1
|
Zhang Y, Liang Y, Xiang H, Li P, Zhan D, Ding D, Du S, Ding Y, Liu W, Qiu X, Feng H. Critical impact of pressure regulation on carbon dioxide biosynthesis. BIORESOURCE TECHNOLOGY 2024; 413:131445. [PMID: 39278365 DOI: 10.1016/j.biortech.2024.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon dioxide (CO2) biosynthesis is a promising alternative to traditional chemical synthesis. However, its application in engineering is hampered by poor gas mass transfer rates. Pressurization is an effective method to enhance mass transfer and increase synthesis yield, although the underlying mechanisms remain unclear. This review examines the effects of high pressure on CO2 biosynthesis, elucidating the mechanisms behind yield enhancement from three perspectives: microbial physiological traits, gas mass transfer and synthetic pathways. The critical role of pressurization in improving microbial activity and gas transfer efficiency is emphasized, with particular attention to maintaining pressure within microbial tolerance limits to maximize yield without compromising cell structure integrity.
Collapse
Affiliation(s)
- Yanqing Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Yuxiang Liang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Hai Xiang
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Pingli Li
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Dongqing Zhan
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Danna Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Shuangwei Du
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Yangcheng Ding
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Wen Liu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Xiawen Qiu
- College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China
| | - Huajun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, China; College of Environment and Resources, College of Carbon Neutral, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang 311300, China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China.
| |
Collapse
|
2
|
Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Chemical Structures and Biological Activities. Molecules 2024; 29:4771. [PMID: 39407699 PMCID: PMC11477647 DOI: 10.3390/molecules29194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Phenazine natural products are a class of colored nitrogen-containing heterocycles produced by various microorganisms mainly originating from marine and terrestrial sources. The tricyclic ring molecules show various chemical structures and the decorating groups dedicate extensive pharmacological activities, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal. These secondary metabolites provide natural materials for screening and developing medicinal compounds in the field of medicine and agriculture due to biological activities. The review presents a systematic summary of the literature on natural phenazines in the past decade, including over 150 compounds, such as hydroxylated, O-methylated, N-methylated, N-oxide, terpenoid, halogenated, glycosylated phenazines, saphenic acid derivatives, and other phenazine derivatives, along with their characterized antimicrobial and anticancer activities. This review may provide guidance for the investigation of phenazines in the future.
Collapse
Affiliation(s)
- Wei Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Chaozhi Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Huai Su
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Feifei Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| |
Collapse
|
3
|
Deng RX, Li HL, Sheng CL, Wang W, Hu HB, Zhang XH. Characterization of Lomofungin Gene Cluster Enables the Biosynthesis of Related Phenazine Derivatives. ACS Synth Biol 2024; 13:2982-2991. [PMID: 39250825 DOI: 10.1021/acssynbio.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Phenazine-based small molecules are nitrogen-containing heterocyclic compounds with diverse bioactivities and electron transfer properties that exhibit promising applications in pharmaceutical and electrochemical industries. However, the biosynthetic mechanism of highly substituted natural phenazines remains poorly understood. In this study, we report the direct cloning and heterologous expression of the lomofungin biosynthetic gene cluster (BGC) from Streptomyces lomondensis S015. Reconstruction and overexpression of the BGCs in Streptomyces coelicolor M1152 resulted in eight phenazine derivatives including two novel hybrid phenazine metabolites, and the biosynthetic pathway of lomofungin was proposed. Furthermore, gene deletion suggested that NAD(P)H-dependent oxidoreductase gene lomo14 is a nonessential gene in the biosynthesis of lomofungin. Cytotoxicity evaluation of the isolated phenazines and lomofungin was performed. Specifically, lomofungin shows substantial inhibition against two human cancer cells, HCT116 and 5637. These results provide insights into the biosynthetic mechanism of lomofungin, which will be useful for the directed biosynthesis of natural phenazine derivatives.
