1
|
Wang B, Liu Y, Bai X, Tian H, Wang L, Feng M, Xia H. In vitro generation of genetic diversity for directed evolution by error-prone artificial DNA synthesis. Commun Biol 2024; 7:628. [PMID: 38789612 PMCID: PMC11126579 DOI: 10.1038/s42003-024-06340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Generating genetic diversity lies at the heart of directed evolution which has been widely used to engineer genetic parts and gene circuits in synthetic biology. With the ever-expanding application of directed evolution, different approaches of generating genetic diversity are required to enrich the traditional toolbox. Here we show in vitro generation of genetic diversity for directed evolution by error-prone artificial DNA synthesis (epADS). This approach comprises a three-step process which incorporates base errors randomly generated during chemical synthesis of oligonucleotides under specific conditions into the target DNA. Through this method, 200 ~ 4000 folds of diversification in fluorescent strength have been achieved in genes encoding fluorescent proteins. EpADS has also been successfully used to diversify regulatory genetic parts, synthetic gene circuits and even increase microbial tolerance to carbenicillin in a short time period. EpADS would be an alternative tool for directed evolution which may have useful applications in synthetic biology.
Collapse
Affiliation(s)
- Baowei Wang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Yang Liu
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xuelian Bai
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Huijuan Tian
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Lina Wang
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Miao Feng
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Hairong Xia
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- Technique Support and Core Facility Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| |
Collapse
|
2
|
Rahim NA, Luthfi AAI, Bukhari NA, Tan JP, Abdul PM, Manaf SFA. Biotechnological enhancement of lactic acid conversion from pretreated palm kernel cake hydrolysate by Actinobacillus succinogenes 130Z. Sci Rep 2023; 13:5787. [PMID: 37031272 PMCID: PMC10082786 DOI: 10.1038/s41598-023-32964-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023] Open
Abstract
The aim of this study was to establish an improved pretreatment and fermentation method i.e. immobilized cells for high recovery of fermentable sugars from palm kernel cake (PKC) and its effects on fermentability performance by Actinobacillus succinogenes 130Z in the conversion of the fermentable sugar to lactic acid. The effects of oxalic acid concentrations (1-6% w/v) and residence times (1-5 h) on the sugar recovery were initially investigated and it was found that the highest mannose concentration was 25.1 g/L at the optimum hydrolysis conditions of 4 h and 3% (w/v) oxalic acid. The subsequent enzymatic saccharification of the pretreated PKC afforded the highest enzymatic digestibility with the recovered sugars amounting to 25.18 g/L and 9.14 g/L of mannose and glucose, respectively. Subsequently, the fermentability performance of PKC hydrolysate was evaluated and compared in terms of cultivation phases (i.e. mono and dual-phases), carbonate loadings (i.e. magnesium and sodium carbonates), and types of sugars (i.e. glucose and mannose). The highest titer of 19.4 g/L lactic acid was obtained from the fermentation involving A. succinogenes 130Z in dual-phase cultivation supplemented with 30 g/L of magnesium carbonate. Lactic acid production was further enhanced by using immobilized cells with coconut shell-activated carbon (CSAC) of different sizes (A, B, C, and D) in the repeated batch cultivation of dual-phase fermentation producing 31.64 g/L of lactic acid. This work sheds light on the possibilities to enhance the utilization of PKC for lactic acid production via immobilized A. succinogenes 130Z.
Collapse
Affiliation(s)
- Nuraishah Abd Rahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdullah Amru Indera Luthfi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Nurul Adela Bukhari
- Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Jian Ping Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Peer Mohamed Abdul
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Shareena Fairuz Abdul Manaf
- School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| |
Collapse
|
3
|
Hong KQ, Zhang J, Jin B, Chen T, Wang ZW. Development and characterization of a glycine biosensor system for fine-tuned metabolic regulation in Escherichia coli. Microb Cell Fact 2022; 21:56. [PMID: 35392910 PMCID: PMC8991567 DOI: 10.1186/s12934-022-01779-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background In vivo biosensors have a wide range of applications, ranging from the detection of metabolites to the regulation of metabolic networks, providing versatile tools for synthetic biology and metabolic engineering. However, in view of the vast array of metabolite molecules, the existing number and performance of biosensors is far from sufficient, limiting their potential applications in metabolic engineering. Therefore, we developed the synthetic glycine-ON and -OFF riboswitches for metabolic regulation and directed evolution of enzyme in Escherichia coli. Results The results showed that a synthetic glycine-OFF riboswitch (glyOFF6) and an increased-detection-range synthetic glycine-ON riboswitch (glyON14) were successfully screened from a library based on the Bacillus subtilis glycine riboswitch using fluorescence-activated cell sorting (FACS) and tetA-based dual genetic selection. The two synthetic glycine riboswitches were successfully used in tunable regulation of lactate synthesis, dynamic regulation of serine synthesis and directed evolution of alanine-glyoxylate aminotransferase in Escherichia coli, respectively. Mutants AGXT22 and AGXT26 of alanine-glyoxylate aminotransferase with an increase of 58% and 73% enzyme activity were obtained by using a high-throughput screening platform based on the synthetic glycine-OFF riboswitch, and successfully used to increase the 5-aminolevulinic acid yield of engineered Escherichia coli. Conclusions A synthetic glycine-OFF riboswitch and an increased-detection-range synthetic glycine-ON riboswitch were successfully designed and screened. The developed riboswitches showed broad application in tunable regulation, dynamic regulation and directed evolution of enzyme in E. coli. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01779-4.
