1
|
Krewing M, Weisgerber KM, Dirks T, Bobkov I, Schubert B, Bandow JE. Iron-sulfur cluster proteins present the weak spot in non-thermal plasma-treated Escherichia coli. Redox Biol 2025; 81:103562. [PMID: 40023980 PMCID: PMC11915174 DOI: 10.1016/j.redox.2025.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/04/2025] Open
Abstract
Non-thermal atmospheric pressure plasmas have an antiseptic activity beneficial in different medical applications. In a genome-wide screening, hydrogen peroxide and superoxide were identified as key species contributing to the antibacterial effects of plasma while [FeS] cluster proteins emerged as potential cellular targets. We investigated the impact of plasma treatment on [FeS] cluster homeostasis in Escherichia coli treated for 1 min with the effluent of a microscale atmospheric pressure plasma jet (μAPPJ). Mutants defective in [FeS] cluster synthesis and maintenance lacking the SufBC2D scaffold protein complex or desulfurase IscS were hypersensitive to plasma treatment. Monitoring the activity of [FeS] cluster proteins of the tricarboxylic acid cycle (aconitase, fumarase, succinate dehydrogenase) and malate dehydrogenase (no [FeS] clusters), we identified cysteine, iron, superoxide dismutase, and catalase as determinants of plasma sensitivity. Survival rates, enzyme activity, and restoration of enzyme activity after plasma treatment were superior in mutants with elevated cysteine levels and in the wildtype under iron replete conditions. Mutants with elevated hydrogen peroxide and superoxide detoxification capacity over-expressing sodA and katE showed full protection from plasma-induced enzyme inactivation and survival rates increased from 34 % (controls) to 87 %. Our study indicates that metabolic and genetic adaptation of bacteria may result in plasma tolerance and resistance, respectively.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Kim Marie Weisgerber
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Ivan Bobkov
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
2
|
Nishino S, Shimizu K, Horie F, Fukuda S, Izawa S. Sustained germination-promoting effect of cold atmospheric plasma on spinach seeds. Biosci Biotechnol Biochem 2024; 89:95-101. [PMID: 39479790 DOI: 10.1093/bbb/zbae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/26/2024] [Indexed: 12/24/2024]
Abstract
Cold atmospheric plasma (CAP) irradiation exhibits a sterilizing effect without causing thermal denaturation or leaving behind residual toxicants. CAP also has potential applications in various fields, including agriculture, leading to research efforts in recent years. This study investigated the effects of CAP on the seed germination rate of spinach (Spinacia oleracea), which typically has a low seed germination rate. Our results confirmed that irradiation with N2-CAP and Air-CAP significantly enhanced the germination rate of spinach seeds. Notably, we discovered that CAP irradiation promoted germination even in spinach seeds coated with a fungicide (thiuram) and a disinfectant (Captan), which are commonly used. Additionally, we examined whether the interval between CAP irradiation and the subsequent germination-induction treatment influenced the germination efficiency. We found that the germination-promoting effect of CAP on spinach seeds persisted for at least 30 days, demonstrating the high utility and practicality of CAP in the agricultural sector.
Collapse
Affiliation(s)
- Seiya Nishino
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Kaori Shimizu
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Fuko Horie
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shizu Fukuda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
3
|
Dirks T, Krewing M, Vogel K, Bandow JE. The cold atmospheric pressure plasma-generated species superoxide, singlet oxygen and atomic oxygen activate the molecular chaperone Hsp33. J R Soc Interface 2023; 20:20230300. [PMID: 37876273 PMCID: PMC10598452 DOI: 10.1098/rsif.2023.0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/26/2023] [Indexed: 10/26/2023] Open
Abstract
Cold atmospheric pressure plasmas are used for surface decontamination or disinfection, e.g. in clinical settings. Protein aggregation has been shown to significantly contribute to the antibacterial mechanisms of plasma. To investigate the potential role of the redox-activated zinc-binding chaperone Hsp33 in preventing protein aggregation and thus mediating plasma resistance, we compared the plasma sensitivity of wild-type E. coli to that of an hslO deletion mutant lacking Hsp33 as well as an over-producing strain. Over-production of Hsp33 increased plasma survival rates above wild-type levels. Hsp33 was previously shown to be activated by plasma in vitro. For the PlasmaDerm source applied in dermatology, reversible activation of Hsp33 was confirmed. Thiol oxidation and Hsp33 unfolding, both crucial for Hsp33 activation, occurred during plasma treatment. After prolonged plasma exposure, however, unspecific protein oxidation was detected, the ability of Hsp33 to bind zinc ions was decreased without direct modifications of the zinc-binding motif, and the protein was inactivated. To identify chemical species of potential relevance for plasma-induced Hsp33 activation, reactive oxygen species were tested for their ability to activate Hsp33 in vitro. Superoxide, singlet oxygen and potentially atomic oxygen activate Hsp33, while no evidence was found for activation by ozone, peroxynitrite or hydroxyl radicals.
