1
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2025; 54:396-464. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Wang ZQ, Zhao J, Dong QY, Wang Y, Lu YL, Luo R, Yu H. Multi-locus molecular phylogenetic analysis reveals two new species of Amphichorda (Bionectriaceae, Hypocreales). MycoKeys 2024; 106:287-301. [PMID: 38993356 PMCID: PMC11237567 DOI: 10.3897/mycokeys.106.117205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/06/2024] [Indexed: 07/13/2024] Open
Abstract
Amphichorda has been previously accepted as a member of the Cordycipitaceae and currently it is considered a member of the Bionectriaceae. The substrates of Amphichorda were complex and varied, being mainly animal faeces. This study reports two new species of Amphichorda from Yunnan Province in south-western China. Based on the five-gene (nrSSU, nrLSU, tef-1α, rpb1 and rpb2) sequence and ITS data phylogenetic analysis, two new species, namely A.excrementa and A.kunmingensis, are proposed and a detailed description of the new species is provided. Amphichordaexcrementa and A.kunmingensis were isolated from animal faeces in the park. The morphological characteristics of two novel species and seven known species in Amphichorda are also compared.
Collapse
Affiliation(s)
- Zhi-Qin Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Jing Zhao
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Quan-Ying Dong
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Yao Wang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Ying-Ling Lu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Run Luo
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, ChinaYunnan UniversityKunmingChina
| |
Collapse
|
3
|
Leão AF, Condé TO, Dutra YLG, Rosado AWC, Grazziotti PH, de Carvalho Neves S, Fraga LMS, Kasuya MCM, Pereira OL. Amphichorda monjolensis sp. nov., a new fungal species isolated from a Brazilian limestone cave, with an update on acremonium-like species in Bionectriaceae. Braz J Microbiol 2024; 55:1569-1585. [PMID: 38462595 PMCID: PMC11153450 DOI: 10.1007/s42770-024-01289-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Caves are unique environments characterized by spatial limitations, partial or total absence of direct light, and scarcity of organic carbon and nutrients. Caves are shelters for a variety of adapted animals and microorganisms such as fungi, many of which are still unknown. Amphichorda is a fungal genus belonging to the family Bionectriaceae, which includes cave-dwelling and entomopathogenic species with biotechnological applications. In this study, a new fungal species was identified using morphological and multi-locus phylogenetic analyses of the ITS, LSU, and TEF loci, in the Gruta Velha Nova limestone cave located in the Southern Espinhaço Range, Monjolos, Minas Gerais, Brazil. During the exposure of potato dextrose agar plates to the cave environment, an insect from the family Rhaphidophoridae passed by and fed on the culture medium, resulting in three fungal isolates. Phylogenetic analyses showed that these isolates formed a clade distinct from all known species, leading us to introduce a new species, Amphichorda monjolensis, which may be associated with this insect. Here, we also proposed two new combinations for species of acremonium-like fungi in the Bionectriaceae: Bulbithecium globosisporum (synonym: Acremonium globosisporum) and Hapsidospora curva (synonym: Acremonium curvum). The discovery of A. monjolensis highlights the potential of caves as shelters for new species with significant biotechnological importance.