Collapse
Affiliation(s)
- Ru-Xiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Ling Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao-Lan Sheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Kim HJ, Choi SS, Kim ES. CRISPR-Driven Genome Engineering for Chorismate- and Anthranilate-Accumulating Corynebacterium Cell Factories. J Microbiol Biotechnol 2023; 33:1370-1375. [PMID: 37463859 PMCID: PMC10619553 DOI: 10.4014/jmb.2305.05031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023]
Abstract
In this study, we aimed to enhance the accumulation of chorismate (CHR) and anthranilate (ANT), key intermediates in the shikimate pathway, by modifying a shikimate over-producing recombinant strain of Corynebacterium glutamicum [19]. To achieve this, we utilized a CRISPR-driven genome engineering approach to compensate for the deletion of shikimate kinase (AroK) as well as ANT synthases (TrpEG) and ANT phosphoribosyltransferase (TrpD). In addition, we inhibited the CHR metabolic pathway to induce CHR accumulation. Further, to optimize the shikimate pathway, we overexpressed feedback inhibition-resistant Escherichia coli AroG and AroH genes, as well as C. glutamicum AroF and AroB genes. We also overexpressed QsuC and substituted shikimate dehydrogenase (AroE). In parallel, we optimized the carbon metabolism pathway by deleting the gntR family transcriptional regulator (IolR) and overexpressing polyphosphate/ATP-dependent glucokinase (PpgK) and glucose kinase (Glk). Moreover, acetate kinase (Ack) and phosphotransacetylase (Pta) were eliminated. Through our CRISPR-driven genome re-design approach, we successfully generated C. glutamicum cell factories capable of producing up to 0.48 g/l and 0.9 g/l of CHR and ANT in 1.3 ml miniature culture systems, respectively. These findings highlight the efficacy of our rational cell factory design strategy in C. glutamicum, which provides a robust platform technology for developing high-producing strains that synthesize valuable aromatic compounds, particularly those derived from the shikimate pathway metabolites.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
5
|
Ding Q, Ye C. Microbial engineering for shikimate biosynthesis. Enzyme Microb Technol 2023; 170:110306. [PMID: 37598506 DOI: 10.1016/j.enzmictec.2023.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Shikimate, a precursor to the antiviral drug oseltamivir (Tamiflu®), can influence aromatic metabolites and finds extensive use in antimicrobial, antitumor, and cardiovascular applications. Consequently, various strategies have been developed for chemical synthesis and plant extraction to enhance shikimate biosynthesis, potentially impacting environmental conditions, economic sustainability, and separation and purification processes. Microbial engineering has been developed as an environmentally friendly approach for shikimate biosynthesis. In this review, we provide a comprehensive summary of microbial strategies for shikimate biosynthesis. These strategies primarily include chassis construction, biochemical optimization, pathway remodelling, and global regulation. Furthermore, we discuss future perspectives on shikimate biosynthesis and emphasize the importance of utilizing advanced metabolic engineering tools to regulate microbial networks for constructing robust microbial cell factories.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
6
|
Bo T, Wu C, Wang Z, Jiang H, Wang F, Chen N, Li Y. Multiple Metabolic Engineering Strategies to Improve Shikimate Titer in Escherichia coli. Metabolites 2023; 13:747. [PMID: 37367905 DOI: 10.3390/metabo13060747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Shikimate is a valuable chiral precursor for synthesizing oseltamivir (Tamiflu®) and other chemicals. High production of shikimate via microbial fermentation has attracted increasing attention to overcome the unstable and expensive supply of shikimate extracted from plant resources. The current cost of microbial production of shikimate via engineered strains is still unsatisfactory, and thus more metabolic strategies need to be investigated to further increase the production efficiency. In this study, we first constructed a shikimate E. coli producer through the application of the non-phosphoenolpyruvate: carbohydrate phosphotransferase system (non-PTS) glucose uptake pathway, the attenuation of the shikimate degradation metabolism, and the introduction of a mutant of feedback-resistant 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase. Inspired by the natural presence of bifunctional 3-dehydroquinate dehydratase (DHD)-shikimate dehydrogenase (SDH) enzyme in plants, we then designed an artificial fusion protein of DHD-SDH to decrease the accumulation of the byproduct 3-dehydroshikimate (DHS). Subsequently, a repressed shikimate kinase (SK) mutant was selected to promote shikimate accumulation without the supplementation of expensive aromatic substances. Furthermore, EsaR-based quorum sensing (QS) circuits were employed to regulate the metabolic flux distribution between cell growth and product synthesis. The final engineered strain dSA10 produced 60.31 g/L shikimate with a yield of 0.30 g/g glucose in a 5 L bioreactor.