Collapse
Affiliation(s)
- Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Katharina Vogel
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Fukuda S, Sakurai Y, Izawa S. Detoxification of the post-harvest antifungal pesticide thiabendazole by cold atmospheric plasma. J Biosci Bioeng 2023:S1389-1723(23)00137-8. [PMID: 37296042 DOI: 10.1016/j.jbiosc.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Cold atmospheric plasma (CAP) irradiation has a sterilizing effect without thermal denaturation or the production of residual substances. Hence, it is considered to be a safe sterilization technology with minimal damage for fresh foods. In addition, its decomposition effect on chemical substances has also been confirmed, and the application of CAP in the food and agricultural domains is increasing. In this study, we examined the potential of CAP to detoxify pesticide residues. Post-harvest chemical treatments using pesticides, such as fungicides, are frequently employed in imported agricultural products and are often disapproved by consumers. Therefore, we assessed the detoxification of thiabendazole (TBZ), a widely used post-harvest pesticide, using low-cost air plasma irradiation. We found that CAP irradiation conditions that detoxified TBZ caused little damage to the edible parts of mandarin oranges. The results of the present study suggest that CAP irradiation is useful for detoxifying and degrading pesticide residues without damaging agricultural products and that CAP irradiation is an effective means of maintaining food safety.
Collapse
Affiliation(s)
- Shizu Fukuda
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Hashiue-cho 1, Kyoto 606-8585, Japan
| | - Yasuhiro Sakurai
- National Institute of Technology, Akashi College, Nishioka Uozumi-cho, Akashi, Hyogo 674-8501, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki Hashiue-cho 1, Kyoto 606-8585, Japan.
| |
Collapse
|
5
|
Hou X, Wang J, Mei Y, Ge L, Qian J, Huang Y, Yang M, Li H, Wang Y, Yan Z, Peng D, Zhang J, Zhao N. Antibiofilm mechanism of dielectric barrier discharge cold plasma against Pichia manshurica. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Zimmermann T, Staebler S, Taudte RV, Ünüvar S, Grösch S, Arndt S, Karrer S, Fromm MF, Bosserhoff AK. Cold Atmospheric Plasma Triggers Apoptosis via the Unfolded Protein Response in Melanoma Cells. Cancers (Basel) 2023; 15:cancers15041064. [PMID: 36831408 PMCID: PMC9954601 DOI: 10.3390/cancers15041064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Cold atmospheric plasma (CAP) describes a partially ionized gas carrying large amounts of reactive oxygen (ROS) and nitrogen species (RNS). Numerous studies reported strong antitumor activity of CAP, thus rendering it a promising approach for tumor therapy. Although several cellular mechanisms of its cytotoxicity were identified in recent years, the exact molecular effects and contributing signaling pathways are yet to be discovered. We discovered a strong activation of unfolded protein response (UPR) after CAP treatment with increased C/EBP homologous protein (CHOP) expression, which was mainly caused by protein misfolding and calcium loss in the endoplasmic reticulum. In addition, both ceramide level and ceramide metabolism were reduced after CAP treatment, which was then linked to the UPR activation. Pharmacological inhibition of ceramide metabolism resulted in sensitization of melanoma cells for CAP both in vitro and ex vivo. This study identified a novel mechanism of CAP-induced apoptosis in melanoma cells and thereby contributes to its potential application in tumor therapy.
Collapse
Affiliation(s)
- Tom Zimmermann
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - R. Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
- Core Facility Metabolomics/Mass Spectrometry, Philipps University Marburg, 35043 Marburg, Germany
| | - Sumeyya Ünüvar
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe University Frankfurt, 60590 Frankfurt, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Martin F. Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
7
|
Nonthermal Plasma Effects on Fungi: Applications, Fungal Responses, and Future Perspectives. Int J Mol Sci 2022; 23:ijms231911592. [PMID: 36232892 PMCID: PMC9569944 DOI: 10.3390/ijms231911592] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The kingdom of Fungi is rich in species that live in various environments and exhibit different lifestyles. Many are beneficial and indispensable for the environment and industries, but some can threaten plants, animals, and humans as pathogens. Various strategies have been applied to eliminate fungal pathogens by relying on chemical and nonchemical antifungal agents and tools. Nonthermal plasma (NTP) is a potential tool to inactivate pathogenic and food-contaminating fungi and genetically improve fungal strains used in industry as enzyme and metabolite producers. The NTP mode of action is due to many highly reactive species and their interactions with biological molecules. The interaction of the NTP with living cells is believed to be synergistic yet not well understood. This review aims to summarize the current NTP designs, applications, and challenges that involve fungi, as well as provide brief descriptions of underlying mechanisms employed by fungi in interactions with the NTP components.