Collapse
Affiliation(s)
- Ana Flávia Leão
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Thiago Oliveira Condé
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Yan Lucas Gomes Dutra
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | - Paulo Henrique Grazziotti
- Departamento de Engenharia Florestal, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Soraya de Carvalho Neves
- Instituto de Ciência E Tecnologia, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Lucio Mauro Soares Fraga
- Instituto de Ciência E Tecnologia, Universidade Federal Dos Vales Do Jequitinhonha E Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | | | - Olinto Liparini Pereira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
4
|
Sang M, Feng P, Chi LP, Zhang W. The biosynthetic logic and enzymatic machinery of approved fungi-derived pharmaceuticals and agricultural biopesticides. Nat Prod Rep 2024; 41:565-603. [PMID: 37990930 DOI: 10.1039/d3np00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Covering: 2000 to 2023The kingdom Fungi has become a remarkably valuable source of structurally complex natural products (NPs) with diverse bioactivities. Since the revolutionary discovery and application of the antibiotic penicillin from Penicillium, a number of fungi-derived NPs have been developed and approved into pharmaceuticals and pesticide agents using traditional "activity-guided" approaches. Although emerging genome mining algorithms and surrogate expression hosts have brought revolutionary approaches to NP discovery, the time and costs involved in developing these into new drugs can still be prohibitively high. Therefore, it is essential to maximize the utility of existing drugs by rational design and systematic production of new chemical structures based on these drugs by synthetic biology. To this purpose, there have been great advances in characterizing the diversified biosynthetic gene clusters associated with the well-known drugs and in understanding the biosynthesis logic mechanisms and enzymatic transformation processes involved in their production. We describe advances made in the heterogeneous reconstruction of complex NP scaffolds using fungal polyketide synthases (PKSs), non-ribosomal peptide synthetases (NRPSs), PKS/NRPS hybrids, terpenoids, and indole alkaloids and also discuss mechanistic insights into metabolic engineering, pathway reprogramming, and cell factory development. Moreover, we suggest pathways for expanding access to the fungal chemical repertoire by biosynthesis of representative family members via common platform intermediates and through the rational manipulation of natural biosynthetic machineries for drug discovery.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Lu-Ping Chi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, China
| |
Collapse
|
5
|
Belousova EB, Zhuravleva OI, Yurchenko EA, Oleynikova GK, Antonov AS, Kirichuk NN, Chausova VE, Khudyakova YV, Menshov AS, Popov RS, Menchinskaya ES, Pislyagin EA, Mikhailov VV, Yurchenko AN. New Anti-Hypoxic Metabolites from Co-Culture of Marine-Derived Fungi Aspergillus carneus KMM 4638 and Amphichorda sp. KMM 4639. Biomolecules 2023; 13:biom13050741. [PMID: 37238611 DOI: 10.3390/biom13050741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
The KMM 4639 strain was identified as Amphichorda sp. based on two molecular genetic markers: ITS and β-tubulin regions. Chemical investigation of co-culture marine-derived fungi Amphichorda sp. KMM 4639 and Aspergillus carneus KMM 4638 led to the identification of five new quinazolinone alkaloids felicarnezolines A-E (1-5), a new highly oxygenated chromene derivative oxirapentyn M (6) and five previously reported related compounds. Their structures were established using spectroscopic methods and by comparison with related known compounds. The isolated compounds showed low cytotoxicity against human prostate and breast cancer cells but felicarnezoline B (2) protected rat cardiomyocytes H9c2 and human neuroblastoma SH-SY5Y cells against CoCl2-induced damage.
Collapse
Affiliation(s)
- Elena B Belousova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Olesya I Zhuravleva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Ekaterina A Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Galina K Oleynikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Alexandr S Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Natalya N Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Viktoria E Chausova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Yuliya V Khudyakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Alexander S Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Roman S Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Ekaterina S Menchinskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Evgeny A Pislyagin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Valery V Mikhailov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| | - Anton N Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia
| |
Collapse
|
6
|
Genome Features and AntiSMASH Analysis of an Endophytic Strain Fusarium sp. R1. Metabolites 2022; 12:metabo12060521. [PMID: 35736454 PMCID: PMC9229708 DOI: 10.3390/metabo12060521] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
Endophytic fungi are one of the most prolific sources of functional biomolecules with therapeutic potential. Besides playing an important role in serious plant diseases, Fusarium strains possess the powerful capability to produce a diverse array of bioactive secondary metabolites (SMs). In order to in-depth mine gene clusters for SM biosynthesis of the genus Fusarium, an endophytic strain Fusarium sp. R1 isolated from Rumex madaio Makino was extensively investigated by whole-genome sequencing and in-depth bioinformatic analysis, as well as antiSMASH annotation. The results displayed that strain R1 harbors a total of 51.8 Mb genome, which consists of 542 contigs with an N50 scaffold length of 3.21 Mb and 50.4% GC content. Meanwhile, 19,333 functional protein-coding genes, 338 tRNA and 111 rRNA were comprehensively predicted and highly annotated using various BLAST databases including non-redundant (Nr) protein sequence, nucleotide (Nt) sequence, Swiss-Prot, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG), as well as Pathogen Host Interactions (PHI) and Carbohydrate-Active enzymes (CAZy) databases. Antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) results showed that strain R1 has 37 SM biosynthetic gene clusters (BGCs), including 17 nonribosomal peptide synthetases (NRPSs), 13 polyketide synthetases (PKSs), 3 terpene synthases (Ts), 3 hybrid NRPS + PKS and 1 hybrid indole + NRPS. These findings improve our knowledge of the molecular biology of the genus Fusarium and would promote the discovery of new bioactive SMs from strain R1 using gene mining strategies including gene knockout and heteroexpression.
