1
|
Mohamed H, Naz T, Li S, Wang X, Saeed T, Eltoukhy A, Khalid H, Ramadan AS, Awad MF, Liu Q, Song Y. Engineering Mucor circinelloides for enhanced lipid production through homologous overexpression of phosphofructokinase (PFK1 and PFK2) coupled with in-silico modeling analysis. Int J Biol Macromol 2025; 311:143998. [PMID: 40339842 DOI: 10.1016/j.ijbiomac.2025.143998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Phosphofructokinase (PFK) enzyme is considered a key regulatory enzyme of glycolysis, which phosphorylates fructose 6P (F6P) to fructose-1,6-BP, a vital regulatory stage in the glycolytic process. In response to sugar flux, the glycolysis metabolic network of Mucor circinelloides had a significant role in lipid accumulation. To investigate the cytosolic functions of PFK in lipid accumulation, we overexpressed pfk1 and pfk2 via homologous recombination in the oleaginous WJ11 strain of M. circinelloides. Our findings showed that the overexpression of pfk genes increased the biomass by 14.5 % and 28 %, as well as lipid accumulation by 18 % and 28 % in Mc-pfk1 and Mc-pfk2 overexpressing strains, as compared to the Mc-CS control strain. Moreover, the fatty acids (FAs) analysis demonstrated that the overexpression of target genes slightly changed the FAs profile in modified strains. The mRNA expression levels of these two genes in the overexpressing strains using RT-qPCR analysis revealed a noticeable raised 3.7- and 2.8-fold at 24 h in Mc-pfk1 and Mc-pfk2, respectively, compared with the control. Notably, there was also an upregulation of genes that are involved in the production of acetyl-CoA and NADPH, including acl, acc1, acc2, cme1, cme2, fbpase1, and g6pdh2, which suggests an increased metabolic flux toward lipid biosynthesis. This coordinated upregulation indicates that PFK activity may affect lipid metabolism indirectly through pathways that produce necessary lipid precursors and reduce equivalents, in addition to directly influencing glycolytic flux. The in-silico elucidation and computational paradigm of pfk1 and pfk2 in WJ11 imparted the regulatory effect through their corresponding targets and provided evidence for large-scale mechanistic studies. This is the first report to explore the function of pfk genes in WJ11 during its lipid metabolic processes. Therefore, it provides a theoretical basis for further genetic engineering to promote sustainable lipid production for biological industries.
Collapse
Affiliation(s)
- Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Tahira Naz
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shaoqi Li
- Institute of Agricultural Products Processing, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Tariq Saeed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad 45750, Pakistan.
| | - Adel Eltoukhy
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Hina Khalid
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Asmaa S Ramadan
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Food Technology, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Mohamed F Awad
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia.
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; School of Basic Medicine, Qilu Medical University, Renmin West Road No. 1678, University Town, Zibo 255300, Shandong, China.
| |
Collapse
|
2
|
Reķēna A, Pals K, Gavrilović S, Lahtvee PJ. The role of ATP citrate lyase, phosphoketolase, and malic enzyme in oleaginous Rhodotorula toruloides. Appl Microbiol Biotechnol 2025; 109:77. [PMID: 40156749 PMCID: PMC11954720 DOI: 10.1007/s00253-025-13454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/01/2025]
Abstract
Rhodotorula toruloides is an oleaginous yeast recognized for its robustness and the production of high content of neutral lipids. Early biochemical studies have linked ATP citrate lyase (ACL), phosphoketolase (PK), and cytosolic malic enzyme (cMAE) with de novo lipid synthesis. In this study, we discovered that upon a CRISPR/Cas9-mediated knockout of the ACL gene, lipid content in R. toruloides IFO0880 decreased from 50 to 9% of its dry cell weight (DCW) in glucose medium and caused severe growth defects (reduced specific growth rate, changes in cell morphology). In xylose medium, the lipid content decreased from 43 to 38% of DCW. However, when grown on acetate as the sole carbon source, the lipid content decreased from 45 to 20% of DCW. Significant growth defects as a result of ACL knockout were observed on all substrates. In contrast, PK knockout resulted in no change in growth or lipid synthesis. Knocking out cMAE gene resulted in lipid increase of 2.9% of DCW and 23% increase in specific growth rate on glucose. In xylose or acetate medium, no change in lipid production as a result of cMAE gene knockout was observed. These results demonstrated that ACL plays a crucial role in lipid synthesis in R. toruloides IFO0880, as opposed to PK pathway or cMAE, whose presence in some conditions even disfavors lipid production. These results provided valuable information for future metabolic engineering of R. toruloides. KEY POINTS: • ACL is crucial for the fatty acid synthesis and growth in R. toruloides IFO0880. • Lipid production and cell growth is are unchanged as a result of PK knockout. • Cytosolic malic enzyme does not play a significant role in lipogenesis.
Collapse
Affiliation(s)
- Alīna Reķēna
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristjan Pals
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Srðan Gavrilović
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Petri-Jaan Lahtvee
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
3
|
Naz T, Zhao XY, Li S, Saeed T, Ullah S, Nazir Y, Liu Q, Mohamed H, Song Y. The interplay of transcriptional regulator SREBP1 with AMPK promotes lipid biosynthesis in Mucor circinelloides WJ11. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159592. [PMID: 39733936 DOI: 10.1016/j.bbalip.2024.159592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
SREBP1 is a transcription factor that influences lipogenesis by regulating key genes associated with lipid biosynthesis, while AMPK, modulates lipid metabolism by regulating acetyl-CoA carboxylase. The exact role of these metabolic regulators in oleaginous microbes remains unclear. This study identified and manipulated the genes encoding SREBP1 (sre1) and α1 subunit of AMPK (ampk-α1) in Mucor circinelloides WJ11. Individual overexpression of sre1 yielded 32.5 % lipids and 21 g/L biomass, while ampk-α1 deletion combined with sre1 overexpression yielded 42.5 % lipids and 25 g/L biomass in mutant strains. This increase correlated with upregulated expression of key lipogenic genes and enzyme activity, enhancing lipid production and biomass. These surges were correlated with the increased mRNA levels of key genes (acl, acc1, acc2, cme1, fas1, g6pdh1, g6pdh2 and 6pgdh2). Enzyme activity analysis further showed that upregulation of ACL, ACC, ME, FAS, G6PDH and 6PGDH might provide more precursors and NADPH for lipid biosynthesis in sre1 overexpressing strains. Conversely, the activities of these genes and enzymes were markedly downregulated in sre1 deleted mutants consistent with lower lipid production and biomass than the control. These findings open new avenues for research by exploring the coordinated role of sre1 and ampk-α1 in lipid metabolism in M. circinelloides.
Collapse
Affiliation(s)
- Tahira Naz
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiang Yu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Tariq Saeed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Diet and Nutritional Sciences, Ibadat International University, Islamabad 45750, Pakistan.
| | - Samee Ullah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Yusuf Nazir
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
4
|
Abdel-Wahab MA, Elgorban AM, Bahkali AH. Valorization of Macroalgal Hydrolysate for the Production of Lipids and DHA by Marine Microbes. J Oleo Sci 2025; 74:187-201. [PMID: 39880639 DOI: 10.5650/jos.ess24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
The present study aimed to explore the potential of macroalgal hydrolysate to serve as an economical substrate for the growth of the oleaginous microbes Aspergillus sp. SY-70, Rhizopus arrhizus SY-71 and Aurantiochytrium sp. YB-05 for lipid and DHA production under laboratory conditions. The macroalgal hydrolysate was used at three concentrations 20, 40 and 80 g/L as a sole carbon source or in combination with 10 g/L of either acetic acid, glycerol, glucose, or sugarcane molasses. Glucose was used as a positive control at four different concentrations: 10, 20, 40, and 80 g/L. Out of the 19 carbon sources tested for the three microbes, 80 g/L macroalgae + 10 g/L molasses was the best source for Aspergillus sp. SY-70 (27.4 g/L DW and 9.73 g/L lipid) and R. arrhizus SY-71 (49.76 g/L DW and 16.88 g/L lipid), whereas 20 g/L macroalgae + 10 g/L glucose afforded the best source for Aurantiochytrium sp. YB-05 (27.93 g/L DW and 11.07 g/L lipid). Among the 19 carbon sources used for the growth of Aurantiochytrium sp. YB-05, we determined the fatty acid profile of the best four carbon sources that gave the highest biomass and lipid percentage. Among the four sources, 20 g/L macroalgal hydrolysate + glucose gave the highest DHA percentage (2.31 g/L), followed by 80 g/L pure glucose (1.68), 80 g/L macroalgal hydrolysate + glycerol (1.64), and 40 g/L macroalgal hydrolysate + molasses (1.52). The three carbon sources can replace pure glucose for the lipid, DPA, and DHA production using Aurantiochytrium sp. YB-05. The results of the current study suggest that we could use macroalgal hydrolysate in combination with molasses or glucose for the production of single-cell oil.