Collapse
Affiliation(s)
- Kun-Qiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Biao Jin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China.,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China
| | - Zhi-Wen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China. .,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China. .,Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
4
|
Wang Y, Xiao G, Zhao Y, Wang S, Jin Y, Wang Z, Su H. Zirconia supported gold-palladium nanocatalyst for NAD(P)H regeneration via two-step mechanism. NANOTECHNOLOGY 2021; 32:485703. [PMID: 34404039 DOI: 10.1088/1361-6528/ac1e51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The regeneration cycle of expensive cofactor, NAD(P)H, is of paramount importance for the bio-catalyzed redox reactions. Here a ZrO2supported bimetallic nanocatalyst of gold-palladium (Au-Pd/ZrO2) was prepared to catalyze the regeneration of NAD(P)H without using electron mediators and extra energy input. Over 98% of regeneration efficiency can be achieved catlyzed by Au-Pd/ZrO2using TEOA as the electron donor. Mechanism study showed that the regeneration of NAD(P)H took place through a two-step process: Au-Pd/ZrO2nanocatalyst first catalyzed the oxidation of triethanolamine (TEOA) to glycolaldehyde (GA), then the generated GA induced the non-catalytic reducing of NAD(P)+to NAD(P)H under an alkaline environment maintained by TEOA. This two-step mechanism enables the decoupling of the regeneration of NAD(P)H in space and time into a catalytic oxidation and non-catalytic reducing cascade process which has been further verified using a variety of electron donors. The application significance of this procedure is further demonstrated both by the favorable stability of Au-Pd/ZrO2nanocatalyst in 5 successive cycles preserving over 90% of its original activity, and by the excellent performance of the regenerated NADH as the cofactor in the catalytic hydrogenation of acetaldehyde using an ethanol dehydrogenase.
Collapse
Affiliation(s)
- Yaoqiang Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu Jin
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishuai Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
5
|
Augustiniene E, Valanciene E, Matulis P, Syrpas M, Jonuskiene I, Malys N. Bioproduction of l- and d-lactic acids: advances and trends in microbial strain application and engineering. Crit Rev Biotechnol 2021; 42:342-360. [PMID: 34412525 DOI: 10.1080/07388551.2021.1940088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lactic acid is an important platform chemical used in the food, agriculture, cosmetic, pharmaceutical, and chemical industries. It serves as a building block for the production of polylactic acid (PLA), a biodegradable polymer, which can replace traditional petroleum-based plastics and help to reduce environmental pollution. Cost-effective production of optically pure l- and d-lactic acids is necessary to achieve a quality and thermostable PLA product. This paper evaluates research advances in the bioproduction of l- and d-lactic acids using microbial fermentation. Special emphasis is given to the development of metabolically engineered microbial strains and processes tailored to alternative and flexible feedstock concepts such as: lignocellulose, glycerol, C1-gases, and agricultural-food industry byproducts. Alternative fermentation concepts that can improve lactic acid production are discussed. The potential use of inducible gene expression systems for the development of biosensors to facilitate the screening and engineering of lactic acid-producing microorganisms is discussed.
Collapse
Affiliation(s)
- Ernesta Augustiniene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Egle Valanciene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Paulius Matulis
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Michail Syrpas
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Ilona Jonuskiene
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| | - Naglis Malys
- Faculty of Chemical Technology, Bioprocess Research Centre, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
6
|
Wytock TP, Zhang M, Jinich A, Fiebig A, Crosson S, Motter AE. Extreme Antagonism Arising from Gene-Environment Interactions. Biophys J 2020; 119:2074-2086. [PMID: 33068537 DOI: 10.1016/j.bpj.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023] Open
Abstract
Antagonistic interactions in biological systems, which occur when one perturbation blunts the effect of another, are typically interpreted as evidence that the two perturbations impact the same cellular pathway or function. Yet, this interpretation ignores extreme antagonistic interactions wherein an otherwise deleterious perturbation compensates for the function lost because of a prior perturbation. Here, we report on gene-environment interactions involving genetic mutations that are deleterious in a permissive environment but beneficial in a specific environment that restricts growth. These extreme antagonistic interactions constitute gene-environment analogs of synthetic rescues previously observed for gene-gene interactions. Our approach uses two independent adaptive evolution steps to address the lack of experimental methods to systematically identify such extreme interactions. We apply the approach to Escherichia coli by successively adapting it to defined glucose media without and with the antibiotic rifampicin. The approach identified multiple mutations that are beneficial in the presence of rifampicin and deleterious in its absence. The analysis of transcription shows that the antagonistic adaptive mutations repress a stringent response-like transcriptional program, whereas nonantagonistic mutations have an opposite transcriptional profile. Our approach represents a step toward the systematic characterization of extreme antagonistic gene-drug interactions, which can be used to identify targets to select against antibiotic resistance.