Collapse
|
8
|
Xu H, Fang C, Shao C, Li L, Huang Q. Study of the synergistic effect of singlet oxygen with other plasma-generated ROS in fungi inactivation during water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156576. [PMID: 35688233 DOI: 10.1016/j.scitotenv.2022.156576] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/22/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Cold atmospheric plasma (CAP) possesses the ability of high-efficiency disinfection. It is reported that mixtures of reactive oxygen species (ROS) including ·OH, 1O2, O2- and H2O2 generated from CAP have better antimicrobial ability than mimicked solution of mixture of single ROS type, but the reason is not clear. In this study, CAP was applied to treat yeasts in water in order to investigate the fungal inactivation efficiency and mechanism. The results showed that plasma treatment for 5 min could result in >2-log reduction of yeast cells, and application of varied ROS scavengers could significantly increase the yeast survival rate, indicating that ·OH and 1O2 played the pivotal role in yeast inactivation. Moreover, the synergistic effect of 1O2 with other plasma-generated ROS was revealed. 1O2 could diffuse into cells and induce the depolarization of mitochondrial membrane potential (MMP), and different levels of MMP depolarization determined different cell death modes. Mild damage of mitochondria during short-term plasma treatment could lead to apoptosis. For long-term plasma treatment, the cell membrane could be severely damaged by the plasma-generated ·OH, so a large amount of 1O2 could induce more depolarization of MMP, leading to increase of intracellular O2- and Fe2+ which subsequently caused cell inactivation. 1O2 could also induce protein aggregation and increase of RIP1/RIP3 necrosome, leading to necroptosis. With participation of 1O2, endogenous ·OH could also be generated via Fenton and Haber-Weiss reactions during plasma treatment, which potentiated necroptosis. Adding l-His could mitigate membrane damage, inhibit the drop of MMP and the formation of necrosome, and thus prevent the happening of necroptosis. These findings may deepen the understanding of plasma sterilization mechanisms and provide guidance for microbial killing in the environment.
Collapse
Affiliation(s)
- Hangbo Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China
| | - Cao Fang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Changsheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Lamei Li
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China.
| |
Collapse
|
9
|
|
10
|
Zhou H, Yang Y, Shang W, Rao Y, Chen J, Peng H, Huang J, Hu Z, Zhang R, Rao X. Pyocyanin biosynthesis protects Pseudomonas aeruginosa from nonthermal plasma inactivation. Microb Biotechnol 2022; 15:1910-1921. [PMID: 35290715 PMCID: PMC9151332 DOI: 10.1111/1751-7915.14032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/05/2022] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic human pathogen, which raises a worldwide concern for its increasing resistance. Nonthermal plasma, which is also called cold atmospheric plasma (CAP), is an alternative therapeutic approach for clinical infectious diseases. However, the bacterial factors that affect CAP treatment remain unclear. The sterilization effect of a portable CAP device on different P. aeruginosa strains was investigated in this study. Results revealed that CAP can directly or indirectly kill P. aeruginosa in a time‐dependent manner. Scanning electron microscopy and transmission electron microscope showed negligible surface changes between CAP‐treated and untreated P. aeruginosa cells. However, cell leakage occurred during the CAP process with increased bacterial lactate dehydrogenase release. More importantly, pigmentation of the P. aeruginosa culture was remarkably reduced after CAP treatment. Further mechanical exploration was performed by utilizing mutants with loss of functional genes involved in pyocyanin biosynthesis, including P. aeruginosa PAO1 strain‐derived phzA1::Tn, phzA2::Tn, ΔphzA1/ΔphzA2, phzM::Tn and phzS::Tn, as well as corresponding gene deletion mutants based on clinical PA1 isolate. The results indicated that pyocyanin and its intermediate 5‐methyl phenazine‐1‐carboxylic acid (5‐Me‐PCA) play important roles in P. aeruginosa resistance to CAP treatment. The unique enzymes, such as PhzM in the pyocyanin biosynthetic pathway, could be novel targets for the therapeutic strategy design to control the growing P. aeruginosa infections.
Collapse
Affiliation(s)
- Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Yifan Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Juan Chen
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Science, Army Medical University, Chongqing, 400038, China
| |
Collapse
|
11
|
MnSOD functions as a thermoreceptor activated by low temperature. J Inorg Biochem 2022; 229:111745. [DOI: 10.1016/j.jinorgbio.2022.111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
|
12
|
Nakazawa N, Fukuda M, Ashizaki M, Shibata Y, Takahashi K. Hsp104 contributes to freeze-thaw tolerance by maintaining proteasomal activity in a spore clone isolated from Shirakami kodama yeast. J GEN APPL MICROBIOL 2021; 67:170-178. [PMID: 34148914 DOI: 10.2323/jgam.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The supply of oven-fresh bakery products to consumers has been improved by frozen dough technology; however, freeze-thaw stress decreases the activity of yeast cells. To breed better baker's yeasts for frozen dough, it is important to understand the factors affecting freeze-thaw stress tolerance in baker's yeast. We analyzed the stress response in IB1411, a spore clone from Saccharomyces cerevisiae Shirakami kodama yeast, with an exceptionally high tolerance to freeze-thaw stress. Genes encoding trehalose-6-phosphate synthase (TPS1), catalase (CTT1), and disaggregase (HSP104) were highly expressed in IB1411 cells even under conditions of non-stress. The expression of Hsp104 protein was also higher in IB1411 cells even under non-stress conditions. Deletion of HSP104 (hsp104Δ) in IB1411 cells reduced the activity of the ubiquitin-proteasome system (UPS). By monitoring the accumulation of aggregated proteins using the ΔssCPY*-GFP fusion protein under freeze-thaw stress or treatment with proteasomal inhibitor, we found that IB1411 cells resolved aggregated proteins faster than the hsp104Δ strain. Thus, Hsp104 seems to contribute to freeze-thaw tolerance by maintaining UPS activity via the disaggregation of aggregated proteins. Lastly, we found that the IB1411 cells maintained high leavening ability in frozen dough as compared with the parental strain, Shirakami kodama yeast, and thus will be useful for making bread.