Collapse
Affiliation(s)
- Mohamed A Abdel-Wahab
- Botany and Microbiology Department, Faculty of Science, King Saud University
- Department of Botany and Microbiology, Faculty of Science, Sohag University
| | - Abdallah M Elgorban
- Botany and Microbiology Department, Faculty of Science, King Saud University
- Agricultural Research Center, Plant Pathology Research Institute
- Center of Excellence in Biotechnology Research, King Saud University
| | - Ali H Bahkali
- Botany and Microbiology Department, Faculty of Science, King Saud University
| |
Collapse
|
5
|
Abiola T, Olukanni OD. Isolation, characterization and optimization of oleaginous Providencia vermicola as a feedstock for biodiesel production using Response Surface Methodology. Prep Biochem Biotechnol 2024; 54:1226-1242. [PMID: 38727011 DOI: 10.1080/10826068.2024.2344516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Oleaginous organisms accrue more than twenty percent of their biomass as lipids and hence are promising feedstocks for biodiesel production. In this study, lipid accumulating bacteria were isolated from diesel-contaminated soils and screened with Sudan black B stain. The most oleaginous was done using 16s rRNA gene sequencing. Lipid production was initially optimized based on media, nitrogen source, pH and temperature. Response surface methodology (RSM) was then employed for the enhancement of lipid weight and content. Obtained lipid was converted to biodiesel using direct transesterification, and both lipid and biodiesel were characterized using FTIR. A total of thirteen bacteria were isolated and the most prominent lipid producer was identified as Providencia vermicola with lab number BA6. Preliminary optimization studies revealed optimum lipid production when nutrient broth and acetic acid served as carbon source; KNO3 as nitrogen source, pH 7.0 and 30 °C. Optimization using RSM resulted in a 5.1% and 74.1% increase in the biomass and lipid content of BA6 respectively. FTIR analyses confirmed the presence of functional groups characteristic of lipids and biodiesel. P. vermicola is a novel oleaginous organism that represents a promising feedstock for biodiesel production.HIGHLIGHTSThe bacterium designated as BA6 identified as Providencia vermicola has the highest lipid contents of the oleaginous bacteria isolated.It accumulates lipids up to 47.73 % of its biomassThe percentage lipids accumulation increased to about 74 % when RSM was used.Providencia vermicola is being reported as an oleaginous organism for the first time.
Collapse
Affiliation(s)
- Temitope Abiola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| | - Olumide D Olukanni
- Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, Ede, Nigeria
| |
Collapse
|
6
|
Sato R, Yamazaki H, Mori K, Aburatani S, Ishiya K, Shida Y, Ogasawara W, Tashiro K, Kuhara S, Takaku H. Identification and characterization of the suppressed lipid accumulation-related gene, SLA1, in the oleaginous yeast Lipomyces starkeyi. Biosci Biotechnol Biochem 2024; 88:1370-1380. [PMID: 39085043 DOI: 10.1093/bbb/zbae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The oleaginous yeast Lipomyces starkeyi is an attractive industrial yeast that can accumulate high amounts of intracellular lipids. Identification of genes involved in lipid accumulation contributes not only to elucidating the lipid accumulation mechanism but also to breeding industrially useful high lipid-producing strains. In this study, the suppressed lipid accumulation-related gene (SLA1) was identified as the causative gene of the sr22 mutant with decreased lipid productivity. Suppressed lipid accumulation-related gene mutation reduced gene expression in lipid biosynthesis and increased gene expression in β-oxidation. Our results suggest that SLA1 mutation may leads to decreased lipid productivity. Suppressed lipid accumulation-related gene deletion also exhibited decreased gene expression in β-oxidation and increased lipid accumulation, suggesting that SLA1 deletion is a useful tool to improve lipid accumulation in L. starkeyi for industrialization.
Collapse
Affiliation(s)
- Rikako Sato
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Akiha-ku, Niigata, Japan
| | - Harutake Yamazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Akiha-ku, Niigata, Japan
| | - Kazuki Mori
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Sachiyo Aburatani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Japan
| | - Koji Ishiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Toyohira-ku, Sapporo, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Wataru Ogasawara
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Satoru Kuhara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Medical and Life Sciences, Akiha-ku, Niigata, Japan
| |
Collapse
|
7
|
Rosas-Paz M, Zamora-Bello A, Torres-Ramírez N, Villarreal-Huerta D, Romero-Aguilar L, Pardo JP, El Hafidi M, Sandoval G, Segal-Kischinevzky C, González J. Nitrogen limitation-induced adaptive response and lipogenesis in the Antarctic yeast Rhodotorula mucilaginosa M94C9. Front Microbiol 2024; 15:1416155. [PMID: 39161597 PMCID: PMC11330776 DOI: 10.3389/fmicb.2024.1416155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/02/2024] [Indexed: 08/21/2024] Open
Abstract
The extremotolerant red yeast Rhodotorula mucilaginosa displays resilience to diverse environmental stressors, including cold, osmolarity, salinity, and oligotrophic conditions. Particularly, this yeast exhibits a remarkable ability to accumulate lipids and carotenoids in response to stress conditions. However, research into lipid biosynthesis has been hampered by limited genetic tools and a scarcity of studies on adaptive responses to nutrient stressors stimulating lipogenesis. This study investigated the impact of nitrogen stress on the adaptive response in Antarctic yeast R. mucilaginosa M94C9. Varied nitrogen availability reveals a nitrogen-dependent modulation of biomass and lipid droplet production, accompanied by significant ultrastructural changes to withstand nitrogen starvation. In silico analysis identifies open reading frames of genes encoding key lipogenesis enzymes, including acetyl-CoA carboxylase (Acc1), fatty acid synthases 1 and 2 (Fas1/Fas2), and acyl-CoA diacylglycerol O-acyltransferase 1 (Dga1). Further investigation into the expression profiles of RmACC1, RmFAS1, RmFAS2, and RmDGA1 genes under nitrogen stress revealed that the prolonged up-regulation of the RmDGA1 gene is a molecular indicator of lipogenesis. Subsequent fatty acid profiling unveiled an accumulation of oleic and palmitic acids under nitrogen limitation during the stationary phase. This investigation enhances our understanding of nitrogen stress adaptation and lipid biosynthesis, offering valuable insights into R. mucilaginosa M94C9 for potential industrial applications in the future.
Collapse
Affiliation(s)
- Miguel Rosas-Paz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Mexico City, Mexico
| | - Alberto Zamora-Bello
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Bioquímicas, Unidad de Posgrado, Ciudad Universitaria, Mexico City, Mexico
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Villarreal-Huerta
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Mexico City, Mexico
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Pablo Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados, Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A. C., Guadalajara, Mexico
| | - Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
8
|
Hassane AMA, Eldiehy KSH, Saha D, Mohamed H, Mosa MA, Abouelela ME, Abo-Dahab NF, El-Shanawany ARA. Oleaginous fungi: a promising source of biofuels and nutraceuticals with enhanced lipid production strategies. Arch Microbiol 2024; 206:338. [PMID: 38955856 DOI: 10.1007/s00203-024-04054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
Oleaginous fungi have attracted a great deal of interest for their potency to accumulate high amounts of lipids (more than 20% of biomass dry weight) and polyunsaturated fatty acids (PUFAs), which have a variety of industrial and biological applications. Lipids of plant and animal origin are related to some restrictions and thus lead to attention towards oleaginous microorganisms as reliable substitute resources. Lipids are traditionally biosynthesized intra-cellularly and involved in the building structure of a variety of cellular compartments. In oleaginous fungi, under certain conditions of elevated carbon ratio and decreased nitrogen in the growth medium, a change in metabolic pathway occurred by switching the whole central carbon metabolism to fatty acid anabolism, which subsequently resulted in high lipid accumulation. The present review illustrates the bio-lipid structure, fatty acid classes and biosynthesis within oleaginous fungi with certain key enzymes, and the advantages of oleaginous fungi over other lipid bio-sources. Qualitative and quantitative techniques for detecting the lipid accumulation capability of oleaginous microbes including visual, and analytical (convenient and non-convenient) were debated. Factors affecting lipid production, and different approaches followed to enhance the lipid content in oleaginous yeasts and fungi, including optimization, utilization of cost-effective wastes, co-culturing, as well as metabolic and genetic engineering, were discussed. A better understanding of the oleaginous fungi regarding screening, detection, and maximization of lipid content using different strategies could help to discover new potent oleaginous isolates, exploit and recycle low-cost wastes, and improve the efficiency of bio-lipids cumulation with biotechnological significance.
Collapse
Affiliation(s)
- Abdallah M A Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt.
| | - Khalifa S H Eldiehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Debanjan Saha
- Department of Molecular Biology and Biotechnology, Tezpur University, P.O. Box 784028, Assam, India
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, P.O. Box 255000, Zibo, China
| | - Mohamed A Mosa
- Nanotechnology and Advanced Nano-Materials Laboratory (NANML), Plant Pathology Research Institute, Agricultural Research Center, P.O. Box 12619, Giza, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Nageh F Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| | - Abdel-Rehim A El-Shanawany
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, P.O. Box 71524, Assiut, Egypt
| |
Collapse
|
9
|
Li S, Yang J, Mohamed H, Wang X, Shi W, Xue F, López-García S, Liu Q, Song Y. AMP deaminase: A crucial regulator in nitrogen stress and lipid metabolism in Mucor circinelloides. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159434. [PMID: 38052250 DOI: 10.1016/j.bbalip.2023.159434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Lipid biosynthesis is a significant metabolic response to nitrogen starvation in oleaginous fungi. The oleaginous fungus Mucor circinelloides copes with nitrogen stress by degrading AMP through AMP deaminase (AMPD). However, the mechanism of AMPD in regulating lipogenesis remains largely unclear. To elucidate the mechanism of AMPD in lipid synthesis in this M. circinelloides, we identified two genes (ampd1 and ampd2) encoding AMPD and constructed an ampd double knockout mutant. The engineered M. circinelloides strain elevated cell growth and lipid accumulation, as well as the content of oleic acid (OA) and gamma-linolenic acid (GLA). In addition to the expected increase in transcription levels of genes associated with lipid and TAG synthesis, we observed suppression of lipid degradation and reduced amino acid biosynthesis. This suggested that the deletion of AMPD genes induces the redirection of carbon towards lipid synthesis pathways. Moreover, the pathways related to nitrogen metabolism, including nitrogen assimilation and purine metabolism (especially energy level), were also affected in order to maintain homeostasis. Further analysis discovered that the transcription factors (TFs) related to lipid accumulation were also regulated. This study provides new insights into lipid biosynthesis in M. circinelloides, indicating that the trigger for lipid accumulation is not entirely AMPD-dependent and suggest that there may be additional mechanisms involved in the initiation of lipogenesis.