Collapse
Affiliation(s)
- Taidong Bo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chen Wu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeting Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Jiang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Feiao Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanjun Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
7
|
Li Z, Gao C, Ye C, Guo L, Liu J, Chen X, Song W, Wu J, Liu L. Systems engineering of Escherichia coli for high-level shikimate production. Metab Eng 2023; 75:1-11. [PMID: 36328295 DOI: 10.1016/j.ymben.2022.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
To further increase the production efficiency of microbial shikimate, a valuable compound widely used in the pharmaceutical and chemical industries, ten key target genes contributing to shikimate production were identified by exploiting the enzyme constraint model ec_iML1515, and subsequently used for promoting metabolic flux towards shikimate biosynthesis in the tryptophan-overproducing strain Escherichia coli TRP0. The engineered E. coli SA05 produced 78.4 g/L shikimate via fed-batch fermentation. Deletion of quinate dehydrogenase and introduction of the hydroaromatic equilibration-alleviating shikimate dehydrogenase mutant AroET61W/L241I reduced the contents of byproducts quinate (7.5 g/L) and 3-dehydroshikimic acid (21.4 g/L) by 89.1% and 52.1%, respectively. Furthermore, a high concentration shikimate responsive promoter PrpoS was recruited to dynamically regulate the expression of the tolerance target ProV to enhance shikimate productivity by 23.2% (to 2 g/L/h). Finally, the shikimate titer was increased to 126.4 g/L, with a yield of 0.50 g/g glucose and productivity of 2.63 g/L/h, using a 30-L fermenter and the engineered strain E. coli SA09. This is, to the best of our knowledge, the highest reported shikimate titer and productivity in E. coli.
Collapse
Affiliation(s)
- Zhendong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
8
|
Metabolic Engineering of Shikimic Acid Biosynthesis Pathway for the Production of Shikimic Acid and Its Branched Products in Microorganisms: Advances and Prospects. Molecules 2022; 27:molecules27154779. [PMID: 35897952 PMCID: PMC9332510 DOI: 10.3390/molecules27154779] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/06/2023] Open
Abstract
The shikimate pathway is a necessary pathway for the synthesis of aromatic compounds. The intermediate products of the shikimate pathway and its branching pathway have promising properties in many fields, especially in the pharmaceutical industry. Many important compounds, such as shikimic acid, quinic acid, chlorogenic acid, gallic acid, pyrogallol, catechol and so on, can be synthesized by the shikimate pathway. Among them, shikimic acid is the key raw material for the synthesis of GS4104 (Tamiflu®), an inhibitor of neuraminidase against avian influenza virus. Quininic acid is an important intermediate for synthesis of a variety of raw chemical materials and drugs. Gallic acid and catechol receive widespread attention as pharmaceutical intermediates. It is one of the hotspots to accumulate many kinds of target products by rationally modifying the shikimate pathway and its branches in recombinant strains by means of metabolic engineering. This review considers the effects of classical metabolic engineering methods, such as central carbon metabolism (CCM) pathway modification, key enzyme gene modification, blocking the downstream pathway on the shikimate pathway, as well as several expansion pathways and metabolic engineering strategies of the shikimate pathway, and expounds the synthetic biology in recent years in the application of the shikimate pathway and the future development direction.
Collapse
|
9
|
Cofactor Self-Sufficient Whole-Cell Biocatalysts for the Relay-Race Synthesis of Shikimic Acid. FERMENTATION 2022. [DOI: 10.3390/fermentation8050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shikimic acid (SA) is a key intermediate in the aromatic amino-acid biosynthetic pathway, as well as an important precursor for synthesizing many valuable antiviral drugs. The asymmetric reduction of 3-dehydroshikimic acid (DHS) to SA is catalyzed by shikimate dehydrogenase (AroE) using NADPH as the cofactor; however, the intracellular NADPH supply limits the biosynthetic capability of SA. Glucose dehydrogenase (GDH) is an efficient enzyme which is typically used for NAD(P)H regeneration in biocatalytic processes. In this study, a series of NADPH self-sufficient whole-cell biocatalysts were constructed, and the biocatalyst co-expressing Bmgdh–aroE showed the highest conversion rate for the reduction of DHS to SA. Then, the preparation of whole-cell biocatalysts by fed-batch fermentation without supplementing antibiotics was developed on the basis of the growth-coupled l-serine auxotroph. After optimizing the whole-cell biocatalytic conditions, a titer of 81.6 g/L SA was obtained from the supernatant of fermentative broth in 98.4% yield (mol/mol) from DHS with a productivity of 40.8 g/L/h, and cofactor NADP+ or NADPH was not exogenously supplemented during the whole biocatalytic process. The efficient relay-race synthesis of SA from glucose by coupling microbial fermentation with a biocatalytic process was finally achieved. This work provides an effective strategy for the biosynthesis of fine chemicals that are difficult to obtain through de novo biosynthesis from renewable feedstocks, as well as for biocatalytic studies that strictly rely on NAD(P)H regeneration.