Collapse
Affiliation(s)
- Nobushige Nakazawa
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Mami Fukuda
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Mizuki Ashizaki
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Yukari Shibata
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | | |
Collapse
|
13
|
Guo L, Yang L, Qi Y, Niyazi G, Huang L, Gou L, Wang Z, Zhang L, Liu D, Wang X, Chen H, Kong MG. Cold Atmospheric-Pressure Plasma Caused Protein Damage in Methicillin-Resistant Staphylococcus aureus Cells in Biofilms. Microorganisms 2021; 9:microorganisms9051072. [PMID: 34067642 PMCID: PMC8156483 DOI: 10.3390/microorganisms9051072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 01/16/2023] Open
Abstract
Biofilms formed by multidrug-resistant bacteria are a major cause of hospital-acquired infections. Cold atmospheric-pressure plasma (CAP) is attractive for sterilization, especially to disrupt biofilms formed by multidrug-resistant bacteria. However, the underlying molecular mechanism is not clear. In this study, CAP effectively reduced the living cells in the biofilms formed by methicillin-resistant Staphylococcus aureus, and 6 min treatment with CAP reduced the S. aureus cells in biofilms by 3.5 log10. The treatment with CAP caused the polymerization of SaFtsZ and SaClpP proteins in the S. aureus cells of the biofilms. In vitro analysis demonstrated that recombinant SaFtsZ lost its self-assembly capability, and recombinant SaClpP lost its peptidase activity after 2 min of treatment with CAP. Mass spectrometry showed oxidative modifications of a cluster of peaks differing by 16 Da, 31 Da, 32 Da, 47 Da, 48 Da, 62 Da, and 78 Da, induced by reactive species of CAP. It is speculated that the oxidative damage to proteins in S. aureus cells was induced by CAP, which contributed to the reduction of biofilms. This study elucidates the biological effect of CAP on the proteins in bacterial cells of biofilms and provides a basis for the application of CAP in the disinfection of biofilms.
Collapse
Affiliation(s)
- Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (L.H.); (Z.W.); (X.W.)
- Correspondence: (L.G.); (D.L.)
| | - Lu Yang
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (L.Y.); (G.N.)
| | - Yu Qi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (L.H.); (Z.W.); (X.W.)
| | - Gulimire Niyazi
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China; (L.Y.); (G.N.)
| | - Lingling Huang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (L.H.); (Z.W.); (X.W.)
| | - Lu Gou
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (L.G.); (L.Z.)
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (L.H.); (Z.W.); (X.W.)
| | - Lei Zhang
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China; (L.G.); (L.Z.)
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (L.H.); (Z.W.); (X.W.)
- Correspondence: (L.G.); (D.L.)
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi’an Jiaotong University, Xi’an 710049, China; (Y.Q.); (L.H.); (Z.W.); (X.W.)
| | - Hailan Chen
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (H.C.); (M.G.K.)
| | - Michael G. Kong
- Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; (H.C.); (M.G.K.)
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
14
|
Acquired Resistance to Severe Ethanol Stress in Saccharomyces cerevisiae Protein Quality Control. Appl Environ Microbiol 2021; 87:AEM.02353-20. [PMID: 33361368 DOI: 10.1128/aem.02353-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Acute severe ethanol stress (10% [vol/vol]) damages proteins and causes the intracellular accumulation of insoluble proteins in Saccharomyces cerevisiae On the other hand, a pretreatment with mild stress increases tolerance to subsequent severe stress, which is called acquired stress resistance. It currently remains unclear whether the accumulation of insoluble proteins under severe ethanol stress may be mitigated by increasing protein quality control (PQC) activity in cells pretreated with mild stress. In the present study, we examined the induction of resistance to severe ethanol stress in PQC and confirmed that a pretreatment with 6% (vol/vol) ethanol or mild thermal stress at 37°C significantly reduced insoluble protein levels and the aggregation of Lsg1, which is prone to denaturation and aggregation by stress, in yeast cells under 10% (vol/vol) ethanol stress. The induction of this stress resistance required the new synthesis of proteins; the expression of proteins comprising the bichaperone system (Hsp104, Ssa3, and Fes1), Sis1, and Hsp42 was upregulated during the pretreatment and maintained under subsequent severe ethanol stress. Since the pretreated cells of deficient mutants in the bichaperone system (fes1Δ hsp104Δ and ssa2Δ ssa3Δ ssa4Δ) failed to sufficiently reduce insoluble protein levels and Lsg1 aggregation, the enhanced activity of the bichaperone system appears to be important for the induction of adequate stress resistance. In contrast, the importance of proteasomes and aggregases (Btn2 and Hsp42) in the induction of stress resistance has not been confirmed. These results provide further insights into the PQC activity of yeast cells under severe ethanol stress, including the brewing process.IMPORTANCE Although the budding yeast S. cerevisiae, which is used in the production of alcoholic beverages and bioethanol, is highly tolerant of ethanol, high concentrations of ethanol are also stressful to the yeast and cause various adverse effects, including protein denaturation. A pretreatment with mild stress improves the ethanol tolerance of yeast cells; however, it currently remains unclear whether it increases PQC activity and reduces the levels of denatured proteins. In the present study, we found that a pretreatment with mild ethanol upregulated the expression of proteins involved in PQC and mitigated the accumulation of insoluble proteins, even under severe ethanol stress. These results provide novel insights into ethanol tolerance and the adaptive capacity of yeast. They may also contribute to research on the physiology of yeast cells during the brewing process, in which the concentration of ethanol gradually increases.