Collapse
Affiliation(s)
- Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Junhuan Yang
- Department of Food Science, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang 524048, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Wenyue Shi
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Futing Xue
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Sergio López-García
- Departmento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia 3100, Spain
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| |
Collapse
|
10
|
Parisis V, Tsave O, Papanikolaou C, Pantazopoulou E, Chatzidoukas C. Comprehensive Exploration of the Growth and Lipid Synthesis Phases of T. oleaginosus Cultures Implementing Design of Experiments and Response Surface Methodology. Bioengineering (Basel) 2023; 10:1359. [PMID: 38135950 PMCID: PMC10741121 DOI: 10.3390/bioengineering10121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Trichosporon oleaginosus is an unconventional oleaginous yeast distinguished by its remarkable capacity to accumulate lipids in excess of 70% of its dry weight, particularly when cultivated in nitrogen-restricted conditions with ample carbon sources. A pivotal question that arises pertains to the nutrient dynamics in the culture medium, which give rise to both the excessive lipid content and corresponding lipid concentration. While previous research has predominantly focused on evaluating the impact of the initial carbon-to-nitrogen (C/N) ratio on lipid production, the precise critical thresholds of glucose and ammonium sulfate ((NH4)2SO4) at which growth and intracellular lipid production are either stimulated or impeded remain inadequately defined. This study employs an experimental design and response surface methodology to investigate the complex mechanism of lipid accumulation and its interaction with cellular growth. Application of the aforementioned methodologies resulted in the production of 10.6 g/L of microbial oil in batch cultures under conditions that correspond to a C/N ratio of 76. However, the primary objective is to generate knowledge to facilitate the development of efficient fed-batch cultivation strategies that optimize lipid production exclusively employing inorganic nitrogen sources by finely adjusting carbon and nitrogen levels. The intricate interaction between these levels is comprehensively addressed in the present study, while it is additionally revealed that as glucose levels rise within a non-inhibitory range, lipid-free biomass production decreases while lipid accumulation simultaneously increases. These findings set the stage for further exploration and the potential development of two-stage cultivation approaches, aiming to fully decouple growth and lipid production. This advancement holds the promise of bringing microbial oil production closer to commercial viability.
Collapse
Affiliation(s)
| | | | | | | | - Christos Chatzidoukas
- Department of Chemical Engineering, Aristotle University of Thessaloniki (AUTH), 54124 Thessaloniki, Greece; (V.P.); (O.T.); (C.P.); (E.P.)
| |
Collapse
|
11
|
Zhang H, Wan W, Cui Q, Song X. Modular Metabolic Engineering of Mortierella alpina by the 2A Peptide Platform to Improve Arachidonic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12519-12527. [PMID: 37561084 DOI: 10.1021/acs.jafc.3c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Arachidonic acid (ARA) is an essential fatty acid in human nutrition. Mortierella alpina, a filamentous fungus, has been widely used for the production of ARA. Here, we report a modular engineering approach that systematically eliminates metabolic bottlenecks in the multigene elongase/desaturase pathway and has led to significant improvements of the ARA titer. The elongase/desaturase pathway in Mortierella alpina was recast into two modules, namely, push and pull modules, based on its function in the ARA synthesis. Combinatorial optimization of these two modules has balanced the production and consumption of intermediate metabolites. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the push and pull modules in Mortierella alpina. In the shake-flask fermentation, the lipid and ARA contents of the engineered strain MA5 were increased by 1.2-fold and 77.6%, respectively, resulting in about fivefold increase of the ARA yield. The final ARA titer reached 4.4 g L-1 in shake-flask fermentation. The modular engineering strategies presented in this study demonstrate a generalized approach for the engineering of cell factories in the production of valuable metabolites.
Collapse
Affiliation(s)
- Huidan Zhang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai 810016, China
- Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Shandong Energy Institute, Qingdao, Shandong 266101, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China
| |
Collapse
|
12
|
Zhang X, Fang Z, Zhao D, Kamal R, Wang X, Jin G, Gong Z, Yang X. Biorefinery of vineyard winter prunings for production of microbial lipids by the oleaginous yeast Cryptococcus curvatus. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 168:221-229. [PMID: 37311389 DOI: 10.1016/j.wasman.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023]
Abstract
Spent biomass from agricultural and forestry industries are substantial low-cost carbon source for reducing the input of microbial lipid production. Herein, the components of the vineyard winter prunings (VWPs) from 40 grape cultivars were analyzed. The VWPs contained (w/w) cellulose ranged from 24.8% to 32.4%, hemicellulose 9.6% to 13.8%, lignin 23.7% to 32.4%. The VWPs from Cabernet Sauvignon was processed with the alkali-methanol pretreatment, and 95.8% of the sugars was released from the regenerated VWPs after enzymatic hydrolysis. The hydrolysates from the regenerated VWPs was suitable for lipid production without further treatment as a lipid content of 59% could be achieved with Cryptococcus curvatus. The regenerated VWPs was also used for lipid production via simultaneous saccharification and fermentation (SSF), which led to a lipid yield of 0.088 g/g raw VWPs, 0.126 g/g regenerated VWPs and 0.185 g/g from the reducing sugars. This work demonstrated that the VWPs can be explored for co-production of microbial lipids.
Collapse
Affiliation(s)
- Xueyuan Zhang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhumei Fang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Di Zhao
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rasool Kamal
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guojie Jin
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiwei Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, 947 Heping Road, Wuhan 430081, China
| | - Xiaobing Yang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Yinchuan 750104, China.
| |
Collapse
|
13
|
Passoth V, Brandenburg J, Chmielarz M, Martín-Hernández GC, Nagaraj Y, Müller B, Blomqvist J. Oleaginous yeasts for biochemicals, biofuels and food from lignocellulose-hydrolysate and crude glycerol. Yeast 2023; 40:290-302. [PMID: 36597618 DOI: 10.1002/yea.3838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Microbial lipids produced from lignocellulose and crude glycerol (CG) can serve as sustainable alternatives to vegetable oils, whose production is, in many cases, accompanied by monocultures, land use changes or rain forest clearings. Our projects aim to understand the physiology of microbial lipid production by oleaginous yeasts, optimise the production and establish novel applications of microbial lipid compounds. We have established methods for fermentation and intracellular lipid quantification. Following the kinetics of lipid accumulation in different strains, we found high variability in lipid formation even between very closely related oleaginous yeast strains on both, wheat straw hydrolysate and CG. For example, on complete wheat straw hydrolysate, we saw that one Rhodotorula glutinis strain, when starting assimilating D-xylosealso assimilated the accumulated lipids, while a Rhodotorula babjevae strain could accumulate lipids on D-xylose. Two strains (Rhodotorula toruloides CBS 14 and R. glutinis CBS 3044) were found to be the best out of 27 tested to accumulate lipids on CG. Interestingly, the presence of hemicellulose hydrolysate stimulated glycerol assimilation in both strains. Apart from microbial oil, R. toruloides also produces carotenoids. The first attempts of extraction using the classical acetone-based method showed that β-carotene is the major carotenoid. However, there are indications that there are also substantial amounts of torulene and torularhodin, which have a very high potential as antioxidants.
Collapse
Affiliation(s)
- Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Klinisk Mikrobiologi Falun, Falun Lasarett, Falun, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Yashaswini Nagaraj
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanna Blomqvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Gach J, Olejniczak T, Pannek J, Boratyński F. Fungistatic Effect of Phthalide Lactones on Rhodotorula mucilaginosa. Molecules 2023; 28:5423. [PMID: 37513295 PMCID: PMC10384090 DOI: 10.3390/molecules28145423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, there is an increasing number of cases of fungal infections caused by opportunistic strains of the yeast Rhodotorula mucilaginosa, mainly in immunocompromised patients during hospitalization. The excessive use of antibiotics and azole compounds increases the risk of resistance to microorganisms. A new alternative to these drugs may be synthetic phthalide lactones with a structure identical to or similar to the natural ones found in celery plants, which show low toxicity and relatively high fungistatic activity. In the present study, the fungistatic activity of seven phthalide lactones was determined against R. mucilaginosa IHEM 18459. We showed that 3-n-butylidenephthalide, the most potent compound selected in the microdilution test, caused a dose-dependent decrease in dry yeast biomass. Phthalide accumulated in yeast cells and contributed to an increase in reactive oxygen species content. The synergistic effect of fluconazole resulted in a reduction in the azole concentration required for yeast inhibition. We observed changes in the color of the yeast cultures; thus, we conducted experiments to prove that the carotenoid profile was altered. The addition of lactones also triggered a decline in fatty acid methyl esters.
Collapse
Affiliation(s)
- Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Jakub Pannek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
15
|
Sun H, Gao Z, Zhang L, Wang X, Gao M, Wang Q. A comprehensive review on microbial lipid production from wastes: research updates and tendencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79654-79675. [PMID: 37328718 DOI: 10.1007/s11356-023-28123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Microbial lipids have recently attracted attention as an intriguing alternative for the biodiesel and oleochemical industries to achieve sustainable energy generation. However, large-scale lipid production remains limited due to the high processing costs. As multiple variables affect lipid synthesis, an up-to-date overview that will benefit researchers studying microbial lipids is necessary. In this review, the most studied keywords from bibliometric studies are first reviewed. Based on the results, the hot topics in the field were identified to be associated with microbiology studies that aim to enhance lipid synthesis and reduce production costs, focusing on the biological and metabolic engineering involved. The research updates and tendencies of microbial lipids were then analyzed in depth. In particular, feedstock and associated microbes, as well as feedstock and corresponding products, were analyzed in detail. Strategies for lipid biomass enhancement were also discussed, including feedstock adoption, value-added product synthesis, selection of oleaginous microbes, cultivation mode optimization, and metabolic engineering strategies. Finally, the environmental implications of microbial lipid production and possible research directions were presented.