Collapse
|
7
|
Liang M, Lyu HN, Ma ZY, Li EW, Cai L, Yin WB. Genomics-driven discovery of a new cyclodepsipeptide from the guanophilic fungus Amphichorda guana. Org Biomol Chem 2021; 19:1960-1964. [PMID: 33599675 DOI: 10.1039/d1ob00100k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two potential non-ribosomal peptide synthetases (NRPSs) were identified in the genome of a guanophilic fungus Amphichorda guana by bioinformatics analysis and gene knockout experiments. Liquid chromatography coupled with mass spectrometry (LC-MS) guided isolation led to the discovery of a new cyclodepsipeptide isaridin H (1) and seven known analogs, desmethylisaridin E (2), isaridin E (3), isariin A (4), iso-isariin B (5), iso-isariin D (6), isariin E (7), and nodupetide (8). The absolute configuration of isaridin H (1) was achieved by Marfey's method. Isaridin H (1) showed significant antifungal activity against Botrytis cinerea and Alternaria solani.
Collapse
Affiliation(s)
- Min Liang
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Ning Lyu
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China. and Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zi-Ying Ma
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Er-Wei Li
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| | - Lei Cai
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China.
| | - Wen-Bing Yin
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Liang M, Li W, Qi L, Chen G, Cai L, Yin WB. Establishment of a Genetic Transformation System in Guanophilic Fungus Amphichorda guana. J Fungi (Basel) 2021; 7:jof7020138. [PMID: 33672933 PMCID: PMC7918455 DOI: 10.3390/jof7020138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Fungi from unique environments exhibit special physiological characters and plenty of bioactive natural products. However, the recalcitrant genetics or poor transformation efficiencies prevent scientists from systematically studying molecular biological mechanisms and exploiting their metabolites. In this study, we targeted a guanophilic fungus Amphichorda guana LC5815 and developed a genetic transformation system. We firstly established an efficient protoplast preparing method by conditional optimization of sporulation and protoplast regeneration. The regeneration rate of the protoplast is up to about 34.6% with 0.8 M sucrose as the osmotic pressure stabilizer. To develop the genetic transformation, we used the polyethylene glycol-mediated protoplast transformation, and the testing gene AG04914 encoding a major facilitator superfamily transporter was deleted in strain LC5815, which proves the feasibility of this genetic manipulation system. Furthermore, a uridine/uracil auxotrophic strain was created by using a positive screening protocol with 5-fluoroorotic acid as a selective reagent. Finally, the genetic transformation system was successfully established in the guanophilic fungus strain LC5815, which lays the foundation for the molecular genetics research and will facilitate the exploitation of bioactive secondary metabolites in fungi.
Collapse
Affiliation(s)
- Min Liang
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, China; (M.L.); (L.Q.); (G.C.)
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (W.L.); (L.C.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (W.L.); (L.C.)
| | - Landa Qi
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, China; (M.L.); (L.Q.); (G.C.)
| | - Guocan Chen
- Henan Academy of Science Institute of Biology, Zhengzhou 450008, China; (M.L.); (L.Q.); (G.C.)
| | - Lei Cai
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (W.L.); (L.C.)
| | - Wen-Bing Yin
- State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (W.L.); (L.C.)
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-6480-6170
| |
Collapse
|
9
|
Ojwach J, Kumar A, Mutanda T, Mukaratirwa S. Fructosyltransferase and inulinase production by indigenous coprophilous fungi for the biocatalytic conversion of sucrose and inulin into oligosaccharides. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Ojwach J, Kumar A, Mukaratirwa S, Mutanda T. Purification and biochemical characterization of an extracellular fructosyltransferase enzyme from Aspergillus niger sp. XOBP48: implication in fructooligosaccharide production. 3 Biotech 2020; 10:459. [PMID: 33088656 DOI: 10.1007/s13205-020-02440-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/15/2020] [Indexed: 11/26/2022] Open
Abstract
An extracellular fructosyltransferase (Ftase) enzyme with a molar mass of ≈70 kDa from a newly isolated indigenous coprophilous fungus Aspergillus niger sp. XOBP48 is purified to homogeneity and characterized in this study. The enzyme was purified to 4.66-fold with a total yield of 15.53% and specific activity of 1219.17 U mg-1 of protein after a three-step procedure involving (NH4)2SO4 fractionation, dialysis and anion exchange chromatography. Ftase showed optimum activity at pH 6.0 and temperature 50 °C. Ftase exhibited over 80% residual activity at pH range of 4.0-10.0 and ≈90% residual activity at temperature range of 40-60 °C for 6 h. Metal ion inhibitors Hg2+ and Ag+ significantly inhibited Ftase activity at 1 mmol concentration. Ftase showed K m, v max and k cat values of 79.51 mmol, 45.04 µmol min-1 and 31.5 min-1, respectively, with a catalytic efficiency (k cat/K m) of 396 µmol-1 min-1 for the substrate sucrose. HPLC-RI experiments identified the end products of fructosyltransferase activity as monomeric glucose, 1-kestose (GF2), and 1,1-kestotetraose (GF3). This study evaluates the feasibility of using this purified extracellular Ftase for the enzymatic synthesis of biofunctional fructooligosaccharides.