Collapse
|
15
|
Polčic P, Machala Z. Effects of Non-Thermal Plasma on Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms22052247. [PMID: 33668158 PMCID: PMC7956799 DOI: 10.3390/ijms22052247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 12/26/2022] Open
Abstract
Cold plasmas generated by various electrical discharges can affect cell physiology or induce cell damage that may often result in the loss of viability. Many cold plasma-based technologies have emerged in recent years that are aimed at manipulating the cells within various environments or tissues. These include inactivation of microorganisms for the purpose of sterilization, food processing, induction of seeds germination, but also the treatment of cells in the therapy. Mechanisms that underlie the plasma-cell interactions are, however, still poorly understood. Dissection of cellular pathways or structures affected by plasma using simple eukaryotic models is therefore desirable. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our knowledge of processes in eukaryotic cells. As such, it had been also employed in studies of plasma-cell interactions. This review focuses on the effects of cold plasma on yeast cells.
Collapse
Affiliation(s)
- Peter Polčic
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH1, Ilkovičova 6, 84215 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-60296-398
| | - Zdenko Machala
- Division of Environmental Physics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Mlynská dolina F2, 84248 Bratislava, Slovakia;
| |
Collapse
|
16
|
Xu H, Zhu Y, Du M, Wang Y, Ju S, Ma R, Jiao Z. Subcellular mechanism of microbial inactivation during water disinfection by cold atmospheric-pressure plasma. WATER RESEARCH 2021; 188:116513. [PMID: 33091801 DOI: 10.1016/j.watres.2020.116513] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/15/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Although the identification of effective reactive oxygen species (ROS) generated by plasma has been extensively studied, yet the subcellular mechanism of microbial inactivation has never been clearly elucidated in plasma disinfection processes. In this study, subcellular mechanism of yeast cell inactivation during plasma-liquid interaction was revealed in terms of comprehensive factors including cell morphology, membrane permeability, lipid peroxidation, membrane potential, intracellular redox homeostasis (intracellular ROS and H2O2, and antioxidant system (SOD, CAT and GSH)), intracellular ionic equilibrium (intracellular H+ and K+) and energy metabolism (mitochondrial membrane potential, intracellular Ca2+ and ATP level). The ROS analysis show that ·OH, 1O2, ·O2-and H2O2 were generated in this plasma-liquid interaction system and ·O2-served as the precursor of 1O2. Additionally, the solution pH was reduced. Plasma can effectively inactivate yeast cells mainly via apoptosis by damaging cell membrane, intracellular redox and ion homeostasis and energy metabolism as well as causing DNA fragmentation. ROS scavengers (l-His, d-Man and SOD) and pH buffer (phosphate buffer solution, PBS) were employed to investigate the role of five antimicrobial factors (·OH, 1O2, ·O2-, H2O2 and low pH) in plasma sterilization. Results show that they have different influences on the aforementioned cell physiological activities. The ·OH and 1O2 contributed most to the yeast inactivation. The ·OH mainly attacked cell membrane and increased cell membrane permeability. The disturb of cell energy metabolism was mainly attributed to 1O2. The damage of cell membrane as well as extracellular low pH could break the intracellular ionic equilibrium and further reduce cell membrane potential. The remarkable increase of intracellular H2O2 was mainly due to the influx of extracellular H2O2 via destroyed cell membrane, which played a little role in yeast inactivation during 10-min plasma treatment. These findings provide comprehensive insights into the antimicrobial mechanism of plasma, which can promote the development of plasma as an alternative water disinfection strategy.