Collapse
Affiliation(s)
- Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Zhen Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lirong Zhang
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, 528399, China.
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Tianjin College, University of Science and Technology, Beijing, Tianjin, 301811, China
| |
Collapse
|
16
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
17
|
Liu Q, Sun S, Chen S, Su Y, Wang Y, Tang F, Zhao C, Li L. A novel dehydrocoenzyme activator combined with a composite microbial agent TY for enhanced bioremediation of crude oil-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117246. [PMID: 36642048 DOI: 10.1016/j.jenvman.2023.117246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Bioaugmentation (BA) and biostimulation (BS) synergistic remediation is an effective remediation strategy for oil-contaminated soil. In this study, the optimal combination system of composite microbial agent TY (Achromobacter: Pseudomona = 2:1) and dehydrocoenzyme activator (NaNO3 (7.0 g/L), (NH4)2HPO4 (1.0 g/L), riboflavin (6.0 mg/L)) was screened. Under the best combination system, the degradation rate of crude oil in oil-contaminated soil reached 79.44% after 60 d, which was 1.74 times and 1.23 times higher than that of compound microbial agent TY treatment and dehydrogenase activator treatment, respectively. In addition, a highly efficient combination system was found to target the degradation of oil C10-C28 fractions by gas chromatography (GC). The increased abundance of dehydrogenase coenzymes such as flavin nucleotides (FAD and FMN), coenzyme I (NAD+, Co I) and coenzyme II (NADP+, Co II) as well as dioxygenases and monooxygenases promote the degradation of crude oil. Furthermore, the dominant genera at the genus level in soil were analyzed by high-throughput sequencing, which were Nocardioides (46.48%-56.07%), Gordonia (11.40%-14.61%), Intrasporangiaceae (5.05%-10.58%), Pseudomonas (1.39%-1.92%) and Dietzia (0.64%-2.77%). Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis showed that the abundance of genes associated with crude oil degradation such as ABC transporters (2.89%), fatty acid (1.04%), carbon metabolism (4.5%) and aromatic compound (0.92%) was assigned enhanced after 60 d of remediation. These results indicated that the combination system of the compound bacterium TY and the dehydrocoenzyme activator is a propective option for the bioremediation of oil-contaminated soil.
Collapse
Affiliation(s)
- Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, PR China.
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, PR China
| | - Shuiquan Chen
- College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, PR China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, PR China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, PR China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, PR China; State Key Laboratory of Petroleum Pollution Control, Qingdao, 266580, PR China
| | - Lin Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| |
Collapse
|
18
|
Theodosiou E. Engineering Strategies for Efficient Bioconversion of Glycerol to Value-Added Products by Yarrowia lipolytica. Catalysts 2023. [DOI: 10.3390/catal13040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Yarrowia lipolytica has been a valuable biotechnological workhorse for the production of commercially important biochemicals for over 70 years. The knowledge gained so far on the native biosynthetic pathways, as well as the availability of numerous systems and synthetic biology tools, enabled not only the regulation and the redesign of the existing metabolic pathways, but also the introduction of novel synthetic ones; further consolidating the position of the yeast in industrial biotechnology. However, for the development of competitive and sustainable biotechnological production processes, bioengineering should be reinforced by bioprocess optimization strategies. Although there are many published reviews on the bioconversion of various carbon sources to value-added products by Yarrowia lipolytica, fewer works have focused on reviewing up-to-date strain, medium, and process engineering strategies with an aim to emphasize the significance of integrated engineering approaches. The ultimate goal of this work is to summarize the necessary knowledge and inspire novel routes to manipulate at a systems level the yeast biosynthetic machineries by combining strain and bioprocess engineering. Due to the increasing surplus of biodiesel-derived waste glycerol and the favored glycerol-utilization metabolic pathways of Y. lipolytica over other carbon sources, the present review focuses on pure and crude glycerol-based biomanufacturing.
Collapse
|
19
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
20
|
Valorization of Food Waste Slurry as Potential Candidate for Lipid Accumulation: A Concept of Oleaginous Bio-Refinery. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In the current state of huge waste production and energy crisis, there is a need to find additional alternate energy resources and options for waste management. The present study was designed to measure the potential of different fruit wastes to serve as substrate for lipid accumulation in oleaginous bacteria. For this purpose, three novel bacterial strains (AF3, KM1 and KM10) isolated from the crude oil samples were systematically compared for their lipid accumulation potential using three types of waste including orange waste (OW), mango waste (MW) and apple waste (AW). Using waste as sole substrate, it was observed that maximum lipid accumulation by each strain was above 20%, which confirms that the bacteria belong to the oleaginous group. However, each bacterial isolate represented differential accumulative capacity with varying organic matter removal efficiency. Maximum lipid accumulation was achieved by KM10 (>25%) with AW as substrate, and KM1 (>24%) with MW as substrate; however, AF3 represented only 21% lipid accumulation using AW as substrate. Similarly, the maximum removal efficiency was recorded for KM10 in AW, followed by OW, where >60% and >50% of volatile solids (VS) removal, respectively, were achieved over the period of 7 days of incubation. This showed that the oleaginous strains also exhibit excellent waste treatment efficiency. The 16s RNA gene sequencing results showed that these KM1 and KM10 strains were Serratia surfactantfaciens and Serratia liquefaciens. In the end, a circular economy model was presented to highlight the significance of the mechanisms, which offers dual benefits over the linear economy model. Overall, the findings of the present study revealed that the novel oleaginous strains not only provide considerable lipid accumulation, but are simultaneously capable of low-cost waste treatment.
Collapse
|
21
|
Kitahara Y, Itani A, Ohtomo K, Oda Y, Takahashi Y, Okamura M, Mizoshiri M, Shida Y, Nakamura T, Harakawa R, Iwahashi M, Ogasawara W. The monitoring of oil production process by deep learning based on morphology in oleaginous yeasts. Appl Microbiol Biotechnol 2023; 107:915-929. [PMID: 36576569 DOI: 10.1007/s00253-022-12338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Monitoring jar fermenter-cultured microorganisms in real time is important for controlling productivity of bioproducts in large-scale cultivation settings. Morphological data is used to understand the growth and fermentation states of these microorganisms during monitoring. Oleaginous yeasts are used for their high productivity of single-cell oils but the relationship between lipid productivity and morphology has not been elucidated in these organisms. RESULTS In this study, we investigated the relationship between the morphology of oleaginous yeasts (Lipomyces starkeyi and Rhodosporidium toruloides were used) and their cultivation state in a large-scale cultivation setting using a real-time monitoring system. We combined this with deep learning by feeding a large amount of high-definition cell images obtained from the monitoring system to a deep learning algorithm. Our results showed that the cell images could be grouped into 7 distinct groups and that a strong correlation existed between each group and its biochemical activity (growth and oil-productivity). CONCLUSIONS This is the first report describing the morphological variations of oleaginous yeasts in a large-scale cultivation, and describes a promising new avenue for improving productivity of microorganisms in large-scale cultivation through the use of a real-time monitoring system combined with deep learning. KEY POINTS • A real-time monitoring system followed the morphological change of oleaginous yeasts. • Deep learning grouped them into 7 distinct groups based on their morphology. • A correlation between the cultivation state and the shape of the yeast was observed.
Collapse
Affiliation(s)
- Yukina Kitahara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Ayaka Itani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Kazuma Ohtomo
- Department of Information Science and Control Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yosuke Oda
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yuka Takahashi
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Makoto Okamura
- NRI System Techno Ltd, 4-4-1 Minato Mirai, Nishi-Ku, Yokohama, 220-0012, Japan
| | - Mizue Mizoshiri
- Department of Mechanical Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yosuke Shida
- Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Toru Nakamura
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Ryosuke Harakawa
- Department of Electrical Electronics and Information Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Masahiro Iwahashi
- Department of Electrical Electronics and Information Engineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Wataru Ogasawara
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan. .,Department of Bioengineering, Nagaoka University of Technology, 1603-1, Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
22
|
Crabtree Effect on Rhodosporidium toruloides Using Wood Hydrolysate as a Culture Media. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interest in microorganisms to produce microbial lipids at large-scale processes has increased during the last decades. Rhodosporidium toruloides-1588 could be an efficient option for its ability to simultaneously utilize five- and six-carbon sugars. Nevertheless, one of the most important characteristics that any strain needs to be considered or used at an industrial scale is its capacity to grow in substrates with high sugar concentrations. In this study, the effect of high sugar concentrations and the effect of ammonium sulfate were tested on R. toruloides-1588 and its capacity to grow and accumulate lipids using undetoxified wood hydrolysates. Batch fermentations showed a catabolic repression effect on R. toruloides-1588 growth at sugar concentrations of 120 g/L. The maximum lipid accumulation was 8.2 g/L with palmitic, stearic, oleic, linoleic, and lignoceric acids as predominant fatty acids in the produced lipids. Furthermore, R. toruloides-1588 was able to utilize up to 80% of the total xylose content. Additionally, this study is the first to report the effect of using high xylose concentrations on the growth, sugar utilization, and lipid accumulation by R. toruloides-1588.