Collapse
Affiliation(s)
- Jeff Ojwach
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
| | - Samson Mukaratirwa
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000 South Africa
- Present Address: One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Taurai Mutanda
- Department of Nature Conservation, Faculty of Natural Sciences, Centre for Algal Biotechnology, Mangosuthu University of Technology, P.O. Box 12363, Jacobs 4026, Durban, South Africa
| |
Collapse
|
11
|
Sphaerostilbellins, New Antimicrobial Aminolipopeptide Peptaibiotics from Sphaerostilbella toxica. Biomolecules 2020; 10:biom10101371. [PMID: 32993102 PMCID: PMC7600149 DOI: 10.3390/biom10101371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Sphaerostilbella toxica is a mycoparasitic fungus that can be found parasitizing wood-decay basidiomycetes in the southern USA. Organic solvent extracts of fermented strains of S. toxica exhibited potent antimicrobial activity, including potent growth inhibition of human pathogenic yeasts Candida albicans and Cryptococcus neoformans, the respiratory pathogenic fungus Aspergillus fumigatus, and the Gram-positive bacterium Staphylococcus aureus. Bioassay-guided separations led to the purification and structure elucidation of new peptaibiotics designated as sphaerostilbellins A and B. Their structures were established mainly by analysis of NMR and HRMS data, verification of amino acid composition by Marfey's method, and by comparison with published data of known compounds. They incorporate intriguing structural features, including an N-terminal 2-methyl-3-oxo-tetradecanoyl (MOTDA) residue and a C-terminal putrescine residue. The minimal inhibitory concentrations for sphaerostilbellins A and B were measured as 2 μM each for C. neoformans, 1 μM each for A. fumigatus, and 4 and 2 μM, respectively, for C. albicans. Murine macrophage cells were unaffected at these concentrations.
Collapse
|
12
|
Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, Bills GF. Identification of the Antifungal Metabolite Chaetoglobosin P From Discosia rubi Using a Cryptococcus neoformans Inhibition Assay: Insights Into Mode of Action and Biosynthesis. Front Microbiol 2020; 11:1766. [PMID: 32849391 PMCID: PMC7399079 DOI: 10.3389/fmicb.2020.01766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcus neoformans is an important human pathogen with limited options for treatments. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition, differential thermosensitivity, and synergy with existing antifungal drugs. Extracts from fermentations of strains of Discosia rubi from eastern Texas showed anticryptococcal bioactivity with preferential activity in agar zone of inhibition assays against C. neoformans at 37°C versus 25°C. Assay-guided fractionation led to the purification and identification of chaetoglobosin P as the active component of these extracts. Genome sequencing of these strains revealed a biosynthetic gene cluster consistent with chaetoglobosin biosynthesis and β-methylation of the tryptophan residue. Proximity of genes of the actin-binding protein twinfilin-1 to the chaetoglobosin P and K gene clusters suggested a possible self-resistance mechanism involving twinfilin-1 which is consistent with the predicted mechanism of action involving interference with the polymerization of the capping process of filamentous actin. A C. neoformans mutant lacking twinfilin-1 was hypersensitive to chaetoglobosin P. Chaetoglobosins also potentiated the effects of amphotericin B and caspofungin on C. neoformans.