Collapse
Affiliation(s)
- Hangbo Xu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yupan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Mengru Du
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Yuqi Wang
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Siyao Ju
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
17
|
Effect of Non-Thermal Atmospheric Plasma on Food-Borne Bacterial Pathogens on Ready-to Eat Foods: Morphological and Physico-Chemical Changes Occurring on the Cellular Envelopes. Foods 2020; 9:foods9121865. [PMID: 33327565 PMCID: PMC7765070 DOI: 10.3390/foods9121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022] Open
Abstract
Currently, there is a need for new technological interventions to guarantee the microbiological safety of ready-to-eat (RTE) foods. Non-thermal atmospheric plasma (NTAP) has emerged as a promising strategy for inactivating microorganisms on thermo-sensitive foods, and the elucidation of its mechanisms of action will aid the rational optimization and industrial implementation of this technology for potential applications in the food industry. In this study, the effectiveness of NTAP for inactivating strains of Salmonella Enteritidis, Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes contaminating the surface of different sliced RTE foods (“chorizo”, salami, bacon, smoked salmon, tofu and apple) was investigated. In addition, to further assess the bacterial inactivation mechanisms of NTAP, the morphological and physico-chemical damages in bacterial cells were analyzed. NTAP was effective for the surface decontamination of all products tested and, especially, of cut apple, where the microbial populations were reduced between 1.3 and 1.8 log units for the two Salmonella strains and E. coli O157: H7, respectively, after 15 min of exposure. In the rest of foods, no significant differences in the lethality obtained for the E. coli O157:H7 strain were observed, with inactivation rates of between 0.6 and 0.9 log cycles after a 15-min treatment. On the other hand, the strains from the rest of pathogenic microorganisms studied were extremely resistant on tofu, where barely 0.2–0.5 log units of inactivation were achieved after 15 min of plasma exposure. S. Enteritidis cells treated for 10 min exhibited noticeable morphological and structural changes, as observed by transmission electron microscopy, which were accompanied by a loss in membrane integrity, with an increased leakage of intracellular components and uptake of propidium iodide and marked changes in regions of their FTIR spectra indicating major alterations of the cell wall components. Overall, this indicates that loss of viability was likely caused for this microorganism by a significant damage in the cellular envelopes. However, the plasma-treated cells of L. monocytogenes did not show such obvious changes in morphology, and exhibited less marked effects on the integrity of their cytoplasmic membrane, what suggests that the death of this pathogenic microorganism upon NTAP exposure is more likely to occur as a consequence of damages in other cellular targets.
Collapse
|
18
|
Starek A, Sagan A, Andrejko D, Chudzik B, Kobus Z, Kwiatkowski M, Terebun P, Pawłat J. Possibility to extend the shelf life of NFC tomato juice using cold atmospheric pressure plasma. Sci Rep 2020; 10:20959. [PMID: 33262535 PMCID: PMC7708494 DOI: 10.1038/s41598-020-77977-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/03/2020] [Indexed: 01/21/2023] Open
Abstract
Cold Atmospheric pressure Plasma (CAP) is a non-thermal method used in food processing. CAP generated with the use of nitrogen in a Glide-arc device for 300 to 600 s exhibited high potential for microbial decontamination and did not induce substantial changes in the physicochemical properties of NFC tomato juice. Samples exposed to cold atmospheric plasma had mostly an intact structure, as revealed by digital microscopy. The investigations indicate that CAP can be applied for biological and chemical waste-free decontamination of food and extension of its shelf life.
Collapse
Affiliation(s)
- Agnieszka Starek
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka 28 st, 20-612, Lublin, Poland
| | - Agnieszka Sagan
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka 28 st, 20-612, Lublin, Poland
| | - Dariusz Andrejko
- Department of Biological Bases of Food and Feed Technologies, University of Life Sciences in Lublin, Głęboka 28 st, 20-612, Lublin, Poland
| | - Barbara Chudzik
- Department of Biological and Environmental Education with Zoological Museum, Maria Curie-Skłodowska University, Akademicka 19 st, 20-033, Lublin, Poland
| | - Zbigniew Kobus
- Department of Technology Fundamentals, University of Life Sciences in Lublin, Głęboka 28 st, 20-612, Lublin, Poland
| | - Michał Kwiatkowski
- Institiute of Electrical Engineering, Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a st, 20-618, Lublin, Poland
| | - Piotr Terebun
- Institiute of Electrical Engineering, Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a st, 20-618, Lublin, Poland
| | - Joanna Pawłat
- Institiute of Electrical Engineering, Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38a st, 20-618, Lublin, Poland.
| |
Collapse
|
19
|
Motaln H, Čerček U, Recek N, Bajc Česnik A, Mozetič M, Rogelj B. Cold atmospheric plasma induces stress granule formation via an eIF2α-dependent pathway. Biomater Sci 2020; 8:5293-5305. [PMID: 32930691 DOI: 10.1039/d0bm00488j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cold atmospheric plasma is an ionized gas that shows promise in regenerative medical treatments, yet the mechanisms underlying its effects are still poorly understood. Plasma treatment promotes cell growth or cell death depending on the cell type and exposure parameters. To date, no early cell response to plasma, such as stress granule (SG) formation has been addressed. Cytoplasmic SGs are formed as an immediate cell response to acute stress stimuli by recruitment of over 140 proteins intertwined with cytoplasmic RNAs that leads to transient suspension of protein translation. Encouraged by the plasma effects in regenerative medicine and oncology, the atmospheric pressure plasma jet with argon gas flow is being utilized to treat SH-SY5Y cells with an inducible expression of the stress granule marker G3BP1, to gain an insight into early cell response to plasma and SG formation dynamics. Plasma effectively induces SG formation in the exposed cells in a flow/time-dependent manner, with the SG assembly clearly prompted by plasma-induced oxidative stress. Plasma causes SG formation via eIF2α-signaling, which is repressed with the SG formation inhibitor ISRIB. This insight into the early cell response to plasma treatment may lead to improved therapies in regenerative medicine and cancer treatment.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana 1000, Slovenia.