Collapse
|
23
|
Gutiérrez-Hernández CA, Hernández-Almanza A, Hernández-Beltran JU, Balagurusamy N, Hernández-Teran F. Cheese whey valorization to obtain single-cell oils of industrial interest: An overview. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Li Z, Li C, Cheng P, Yu G. Rhodotorula mucilaginosa—alternative sources of natural carotenoids, lipids, and enzymes for industrial use. Heliyon 2022; 8:e11505. [DOI: 10.1016/j.heliyon.2022.e11505] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/19/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
|
25
|
Correa-Galeote D, Argiz L, Mosquera-Corral A, Del Rio AV, Juárez-Jiménez B, González-López J, Rodelas B. Structure of fungal communities in sequencing batch reactors operated at different salinities for the selection of triacylglyceride-producers from a fish-canning lipid-rich waste stream. N Biotechnol 2022; 71:47-55. [PMID: 35931375 DOI: 10.1016/j.nbt.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/01/2022]
Abstract
Oleaginous fungi natively accumulate large amounts of triacylglycerides (TAG), widely used as precursors for sustainable biodiesel production. However, little attention has been paid to the diversity and roles of fungal mixed microbial cultures (MMCs) in sequencing batch reactors (SBR). In this study, a lipid-rich stream produced in the fish-canning industry was used as a substrate in two laboratory-scale SBRs operated under the feast/famine (F/F) regime to enrich microorganisms with high TAG-storage ability, under two different concentrations of NaCl (SBR-N: 0.5g/L; SBR-S: 10g/L). The size of the fungal community in the enriched activated sludge (EAS) was analyzed using 18S rRNA-based qPCR, and the fungal community structure was determined by Illumina sequencing. The different selective pressures (feeding strategy and control of pH) implemented in the enrichment SBRs throughout operation increased the abundance of total fungi. In general, there was an enrichment of genera previously identified as TAG-accumulating fungi (Apiotrichum, Candida, Cutaneotrichosporon, Geotrichum, Haglerozyma, Metarhizium, Mortierella, Saccharomycopsis, and Yarrowia) in both SBRs. However, the observed increase of their relative abundances throughout operation was not significantly linked to a higher TAG accumulation.
Collapse
Affiliation(s)
- David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18001 Granada, Andalucía, Spain; Microbiology and Environmental technology section, Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Andalucía, Spain.
| | - Lucía Argiz
- CRETUS Institute, Department of Chemical Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Anuska Mosquera-Corral
- CRETUS Institute, Department of Chemical Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Angeles Val Del Rio
- CRETUS Institute, Department of Chemical Engineering, University of Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
| | - Belen Juárez-Jiménez
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18001 Granada, Andalucía, Spain; Microbiology and Environmental technology section, Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Andalucía, Spain
| | - Jesús González-López
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18001 Granada, Andalucía, Spain; Microbiology and Environmental technology section, Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Andalucía, Spain
| | - Belen Rodelas
- Microbiology Department, Faculty of Pharmacy, University of Granada, 18001 Granada, Andalucía, Spain; Microbiology and Environmental technology section, Microbiology Department, Faculty of Pharmacy, University of Granada, 18011 Granada, Andalucía, Spain
| |
Collapse
|
26
|
Zhang XY, Li B, Huang BC, Wang FB, Zhang YQ, Zhao SG, Li M, Wang HY, Yu XJ, Liu XY, Jiang J, Wang ZP. Production, Biosynthesis, and Commercial Applications of Fatty Acids From Oleaginous Fungi. Front Nutr 2022; 9:873657. [PMID: 35694158 PMCID: PMC9176664 DOI: 10.3389/fnut.2022.873657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Oleaginous fungi (including fungus-like protists) are attractive in lipid production due to their short growth cycle, large biomass and high yield of lipids. Some typical oleaginous fungi including Galactomyces geotrichum, Thraustochytrids, Mortierella isabellina, and Mucor circinelloides, have been well studied for the ability to accumulate fatty acids with commercial application. Here, we review recent progress toward fermentation, extraction, of fungal fatty acids. To reduce cost of the fatty acids, fatty acid productions from raw materials were also summarized. Then, the synthesis mechanism of fatty acids was introduced. We also review recent studies of the metabolic engineering strategies have been developed as efficient tools in oleaginous fungi to overcome the biochemical limit and to improve production efficiency of the special fatty acids. It also can be predictable that metabolic engineering can further enhance biosynthesis of fatty acids and change the storage mode of fatty acids.
Collapse
Affiliation(s)
- Xin-Yue Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bing Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Bei-Chen Huang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Feng-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yue-Qi Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Shao-Geng Zhao
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Min Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Hai-Ying Wang
- Key Laboratory of Sustainable Development of Polar Fishery, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xin-Jun Yu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiao-Yan Liu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, Huaiyin Normal University, Huaian, China
| | - Jing Jiang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhi-Peng Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
27
|
Singh S, Pandey D, Saravanabhupathy S, Daverey A, Dutta K, Arunachalam K. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2022; 207:112100. [PMID: 34619127 DOI: 10.1016/j.envres.2021.112100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial lipids (bacterial, yeast, or algal) production and its utilization as a feedstock for biodiesel production in a sustainable and economical way along with waste degradation is a promising technology. Oleaginous yeasts have demonstrated multiple advantages over algae and bacteria such as high lipid yields, lipid similarity to vegetable oil, and requirement of lesser area for cultivation. Oleaginous yeasts grown on lignocellulosic solid waste as renewable feedstocks have been widely reported and reviewed. Recently, industrial effluents and other liquid wastes have been evaluated as feedstocks for biodiesel production from oleaginous yeasts. The idea of the utilization of wastewater for the growth of oleaginous yeasts for simultaneous wastewater treatment and lipid production is gaining attention among researchers. However, the detailed knowledge on the economic aspects of different process involved during the conversion of oleaginous yeast into lipids hinders its large-scale application. Therefore, this review aims to provide an overview of yeast-derived biodiesel production by utilizing industrial effluents and other liquid wastes as feedstocks. Various technologies for biomass harvesting, lipid extraction and the economic aspects specifically focused on yeast biodiesel production were also analyzed and reported in this review. The utilization of liquid wastes and the incorporation of cost-efficient harvesting and lipid extraction strategy would facilitate large-scale commercialization of biodiesel production from oleaginous yeasts in near future.
Collapse
Affiliation(s)
- Sangeeta Singh
- National Institute of Technology Rourkela, Odisha, 769008, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| | | | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India.
| | - Kasturi Dutta
- National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| |
Collapse
|
28
|
Jach ME, Malm A. Yarrowia lipolytica as an Alternative and Valuable Source of Nutritional and Bioactive Compounds for Humans. Molecules 2022; 27:2300. [PMID: 35408699 PMCID: PMC9000428 DOI: 10.3390/molecules27072300] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022] Open
Abstract
Yarrowia lipolytica, an oleagineous species of yeast, is a carrier of various important nutrients. The biomass of this yeast is an extensive source of protein, exogenous amino acids, bioavailable essenctial trace minerals, and lipid compounds as mainly unsaturated fatty acids. The biomass also contains B vitamins, including vitamin B12, and many other bioactive components. Therefore, Y. lipolytica biomass can be used in food supplements for humans as safe and nutritional additives for maintaining the homeostasis of the organism, including for vegans and vegetarians, athletes, people after recovery, and people at risk of B vitamin deficiencies.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, Chodźki Street 1, 20-093 Lublin, Poland;
| |
Collapse
|
29
|
Li M, Alotaibi MKH, Li L, Abomohra AEF. Enhanced waste glycerol recycling by yeast for efficient biodiesel production: Towards waste biorefinery. BIOMASS AND BIOENERGY 2022; 159:106410. [DOI: 10.1016/j.biombioe.2022.106410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
Chaturvedi S, Bhattacharya A, Rout PK, Nain L, Khare SK. An Overview of Enzymes and Rate-Limiting Steps Responsible for Lipid Production in Oleaginous Yeast. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Prasant K. Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Lata Nain
- Division of Microbiology, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Sunil K. Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| |
Collapse
|
31
|
Jach ME, Serefko A, Ziaja M, Kieliszek M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022; 12:63. [PMID: 35050185 PMCID: PMC8780597 DOI: 10.3390/metabo12010063] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, the awareness and willingness of consumers to consume healthy food has grown significantly. In order to meet these needs, scientists are looking for innovative methods of food production, which is a source of easily digestible protein with a balanced amino acid composition. Yeast protein biomass (single cell protein, SCP) is a bioavailable product which is obtained when primarily using as a culture medium inexpensive various waste substrates including agricultural and industrial wastes. With the growing population, yeast protein seems to be an attractive alternative to traditional protein sources such as plants and meat. Moreover, yeast protein biomass also contains trace minerals and vitamins including B-group. Thus, using yeast in the production of protein provides both valuable nutrients and enhances purification of wastes. In conclusion, nutritional yeast protein biomass may be the best option for human and animal nutrition with a low environmental footprint. The rapidly evolving SCP production technology and discoveries from the world of biotechnology can make a huge difference in the future for the key improvement of hunger problems and the possibility of improving world food security. On the market of growing demand for cheap and environmentally clean SCP protein with practically unlimited scale of production, it may soon become one of the ingredients of our food. The review article presents the possibilities of protein production by yeast groups with the use of various substrates as well as the safety of yeast protein used as food.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki Street 4a, 20-093 Lublin, Poland;
| | - Maria Ziaja
- Institute of Physical Culture Studies, Medical College, University of Rzeszów, Cicha Street 2a, 35-326 Rzeszów, Poland;
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska Street 159C, 02-776 Warsaw, Poland
| |
Collapse
|
32
|
Wang S, Wan W, Wang Z, Zhang H, Liu H, Arunakumara KKIU, Cui Q, Song X. A Two-Stage Adaptive Laboratory Evolution Strategy to Enhance Docosahexaenoic Acid Synthesis in Oleaginous Thraustochytrid. Front Nutr 2021; 8:795491. [PMID: 35036411 PMCID: PMC8759201 DOI: 10.3389/fnut.2021.795491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Thraustochytrid is a promising algal oil resource with the potential to meet the demand for docosahexaenoic acid (DHA). However, oils with high DHA content produced by genetic modified thraustochytrids are not accepted by the food and pharmaceutical industries in many countries. Therefore, in order to obtain non-transgenic strains with high DHA content, a two-stage adaptive laboratory evolution (ALE) strategy was applied to the thraustochytrid Aurantiochytrium sp. Heavy-ion irradiation technique was first used before the ALE to increase the genetic diversity of strains, and then two-step ALE: low temperature based ALE and ACCase inhibitor quizalofop-p-ethyl based ALE were employed in enhancing the DHA production. Using this strategy, the end-point strain E-81 with a DHA content 51% higher than that of the parental strain was obtained. The performance of E-81 strain was further analyzed by component analysis and quantitative real-time PCR. The results showed that the enhanced in lipid content was due to the up-regulated expression of key enzymes in lipid accumulation, while the increase in DHA content was due to the increased transcriptional levels of polyunsaturated fatty acid synthase. This study demonstrated a non-genetic approach to enhance lipid and DHA content in non-model industrial oleaginous strains.