Collapse
Affiliation(s)
- Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | - Connie B Nichols
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | | | | | - J Andrew Alspaugh
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| |
Collapse
|
13
|
Li M, Yu R, Bai X, Wang H, Zhang H. Fusarium: a treasure trove of bioactive secondary metabolites. Nat Prod Rep 2020; 37:1568-1588. [PMID: 32785347 DOI: 10.1039/d0np00038h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering up to December 2019Fusarium, one of the most common fungal genera, has received considerable attention because of its biosynthetic exuberance, the result of many unique gene clusters involved in the production of secondary metabolites. This review provides the first comprehensive analysis of the secondary metabolites unique to the genus Fusarium, describing their occurrence, bioactivity, and genome features.
Collapse
Affiliation(s)
- Mingzhu Li
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Cyclodepsipeptide Biosynthesis in Hypocreales Fungi and Sequence Divergence of The Non-Ribosomal Peptide Synthase Genes. Pathogens 2020; 9:pathogens9070552. [PMID: 32660015 PMCID: PMC7400199 DOI: 10.3390/pathogens9070552] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
Fungi from the Hypocreales order synthesize a range of toxic non-ribosomal cyclic peptides with antimicrobial, insecticidal and cytotoxic activities. Entomopathogenic Beauveria, Isaria and Cordyceps as well as phytopathogenic Fusarium spp. are known producers of beauvericins (BEAs), beauvenniatins (BEAEs) or enniatins (ENNs). The compounds are synthesized by beauvericin/enniatin synthase (BEAS/ESYN1), which shows significant sequence divergence among Hypocreales members. We investigated ENN, BEA and BEAE production among entomopathogenic (Beauveria, Cordyceps, Isaria) and phytopathogenic (Fusarium) fungi; BEA and ENNs were quantified using an LC-MS/MS method. Phylogenetic analysis of partial sequences of putative BEAS/ESYN1 amplicons was also made. Nineteen fungal strains were identified based on sequence analysis of amplified ITS and tef-1α regions. BEA was produced by all investigated fungi, with F. proliferatum and F. concentricum being the most efficient producers. ENNs were synthesized mostly by F. acuminatum, F. avenaceum and C. confragosa. The phylogeny reconstruction suggests that ancestral BEA biosynthesis independently diverged into biosynthesis of other compounds. The divergent positioning of three Fusarium isolates raises the possibility of parallel acquisition of cyclic depsipeptide synthases in ancient complexes within Fusarium genus. Different fungi have independently evolved NRPS genes involved in depsipeptide biosynthesis, with functional adaptation towards biosynthesis of overlapping yet diversified metabolite profiles.
Collapse
|
16
|
Dischler NM, Xu L, Li Y, Nichols CB, Alspaugh JA, Bills GF, Gloer JB. Wortmannin and Wortmannine Analogues from an Undescribed Niesslia sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:532-538. [PMID: 30844268 PMCID: PMC6818414 DOI: 10.1021/acs.jnatprod.8b00923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the course of our studies of coprophilous fungi as sources of antifungal agents, a strain of an undescribed species in the genus Niesslia (TTI-0426) was isolated from horse dung collected in Texas. An extract from fermentation cultures of this strain afforded two new antifungal wortmannin derivatives, wortmannins C and D (1 and 2), as well as four additional new related compounds, wortmannines B1-B4 (3-6), containing an unusual ring system. The structures of these metabolites were established mainly by analysis of HRESIMS and 2D NMR data. Relative configurations were assigned using NOESY data, and the structure assignments were supported by NMR comparison with similar compounds. Wortmannins C and D showed activity against Cryptococcus neoformans and Candida albicans in disk assays, but low MIC potency observed for 1 was suggested to be due in part to efflux processes on the basis of assay results for a Schizosaccharomyces pombe efflux mutant in comparison to wild-type.
Collapse
Affiliation(s)
- Nicole M Dischler
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Lijian Xu
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine , University of Texas Health Science Center at Houston , Houston , Texas 77054 , United States
| | - Yan Li
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine , University of Texas Health Science Center at Houston , Houston , Texas 77054 , United States
| | - Connie B Nichols
- Departments of Biochemistry and Medicine , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - J Andrew Alspaugh
- Departments of Biochemistry and Medicine , Duke University Medical Center , Durham , North Carolina 27710 , United States
| | - Gerald F Bills
- Texas Therapeutic Institute, The Brown Foundation Institute of Molecular Medicine , University of Texas Health Science Center at Houston , Houston , Texas 77054 , United States
| | - James B Gloer
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|