| | | | | | | | | | | |
Collapse
|
20
|
Xu H, Ma R, Zhu Y, Du M, Zhang H, Jiao Z. A systematic study of the antimicrobial mechanisms of cold atmospheric-pressure plasma for water disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134965. [PMID: 31740060 DOI: 10.1016/j.scitotenv.2019.134965] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Waterborne diseases caused by pathogenic microorganisms pose a severe threat to human health. Cold atmospheric-pressure plasma (CAP) has recently gained much interest as a promising fast, effective, economical and eco-friendly method for water disinfection. However, the antimicrobial mechanism of CAP in aqueous environments is still not clearly understood. Herein, we investigate the role of several short-lived reactive oxygen species (ROS) and cellular responses in the CAP inactivation of yeast cells in water. The results show that singlet oxygen (1O2), hydroxyl radical (OH) and superoxide anion (O2-) are generated in this plasma-water system, and O2- served as the precursor of OH. The 5-min plasma treatment resulted in the effective inactivation (more than 2-log reduction) of yeast cells in water. The ROS scavengers significantly increased the survival ratio in the following order: water < D-Man (scavenging OH) < SOD (scavenging O2-) < L-His (scavenging 1O2), indicating that 1O2 contributes the most to the yeast inactivation. In addition, the acidic pH had a synergetic antimicrobial effect with ROS against the yeast cells. During the CAP inactivation process, yeast cells underwent apoptosis in the first 3 min due to the accumulation of intracellular ROS, mitochondrial dysfunction and intracellular acidification, later followed by necrosis under longer exposure times, attributed to the destruction of the cell membrane. Additionally, L-His could switch the cell fate from necrosis to apoptosis through mitigating plasma-induced oxidative stress, indicating that the level of oxidative stress is a critical factor for cell death fate determination. These findings provide comprehensive insights into the antimicrobial mechanism of CAP, which can promote the development of CAP as an alternative water disinfection strategy.
Collapse
Affiliation(s)
- Hangbo Xu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China
| | - Ruonan Ma
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China.
| | - Yupan Zhu
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China
| | - Mengru Du
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China
| | - Hua Zhang
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China; School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, PR China
| | - Zhen Jiao
- Henan Key Laboratory of Ion-beam Bioengineering, College of Agricultural Science, Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
21
|
Semmler ML, Bekeschus S, Schäfer M, Bernhardt T, Fischer T, Witzke K, Seebauer C, Rebl H, Grambow E, Vollmar B, Nebe JB, Metelmann HR, von Woedtke T, Emmert S, Boeckmann L. Molecular Mechanisms of the Efficacy of Cold Atmospheric Pressure Plasma (CAP) in Cancer Treatment. Cancers (Basel) 2020; 12:cancers12020269. [PMID: 31979114 PMCID: PMC7072164 DOI: 10.3390/cancers12020269] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
Recently, the potential use of cold atmospheric pressure plasma (CAP) in cancer treatment has gained increasing interest. Especially the enhanced selective killing of tumor cells compared to normal cells has prompted researchers to elucidate the molecular mechanisms for the efficacy of CAP in cancer treatment. This review summarizes the current understanding of how CAP triggers intracellular pathways that induce growth inhibition or cell death. We discuss what factors may contribute to the potential selectivity of CAP towards cancer cells compared to their non-malignant counterparts. Furthermore, the potential of CAP to trigger an immune response is briefly discussed. Finally, this overview demonstrates how these concepts bear first fruits in clinical applications applying CAP treatment in head and neck squamous cell cancer as well as actinic keratosis. Although significant progress towards understanding the underlying mechanisms regarding the efficacy of CAP in cancer treatment has been made, much still needs to be done with respect to different treatment conditions and comparison of malignant and non-malignant cells of the same cell type and same donor. Furthermore, clinical pilot studies and the assessment of systemic effects will be of tremendous importance towards bringing this innovative technology into clinical practice.
Collapse
Affiliation(s)
- Marie Luise Semmler
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (S.B.); (T.v.W.)
| | - Mirijam Schäfer
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Thoralf Bernhardt
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Tobias Fischer
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Katharina Witzke
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Christian Seebauer
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Henrike Rebl
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany; (H.R.); (J.B.N.)
| | - Eberhard Grambow
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (E.G.); (B.V.)
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (E.G.); (B.V.)
| | - J. Barbara Nebe
- Department of Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany; (H.R.); (J.B.N.)
| | - Hans-Robert Metelmann
- Oral & Maxillofacial Surgery/Plastic Surgery, University Medicine Greifswald, 17489 Greifswald, Germany; (K.W.); (C.S.)