Collapse
Affiliation(s)
- Sen Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Weijian Wan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Zhuojun Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huidan Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Huan Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - K. K. I. U. Arunakumara
- Department of Crop Science, Faculty of Agriculture, University of Ruhuna, Kamburupitiya, Sri Lanka
| | - Qiu Cui
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojin Song
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Shandong Energy Institute, Qingdao, China
- Qingdao New Energy Shandong Laboratory, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
- Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
33
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
34
|
Chang L, Tang X, Zhang H, Chen YQ, Chen H, Chen W. SNF1β-Modulated Glucose Uptake and the Balance between Polyunsaturated Fatty Acids and Carbohydrates in Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13849-13858. [PMID: 34779198 DOI: 10.1021/acs.jafc.1c05971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sucrose nonfermenting protein kinase 1 (SNF1) complex is an important metabolic regulator in fungi that is critical to cell metabolism and stress response. In this study, the role of an SNF1 β-subunit in the oleaginous fungus Mortierella alpina (MaSip2) was investigated. The MaSip2 contained a glycogen-binding domain and a conserved SNF1-complex interaction region; its transcriptional level during lipogenesis shared high consistency with a previously reported SNF1 γ-subunit (MaSnf4). Overexpression of MaSip2 in M. alpina significantly promoted glucose uptake and resulted in 34.1% increased total biomass, leading to 44.8% increased arachidonic acid yield after 7 day fermentation. MaSip2 also regulated the balance between polyunsaturated fatty acids and carbohydrates in M. alpina. Intracellular metabolite analysis revealed increased carbohydrate-related metabolite accumulation in MaSip2 overexpression strains. On the contrary, knockdown of MaSip2 increased the total fatty acid unsaturation degree, especially under low-temperature conditions. This research improved our knowledge of SNF1 complex in M. alpina and provided a target gene for enhancing glucose utilization and modulating fatty acid composition for better application of oleaginous fungi.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
35
|
Chen L, Yan W, Qian X, Chen M, Zhang X, Xin F, Zhang W, Jiang M, Ochsenreither K. Increased Lipid Production in Yarrowia lipolytica from Acetate through Metabolic Engineering and Cosubstrate Fermentation. ACS Synth Biol 2021; 10:3129-3138. [PMID: 34714052 DOI: 10.1021/acssynbio.1c00405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconversion of acetate, a byproduct generated in industrial processes, into microbial lipids using oleaginous yeasts offers a promising alternative for the economic utilization of acetate-containing waste streams. However, high acetate concentrations will inhibit microbial growth and metabolism. In this study, the acetate utilization capability of Yarrowia lipolytica PO1f was successively improved by overexpressing the key enzyme of acetyl-CoA synthetase (ACS), which resulted in an accumulation of 9.2% microbial lipids from acetate in shake flask fermentation. By further overexpressing the second key enzymes of acetyl-CoA carboxylase (ACC1) and fatty acid synthase (FAS) in Y. lipolytica, the lipid content was increased to 25.7% from acetate. Finally, the maximum OD600 of 29.2 and a lipid content of 41.7% were obtained with the engineered strain by the adoption of cosubstrate (glycerol and acetate) fed-batch fermentation, which corresponded to an increase of 68 and 95%, respectively. These results presented a promising strategy for economic and efficient microbial lipid production from the waste acetate.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Xiujuan Qian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Minjiao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Xiaoyu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 30, Puzhu Road South, Nanjing 211816, China
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences, Section II: Technical Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|
36
|
Metabolic Regulation of Sugar Assimilation for Lipid Production in Aspergillus oryzae BCC7051 through Comparative Transcriptome Perspective. BIOLOGY 2021; 10:biology10090885. [PMID: 34571762 PMCID: PMC8467706 DOI: 10.3390/biology10090885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Oleaginous fungi are a promising candidate to produce microbial lipids as alternative sources for industrial applications. As lipids are intracellular metabolites with dynamic traits, the fungal ability in utilizing carbon sources for biomass and lipid production is significant in terms of production yield and economic feasibility. This study aimed to explore the metabolic regulation in lipogenesis of oleaginous Aspergillus oryzae BCC7051 at the transcriptional level. Through comparative transcriptome analysis, a set of differentially expressed genes (DEGs) between the xylose- and glucose-grown cultures (C5 and C6 cultures) at fast-growing and lipid-accumulating stages were identified and functionally categorized into transporter proteins and cellular processes. Combining with the growth and lipid phenotypes, the transcriptome results pointed to a crucial link between sugar assimilation, energy, lipid, and other metabolisms in A. oryzae for leveraging the metabolic flux from xylose to fatty acid and lipid biosynthesis in render the oleaginous features. This study provides a remarkable insight in guiding strain optimization and bioprocess development using renewable feedstocks from agroindustrial residues. Abstract Microbial lipid production with cost effectiveness is a prerequisite for the oleochemical sector. In this work, genome-wide transcriptional responses on the utilization of xylose and glucose in oleaginous Aspergillus oryzae were studied with relation to growth and lipid phenotypic traits. Comparative analysis of the active growth (t1) and lipid-accumulating (t2) stages showed that the C5 cultures efficiently consumed carbon sources for biomass and lipid production comparable to the C6 cultures. By pairwise comparison, 599 and 917 differentially expressed genes (DEGs) were identified in the t1 and t2 groups, respectively, in which the consensus DEGs were categorized into polysaccharide-degrading enzymes, membrane transports, and cellular processes. A discrimination in transcriptional responses of DEGs set was also found in various metabolic genes, mostly in carbohydrate, amino acid, lipid, cofactors, and vitamin metabolisms. Although central carbohydrate metabolism was shared among the C5 and C6 cultures, the metabolic functions in acetyl-CoA and NADPH generation, and biosynthesis of terpenoid backbone, fatty acid, sterol, and amino acids were allocated for leveraging biomass and lipid production through at least transcriptional control. This study revealed robust metabolic networks in the oleaginicity of A. oryzae governing glucose/xylose flux toward lipid biosynthesis that provides meaningful hints for further process developments of microbial lipid production using cellulosic sugar feedstocks.
Collapse
|
37
|
Wang H, Wang C, Yuan W, Chen H, Lu W, Zhang H, Chen YQ, Zhao J, Chen W. The role of phenylalanine hydroxylase in lipogenesis in the oleaginous fungus Mortierella alpina. MICROBIOLOGY-SGM 2021; 167. [PMID: 34402775 DOI: 10.1099/mic.0.001062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phenylalanine hydroxylase (PAH) catalyses the irreversible hydroxylation of phenylalanine to tyrosine, which is the rate-limiting reaction in phenylalanine metabolism in animals. A variety of polyunsaturated fatty acids can be synthesized by the lipid-producing fungus Mortierella alpina, which has a wide range of industrial applications in the production of arachidonic acid. In this study, RNA interference (RNAi) with the gene PAH was used to explore the role of phenylalanine hydroxylation in lipid biosynthesis in M. alpina. Our results indicated that PAH knockdown decreased the PAH transcript level by approximately 55% and attenuated cellular fatty acid biosynthesis. Furthermore, the level of NADPH, which is a critical reducing agent and the limiting factor in lipogenesis, was decreased in response to PAH RNAi, in addition to the downregulated transcription of other genes involved in NADPH production. Our study indicates that PAH is part of an overall enzymatic and regulatory mechanism supplying NADPH required for lipogenesis in M. alpina.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chunmei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Weiwei Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, PR China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| |
Collapse
|
38
|
Wei LJ, Cao X, Liu JJ, Kwak S, Jin YS, Wang W, Hua Q. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of PEX10 and URE2. Appl Environ Microbiol 2021; 87:e0048121. [PMID: 34132586 PMCID: PMC8357297 DOI: 10.1128/aem.00481-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene, as the yeast provides ample storage space for hydrophobic products. Here, we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica. First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG and HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 (encoding diacylglycerol acyltransferase) and deleting PEX10 (for peroxisomal membrane E3 ubiquitin ligase). Third, we deleted URE2 (coding for a transcriptional regulator in charge of nitrogen catabolite repression [NCR]) to induce lipid accumulation regardless of the carbon-to-nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g dry cell weight) than the parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in Saccharomyces cerevisiae, and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica. URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells in boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xuan Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Citrate-Mediated Acyl-CoA Synthesis Is Required for the Promotion of Growth and Triacylglycerol Production in Oleaginous Yeast Lipomyces starkeyi. Microorganisms 2021; 9:microorganisms9081693. [PMID: 34442772 PMCID: PMC8400019 DOI: 10.3390/microorganisms9081693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022] Open
Abstract
The oleaginous yeast Lipomyces starkeyi is an excellent producer of triacylglycerol (TAG) as a feedstock for biodiesel production. To understand the regulation of TAG synthesis, we attempted to isolate mutants with decreased lipid productivity and analyze the expression of TAG synthesis-related genes in this study. A mutant with greatly decreased lipid productivity, sr22, was obtained by an effective screening method using Percoll density gradient centrifugation. The expression of citrate-mediated acyl-CoA synthesis-related genes (ACL1, ACL2, ACC1, FAS1, and FAS2) was decreased in the sr22 mutant compared with that of the wild-type strain. Together with a notion that L. starkeyi mutants with increased lipid productivities had increased gene expression, there was a correlation between the expression of these genes and TAG synthesis. To clarify the importance of citrate-mediated acyl-CoA synthesis pathway on TAG synthesis, we also constructed a strain with no ATP-citrate lyase responsible for the first reaction of citrate-mediated acyl-CoA synthesis and investigated the importance of ATP-citrate lyase on TAG synthesis. The ATP-citrate lyase was required for the promotion of cell growth and TAG synthesis in a glucose medium. This study may provide opportunities for the development of an efficient TAG synthesis for biodiesel production.
