253-019-09711-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/12/2023]
Abstract
Diepoxy-containing compounds are widely distributed in nature. These metabolites are found in plants and marine organisms and are also produced by many microorganisms, fungi, or fungal endophytes. Many of these metabolites are antibiotics and exhibit a wide variety of biological activities. More than 80 α,β-diepoxy-containing compounds are presented in this article, which belong to different classes of chemical compounds including lipids, terpenoids, alkaloids, quinones, hydroquinones, and pyrones. The main activities that characterize α,β-diepoxy-containing compounds are antineoplastic with confidence up to 99%, antifungal with confidence up to 94%, antiinflammatory with confidence up to 92%, or antibacterial with confidence up to 78%. In addition, these metabolites can be used as a lipid metabolism regulator with a certainty of up to 81%, antiviral (Arbovirus) activity with a certainty of up to 71%, or antiallergic activity with confidence up to 69%. These data on the biological activity of diepoxy-containing compounds are of considerable interest to pharmacologists, chemists, and medical professionals who are involved in phytomedicine and related areas of science and industry.
Collapse
|