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz-Institute for Plasma Science and Technology (INP Greifswald), 17489 Greifswald, Germany; (S.B.); (T.v.W.)
| | - Steffen Emmert
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
| | - Lars Boeckmann
- Clinic and Polyclinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (M.L.S.); (M.S.); (T.B.); (T.F.); (S.E.)
- Correspondence: ; Tel.: +49-381-494-9760
| |
Collapse
|
22
|
Niedźwiedź I, Waśko A, Pawłat J, Polak-Berecka M. The State of Research on Antimicrobial Activity of Cold Plasma. Pol J Microbiol 2019; 68:153-164. [PMID: 31250588 PMCID: PMC7256829 DOI: 10.33073/pjm-2019-028] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Microbiological contamination is a big challenge to the food industry, medicine, agriculture, and environmental protection. For this reason, scientists are constantly looking for alternative methods of decontamination, which ensure the effective elimination of unwanted biological agents. Cold plasma is a new technology, which due to its unique physical and chemical properties becomes a point of interest to a growing group of researchers. The previously conducted experiments confirm its effective action, e.g. in the disinfection of skin wounds, air, and sewage treatment, as well as in food preservation and decontamination. The reactive compounds present in the plasma: high-energy electrons, ionized atoms and molecules, and UV photons are the key factors that cause an effective reduction in the number of microorganisms. The mechanism and effectiveness of the cold plasma are complex and depend on the process parameters, environmental factors and the type and properties of the microorganisms that are to be killed. This review describes the current state of knowledge regarding the effectiveness of the cold plasma and characterizes its interaction with various groups of microorganisms based on the available literature data.
Collapse
Affiliation(s)
- Iwona Niedźwiedź
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin , Lublin , Poland
| | - Adam Waśko
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin , Lublin , Poland
| | - Joanna Pawłat
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology , Lublin , Poland
| | - Magdalena Polak-Berecka
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin , Lublin , Poland
| |
Collapse
|
23
|
Growth factor delivery: Defining the next generation platforms for tissue engineering. J Control Release 2019; 306:40-58. [DOI: 10.1016/j.jconrel.2019.05.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/14/2022]
|
24
|
Fukuda S, Kawasaki Y, Izawa S. Ferrous chloride and ferrous sulfate improve the fungicidal efficacy of cold atmospheric argon plasma on melanized Aureobasidium pullulans. J Biosci Bioeng 2019; 128:28-32. [DOI: 10.1016/j.jbiosc.2018.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
|
25
|
Krewing M, Stepanek JJ, Cremers C, Lackmann JW, Schubert B, Müller A, Awakowicz P, Leichert LIO, Jakob U, Bandow JE. The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation. J R Soc Interface 2019; 16:20180966. [PMID: 31213177 PMCID: PMC6597770 DOI: 10.1098/rsif.2018.0966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/24/2019] [Indexed: 11/12/2022] Open
Abstract
Non-equilibrium atmospheric-pressure plasmas are an alternative means to sterilize and disinfect. Plasma-mediated protein aggregation has been identified as one of the mechanisms responsible for the antibacterial features of plasma. Heat shock protein 33 (Hsp33) is a chaperone with holdase function that is activated when oxidative stress and unfolding conditions coincide. In its active form, it binds unfolded proteins and prevents their aggregation. Here we analyse the influence of plasma on the structure and function of Hsp33 of Escherichia coli using a dielectric barrier discharge plasma. While most other proteins studied so far were rapidly inactivated by atmospheric-pressure plasma, exposure to plasma activated Hsp33. Both, oxidation of cysteine residues and partial unfolding of Hsp33 were observed after plasma treatment. Plasma-mediated activation of Hsp33 was reversible by reducing agents, indicating that cysteine residues critical for regulation of Hsp33 activity were not irreversibly oxidized. However, the reduction yielded a protein that did not regain its original fold. Nevertheless, a second round of plasma treatment resulted again in a fully active protein that was unfolded to an even higher degree. These conformational states were not previously observed after chemical activation with HOCl. Thus, although we could detect the formation of HOCl in the liquid phase during plasma treatment, we conclude that other species must be involved in plasma activation of Hsp33. E. coli cells over-expressing the Hsp33-encoding gene hslO from a plasmid showed increased survival rates when treated with plasma while an hslO deletion mutant was hypersensitive emphasizing the importance of protein aggregation as an inactivation mechanism of plasma.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jennifer Janina Stepanek
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Claudia Cremers
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jan-Wilm Lackmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexandra Müller
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Peter Awakowicz
- Electrical Engineering and Plasma Technology, Faculty of Electrical Engineering and Information Sciences, Ruhr University Bochum, Bochum, Germany
| | - Lars I. O. Leichert
- Microbial Biochemistry, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Ursula Jakob
- Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
26
|
Šimončicová J, Kryštofová S, Medvecká V, Ďurišová K, Kaliňáková B. Technical applications of plasma treatments: current state and perspectives. Appl Microbiol Biotechnol 2019; 103:5117-5129. [DOI: 10.1007/s00253-019-09877-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
|