Collapse
|
40
|
Mavrommati M, Daskalaki A, Papanikolaou S, Aggelis G. Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnol Adv 2021; 54:107795. [PMID: 34246744 DOI: 10.1016/j.biotechadv.2021.107795] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Adaptive laboratory evolution (ALE) is an innovative approach for the generation of evolved microbial strains with desired characteristics, by implementing the rules of natural selection as presented in the Darwinian Theory, on the laboratory bench. New as it might be, it has already been used by several researchers for the amelioration of a variety of characteristics of widely used microorganisms in biotechnology. ALE is used as a tool for the deeper understanding of the genetic and/or metabolic pathways of evolution. Another important field targeted by ALE is the manufacturing of products of (high) added value, such as ethanol, butanol and lipids. In the current review, we discuss the basic principles and techniques of ALE, and then we focus on studies where it has been applied to bacteria, fungi and microalgae, aiming to improve their performance to biotechnological procedures and/or inspect the genetic background of evolution. We conclude that ALE is a promising and efficacious method that has already led to the acquisition of useful new microbiological strains in biotechnology and could possibly offer even more interesting results in the future.
Collapse
Affiliation(s)
- Maria Mavrommati
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece; Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Alexandra Daskalaki
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Aggelis
- Unit of Microbiology, Department of Biology, Division of Genetics, Cell Biology and Development, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
41
|
Chang L, Lu H, Chen H, Tang X, Zhao J, Zhang H, Chen YQ, Chen W. Lipid metabolism research in oleaginous fungus Mortierella alpina: Current progress and future prospects. Biotechnol Adv 2021; 54:107794. [PMID: 34245810 DOI: 10.1016/j.biotechadv.2021.107794] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The oleaginous fungus Mortierella alpina has distinct advantages in long-chain PUFAs production, and it is the only source for dietary arachidonic acid (ARA) certificated by FDA and European Commission. This review provides an overall introduction to M. alpina, including its major research methods, key factors governing lipid biosynthesis, metabolic engineering and omics studies. Currently, the research interests in M. alpina focus on improving lipid yield and fatty acid desaturation degree by enhancing fatty acid precursors and the reducing power NADPH, and genetic manipulation on PUFAs synthetic pathways is carried to optimise fatty acid composition. Besides, multi-omics studies have been applied to elucidate the global regulatory mechanism of lipogenesis in M. alpina. However, research challenges towards achieving a lipid cell factory lie in strain breeding and cost control due to the coenocytic mycelium, long fermentation period and insufficient conversion rate from carbon to lipid. We also proposed future research goals based on a multilevel regulating strategy: obtaining ideal chassis by directional evolution and high-throughput screening; rewiring central carbon metabolism and inhibiting competitive pathways by multi-gene manipulation system to enhance carbon to lipid conversion rate; optimisation of protein function based on post-translational modification; application of dynamic fermentation strategies suitable for different fermentation phases. By reviewing the comprehensive research progress of this oleaginous fungus, we aim to further comprehend the fungal lipid metabolism and provide reference information and guidelines for the exploration of microbial oils from the perspectives of fundamental research to industrial application.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, PR China; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
42
|
Duan L, Okamoto K. Mitochondrial dynamics and degradation in the oleaginous yeast Lipomyces starkeyi. Genes Cells 2021; 26:627-635. [PMID: 34085353 DOI: 10.1111/gtc.12875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022]
Abstract
Emerging evidence implicates the vital role of mitochondria in lipid consumption and storage, highlighting the intimate link between energy production and saving. Although formation of giant lipid droplets, which is the key hallmark of the oleaginous yeast Lipomyces starkeyi, appears to be regulated in response to changes in mitochondrial shape and metabolism, technical limitations of genetic manipulation have become an obstacle to uncover the mitochondrial behavior in this nonconventional yeast. Here, we established an L. starkeyi strain stably expressing a fluorescent marker for monitoring mitochondrial morphology and degradation and found that mitochondria are mostly fragmented in L. starkeyi cells under fermentable, nonfermentable, and nitrogen depletion conditions. Notably, a fraction of mitochondria-specific fluorescent signals was localized to the vacuole, a lytic organelle in yeast, indicating degradation of mitochondria in those cells. This possible catabolic event was more predominant in cells under nutrient-poor conditions than that in cells under nutrient-rich conditions, concomitantly with lipid droplet formation. Collectively, our studies provide a new tool to investigate mitochondrial dynamics in L. starkeyi and decipher the potential role of mitochondrial degradation in lipid metabolism.
Collapse
Affiliation(s)
- Lan Duan
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
43
|
Lopes M, Miranda SM, Costa AR, Pereira AS, Belo I. Yarrowia lipolytica as a biorefinery platform for effluents and solid wastes valorization - challenges and opportunities. Crit Rev Biotechnol 2021; 42:163-183. [PMID: 34157916 DOI: 10.1080/07388551.2021.1931016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Due to its physiological and enzymatic features, Yarrowia lipolytica produces several valuable compounds from a wide range of substrates. Appointed by some authors as an industrial workhorse, Y. lipolytica has an extraordinary ability to use unrefined and complex low-cost substrates as carbon and nitrogen sources, aiding to reduce the waste surplus and to produce added-value compounds in a cost-effective way. Dozens of review papers regarding Y. lipolytica have been published till now, proving the interest that this yeast arouses in the scientific community. However, most of them are focused on metabolic pathways involved in substrates assimilation and product formation, or the development of synthetic biology tools in order to obtain engineered strains for biotechnological applications. This paper provides an exhaustive and up-to-date revision on the application of Y. lipolytica to valorize liquid effluents and solid wastes and its role in developing cleaner biotechnological approaches, aiming to boost the circular economy. Firstly, a general overview about Y. lipolytica is introduced, describing its intrinsic features and biotechnological applications. Then, an extensive survey of the literature regarding the assimilation of oily wastes (waste cooking oils, oil cakes and olive mill wastewaters), animal fat wastes, hydrocarbons-rich effluents, crude glycerol and agro-food wastes by Y. lipolytica strains will be discussed. This is the first article that brings together the environmental issue of all such residues and their valorization as feedstock for valuable compounds production by Y. lipolytica. Finally, it will demonstrate the potential of this non-conventional yeast to be used as a biorefinery platform.
Collapse
Affiliation(s)
- Marlene Lopes
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Sílvia M Miranda
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana R Costa
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana S Pereira
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Isabel Belo
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
44
|
Byrtusová D, Szotkowski M, Kurowska K, Shapaval V, Márová I. Rhodotorula kratochvilovae CCY 20-2-26-The Source of Multifunctional Metabolites. Microorganisms 2021; 9:1280. [PMID: 34208382 PMCID: PMC8231246 DOI: 10.3390/microorganisms9061280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Multifunctional biomass is able to provide more than one valuable product, and thus, it is attractive in the field of microbial biotechnology due to its economic feasibility. Carotenogenic yeasts are effective microbial factories for the biosynthesis of a broad spectrum of biomolecules that can be used in the food and feed industry and the pharmaceutical industry, as well as a source of biofuels. In the study, we examined the effect of different nitrogen sources, carbon sources and CN ratios on the co-production of intracellular lipids, carotenoids, β-glucans and extracellular glycolipids. Yeast strain R. kratochvilovae CCY 20-2-26 was identified as the best co-producer of lipids (66.7 ± 1.5% of DCW), exoglycolipids (2.42 ± 0.08 g/L), β-glucan (11.33 ± 1.34% of DCW) and carotenoids (1.35 ± 0.11 mg/g), with a biomass content of 15.2 ± 0.8 g/L, by using the synthetic medium with potassium nitrate and mannose as a carbon source. It was shown that an increased C/N ratio positively affected the biomass yield and production of lipids and β-glucans.
Collapse
Affiliation(s)
- Dana Byrtusová
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Martin Szotkowski
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Klára Kurowska
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway; (D.B.); (V.S.)
| | - Ivana Márová
- Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (M.S.); (K.K.)
| |
Collapse
|
45
|
Jach ME, Sajnaga E, Janeczko M, Juda M, Kochanowicz E, Baj T, Malm A. Production of enriched in B vitamins biomass of Yarrowia lipolytica grown in biofuel waste. Saudi J Biol Sci 2021; 28:2925-2932. [PMID: 34025170 PMCID: PMC8117029 DOI: 10.1016/j.sjbs.2021.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/18/2020] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Yarrowia lipolytica as an oleaginous yeast is capable of growing in various non-conventional hydrophobic substrate types, especially industrial wastes. In this study, the content of thiamine (vitamin B1), riboflavin (vitamin B2), pyridoxine (vitamin B6), biotin (vitamin B7) and folic acid (vitamin B9) in the wet biomass of Y. lipolytica strains cultivated in biofuel waste (SK medium), compared to the standard laboratory YPD medium, was assessed. Additionally, the biomass of Y. lipolytica A-101 grown in biofuel waste (SK medium) was dried and examined for B vitamins concentration according to the recommended microbial methods by AOAC Official Methods. The mean values of these vitamins per 100 g of dry weight of Y. lipolytica grown in biofuel waste (SK medium) were as follows: thiamine 1.3 mg/100 g, riboflavin 5.3 mg/100 g, pyridoxine 4.9 mg/100 g, biotin 20.0 µg/100 g, and folic acid 249 µg/100 g. We have demonstrated that the dried biomass is a good source of B vitamins which can be used as nutraceuticals to supplement human diet, especially for people at risk of B vitamin deficiencies in developed countries. Moreover, the biodegradation of biofuel waste by Y. lipolytica is desired for environmental protection.