Collapse
Affiliation(s)
- Thomas P Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois
| | - Manjing Zhang
- The Committee on Microbiology, University of Chicago, Chicago, Illinois
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Department of Medicine, Weill-Cornell Medical College, New York, New York
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Adilson E Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois; Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois.
| |
Collapse
|
7
|
Tan SI, Yu PJ, Ng IS. CRISPRi-mediated programming essential gene can as a Direct Enzymatic Performance Evaluation & Determination (DEPEND) system. Biotechnol Bioeng 2020; 117:2842-2851. [PMID: 32458463 DOI: 10.1002/bit.27443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
Harnessing enzyme expression for production of target chemicals is a critical and multifarious process, where screening of different genes by inspection of enzymatic activity plays an imperative role. Here, we conceived an idea to improve the time-consuming and labor-intensive process of enzyme screening. Controlling cell growth was achieved by the Cluster Regularly Interspaced Short Palindromic Repeat (CRISPRi) system with different single guide RNA targeting the essential gene can (CRISPRi::CA) that encodes a carbonic anhydrase for CO2 uptake. CRISPRi::CA comprises a whole-cell biosensor to monitor CO2 concentration, ranging from 1% to 5%. On the basis of CRISPRi::CA, an effective and simple Direct Enzymatic Performance Evaluation & Determination (DEPEND) system was developed by a single step of plasmid transformation for targeted enzymes. As a result, the activity of different carbonic anhydrases corresponded to the colony-forming units. Furthermore, the enzymatic performance of 5-aminolevulinic acid synthetase (ALAS), which converts glycine and succinate-CoA to release a molecule of CO2 , has also been distinguished, and the effect of the chaperone GroELS on ALAS enzyme folding was successfully identified in the DEPEND system. We provide a highly feasible, time-saving, and flexible technology for the screening and inspection of high-performance enzymes, which may accelerate protein engineering in the future.
Collapse
Affiliation(s)
- Shih-I Tan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Jui Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Application of a Pyruvate-Producing Escherichia coli Strain LAFCPCPt-accBC-aceE: A Case Study for d-Lactate Production. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6030070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pyruvate, a potential precursor of various chemicals, is one of the fundamental chemicals produced by the fermentation process. We previously reported a pyruvate-producing Escherichia coli strain LAFCPCPt-accBC-aceE (PYR) that has the potential to be applied to the industrial production of pyruvate. In this study, the availability of the PYR strain for the production of pyruvate-derivative chemicals was evaluated using a d-lactate-producing strain (LAC) based on the PYR strain. The LAC strain expresses a d-lactate dehydrogenase-encoding gene from Lactobacillus bulgaricus under the control of a T7 expression system. The d-lactate productivity of the LAC strain was further improved by limiting aeration and changing the induction period for the expression of d-lactate dehydrogenase-encoding gene expression. Under combined conditions, the LAC strain produced d-lactate at 21.7 ± 1.4 g·L−1, which was compatible with the pyruvate production by the PYR strain (26.1 ± 0.9 g·L−1). These results suggest that we have succeeded in the effective conversion of pyruvate to d-lactate in the LAC strain, demonstrating the wide versatility of the parental PYR strain as basal strain for various chemicals production.
Collapse
|
9
|
Zhang X, Mao Y, Wang B, Cui Z, Zhang Z, Wang Z, Chen T. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. J Ind Microbiol Biotechnol 2019; 46:899-909. [PMID: 30963328 DOI: 10.1007/s10295-019-02174-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Lactoyl-CoA is critical for the biosynthesis of biodegradable and biocompatible lactate-based copolymers, which have wide applications. However, reports on acetyl-CoA: lactate CoA-transferases (ALCTs) are rare. To exploit novel ALCTs, amino acid sequence similarity searches based on the CoA-transferases from Clostridium propionicum and Megasphaera elsdenii were conducted. Two known and three novel enzymes were expressed, purified and characterized. Three novel ALCTs were identified, one each from Megasphaera sp. DISK 18, Clostridium lactatifermentans An75 and Firmicutes bacterium CAG: 466. ME-PCT from Megasphaera elsdenii had the highest catalytic efficiency for both acetyl-CoA (264.22 s-1 mM-1) and D-lactate (84.18 s-1 mM-1) with a broad temperature range for activity and good stability. This study, therefore, offers novel and efficient enzymes for lactoyl-CoA generation. To our best knowledge, this is the first report on the systematic mining of ALCTs, which offers valuable new tools for the engineering of pathways that rely on these enzymes.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Baowei Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhidan Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|