Collapse
Affiliation(s)
- Monika Elżbieta Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 1I Konstantynów Street, 20-708 Lublin, Poland
| | - Ewa Sajnaga
- Laboratory of Biocontrol, Application and Production of EPN, Centre for Interdisciplinary Research, The John Paul II Catholic University of Lublin, 1J Konstantynów Street, 20-708 Lublin, Poland
| | - Monika Janeczko
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 1I Konstantynów Street, 20-708 Lublin, Poland
| | - Marek Juda
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 1I Konstantynów Street, 20-708 Lublin, Poland
| | - Tomasz Baj
- Chair and Department of Pharmacognosy, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
46
|
Chen H, Chen H, Lu H, Tang X, Zhang H, Chen YQ, Chen W. Carbohydrate analysis of Mortierella alpina by colorimetry and HPLC-ELSD to reveal accumulation differences of sugar and lipid. Biotechnol Lett 2021; 43:1289-1301. [PMID: 33864523 DOI: 10.1007/s10529-021-03120-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To establish reliable methods for the extraction and quantification of the total carbohydrate and intracellular saccharides from Mortierella alpina and study the changes between carbohydrate and lipid in fermentation process. RESULTS The extraction of mycelia with HCl following a photometric phenol-sulphuric acid reaction was identified as an optimal method for total carbohydrate analysis in Mortierella alpina, which the extraction efficiency performed 1.1-3.6 fold than other five methods. The total carbohydrate content increased from initial 19.26 to 25.86% during early fermentation process and declined gradually thereafter, while the fatty acid was increasing from 8.47 to 31.03%. For separation and qualitative estimation of intracellular saccharides, the acetonitrile/water freeze-thaw method for extraction and Sugar-Pak I column for separation proved to be possible. With the glucose rapidly decreasing at the beginning of growth, the trehalose accumulated rapidly from 1.63 to 5.04% and then decreased slightly but maintain above 4% of dry biomass. CONCLUSIONS This work established comprehensive carbohydrate extraction and analysis methods of Mortierella alpina and identified the main saccharide in fermentation process which indicated that the accumulation of fatty acids was related to the change of intracellular carbohydrate content.
Collapse
Affiliation(s)
- Hanqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China. .,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Hengqian Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048, People's Republic of China
| |
Collapse
|
47
|
Mihreteab M, Stubblefield BA, Gilbert ES. Enhancing polypropylene bioconversion and lipogenesis by Yarrowia lipolytica using a chemical/biological hybrid process. J Biotechnol 2021; 332:94-102. [PMID: 33838158 DOI: 10.1016/j.jbiotec.2021.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 11/28/2022]
Abstract
Plastic waste can serve as a feedstock for microbial bioconversion using a chemical/biological hybrid strategy. We developed a polypropylene (PP) upcycling process that coupled pyrolysis with bioconversion by the oleaginous yeast Yarrowia lipolytica. Using virgin PP, we optimized pH, inoculum density, C/N ratio, and osmolarity and increased the fatty acid titer nearly four-fold to 1.9 g L-1, with 41 percent cellular fatty acid content, the highest content reported to date for plastic-to-lipid microbial bioconversion. The highest fatty acid titer was achieved with an inoculum density of 3 (OD 600 nm), pH = 6.0 and C/N ratio of 80:1. Increasing the medium osmolarity by adding sodium chloride adversely affected cell growth and did not improve the fatty acid titer. The maximum fatty acid titer occurred under conditions that balanced cell growth versus lipogenesis. Using postconsumer PP, the fatty acid titer was significantly lower (0.13 g L-1). Overall, the work demonstrates the potential and the challenges associated with microbial bioconversion of plastics.
Collapse
Affiliation(s)
- Merhawi Mihreteab
- Biology Department, Georgia State University, Atlanta, GA, 30302-4010, USA.
| | | | - Eric S Gilbert
- Biology Department, Georgia State University, Atlanta, GA, 30302-4010, USA.
| |
Collapse
|
48
|
Zhao Y, Zhao Y, Fu R, Zhang T, Li J, Zhang J. Transcriptomic and metabolomic profiling of a Rhodotorula color mutant to improve its lipid productivity in fed-batch fermentation. World J Microbiol Biotechnol 2021; 37:77. [PMID: 33792794 DOI: 10.1007/s11274-021-03043-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Lipids produced by oleaginous microorganisms enrich the supply of feedstock for bio-fuel. In this study, a mutant (Mut) obtained by UV-nitrosoguanidine mutagenesis turned its colony color from orange-red to light-yellow and showed higher lipid productivity at 37 °C than the original strain Rhodotorula sp. U13N3 (Rht) in the glycerol medium. The metabolic changes between Mut and Rht in batch fermentation were investigated by transcriptomic and metabolomic profiling at the biomass accumulation (30 h) and lipid production (96 h) stages. The average base number in each strain was 5.80 × 109 ± 0.38 × 109 bp (mean ± SD) with 62.43% ± 0.13% GC ratio, and 7499 unigenes were assembled after Illumina sequencing. Moreover, 33 metabolites were quantified by 1H NMR-based profiling. The multi-omics results demonstrated that Mut showed increased glycerol transport and utilization capabilities especially at the first stage (30 h). Then the carbon flux shifted from the TCA cycle to lipid production (96 h). The increased lipid productivity of Mut was partially attributed to the down-regulation of mannitol biosynthesis. However, the mechanism for color change was elusive. At 96 h, the low level of cytosol glycerol probably restricted the lipid production. As a result, supplementation of glycerol in fed-batch fermentation remarkably improved the biomass, lipid production, and lipid content to 34.60 g/L, 25.72 g/L, and 74.3% (w/w dcw), respectively. The cell morphology implied that excessively prolonging the fermentation time was detrimental to the final lipid yield due to cell breakage. In conclusion, the Rhodotorula mutant provided a candidate strain for lipid production with glycerol as the carbon source.
Collapse
Affiliation(s)
- Yihan Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Renjie Fu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Tao Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
49
|
Kieliszek M, Dourou M. Effect of Selenium on the Growth and Lipid Accumulation of Yarrowia lipolytica Yeast. Biol Trace Elem Res 2021; 199:1611-1622. [PMID: 32632749 PMCID: PMC7886723 DOI: 10.1007/s12011-020-02266-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
Nowadays, there is an increase attention on the effect of selenium (Se) on metabolic processes of microorganisms. Strains belonging to the genus of Yarrowia are of great biotechnological interest for various industries. In this study, we evaluated the effect of 10 mg/L of Se on the growth and lipid production of two Yarrowia lipolytica strains: the ACA DC 50109 and one more with increased oleagenicity, derived after ALE methodology (referred here as Y. lipolytica ALE_70). The presence of Se in the growth medium negatively affected both cell mass production and total lipid accumulation, for both Y. lipolytica strains. Fractionation of total lipids showed an inhibition on neutral lipid (NL) synthesis and consequently, an increase of polar lipids (glycolipids plus sphingolipids, and phospholipids) on the lipids of the Se-enriched ACA DC 50109 strain; however, the NL/polar ratio of the Se-enriched ALE_70 indicated that Se, apart from the inhibition of NL synthesis, provoked also the accumulation of polar lipids in this strain. In addition, the fatty acid (FA) composition was differently affected by Se. Se-enriched total lipids of the ALE_70 strain were enriched in linoleic acid (C18:2 n-6), which resulted in increase of the unsaturated index. On the other hand, Se-enriched lipids of the ACA DC 50109 strain were more saturated, as the percentage of palmitic (C16:0) and stearic (C18:0) acids increased in the total FAs. Moreover, it seems that Se influenced the activity or the expression of desaturases and elongase in both strains. Finally, the supplementation of growth medium with Se affected cell morphology, as well as the size and distribution of lipid droplets inside the yeast cells. According to our opinion, Se caused stress conditions and the consequence of that was the occurrence of metabolic disorders that affected cell mass, lipid content, and/or morphological structures. The results of the present study suggest that further research should be carried out to understand the background of the lipogenesis process in yeast cells cultured under stress conditions.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Marianna Dourou
- Unit of Microbiology, Division of Genetics, Cell and Developmental Biology, Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
50
|
Tomás-Pejó E, Morales-Palomo S, González-Fernández C. Microbial lipids from organic wastes: Outlook and challenges. BIORESOURCE TECHNOLOGY 2021; 323:124612. [PMID: 33418352 DOI: 10.1016/j.biortech.2020.124612] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Microbial lipids have recently drawn a lot of attention as renewable sources for biochemicals production. Strong research efforts have been addressed to efficiently use organic wastes as carbon source for microbial lipids, which would definitively increase the profitability of the production process and boost a bio-based economy. This review compiles interesting traits of oleaginous microorganisms and highlights current trends on microbial- and process-oriented approaches to maximize microbial oil production from inexpensive substrates like lignocellulosic sugars, volatile fatty acids and glycerol. Furthermore, downstream processes such as cell harvesting or lipid extraction, that are decisive for the cost-effectiveness of the process, are discussed. To underpin microbial oils within the so demanded circular economy, associated challenges, recent advances and possible industrial applications that are also identified in this review.
Collapse
Affiliation(s)
- E Tomás-Pejó
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain.
| | - S Morales-Palomo
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| | - C González-Fernández
- IMDEA Energy, Biotechnological Processes Unit, Av. Ramón de la Sagra, 29835 Móstoles, Madrid, Spain
| |
Collapse
|