Collapse
|
10
|
Wang XH, Zhao C, Lu XY, Zong H, Zhuge B. Production of Caffeic Acid with Co-fermentation of Xylose and Glucose by Multi-modular Engineering in Candida glycerinogenes. ACS Synth Biol 2022; 11:900-908. [PMID: 35138824 DOI: 10.1021/acssynbio.1c00535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caffeic acid (CA), a natural phenolic compound, has important medicinal value and market potential. In this study, we report a metabolic engineering strategy for the biosynthesis of CA in Candida glycerinogenes using xylose and glucose. The availability of precursors was increased by optimization of the shikimate (SA) pathway and the aromatic amino acid pathway. Subsequently, the carbon flux into the SA pathway was maximized by introducing a xylose metabolic pathway and optimizing the xylose assimilation pathway. Eventually, a high yielding strain CG19 was obtained, which reached a yield of 4.61 mg/g CA from mixed sugar, which was 1.2-fold higher than that of glucose. The CA titer in the 5 L bioreactor reached 431.45 mg/L with a yield of 8.63 mg/g of mixed sugar. These promising results demonstrate the great advantages of mixed sugar over glucose for high-yield production of CA. This is the first report to produce CA in C. glycerinogenes with xylose and glucose as carbon sources, which developed a promising strategy for the efficient production of high-value aromatic compounds.
Collapse
Affiliation(s)
- Xi-Hui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Komera I, Gao C, Guo L, Hu G, Chen X, Liu L. Bifunctional optogenetic switch for improving shikimic acid production in E. coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:13. [PMID: 35418155 PMCID: PMC8822657 DOI: 10.1186/s13068-022-02111-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Biomass formation and product synthesis decoupling have been proven to be promising to increase the titer of desired value add products. Optogenetics provides a potential strategy to develop light-induced circuits that conditionally control metabolic flux redistribution for enhanced microbial production. However, the limited number of light-sensitive proteins available to date hinders the progress of light-controlled tools. RESULTS To address these issues, two optogenetic systems (TPRS and TPAS) were constructed by reprogramming the widely used repressor TetR and protease TEVp to expand the current optogenetic toolkit. By merging the two systems, a bifunctional optogenetic switch was constructed to enable orthogonally regulated gene transcription and protein accumulation. Application of this bifunctional switch to decouple biomass formation and shikimic acid biosynthesis allowed 35 g/L of shikimic acid production in a minimal medium from glucose, representing the highest titer reported to date by E. coli without the addition of any chemical inducers and expensive aromatic amino acids. This titer was further boosted to 76 g/L when using rich medium fermentation. CONCLUSION The cost effective and light-controlled switch reported here provides important insights into environmentally friendly tools for metabolic pathway regulation and should be applicable to the production of other value-add chemicals.
Collapse
Affiliation(s)
- Irene Komera
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Pharmaceutical Science, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China. .,International Joint Laboratory On Food Safety, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
12
|
Zheng XY, Zhao SJ, Zhang YW, Nie F. L-tyrosine metabolic pathway in microorganisms and its application in the biosynthesis of plant-derived natural products. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_16_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Kayastha S, Sagwan-Barkdoll L, Anterola A, Jayakody LN. Developing synthetic microbes to produce indirubin-derivatives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Movahedi A, Almasi Zadeh Yaghuti A, Wei H, Rutland P, Sun W, Mousavi M, Li D, Zhuge Q. Plant Secondary Metabolites with an Overview of Populus. Int J Mol Sci 2021; 22:ijms22136890. [PMID: 34206964 PMCID: PMC8268465 DOI: 10.3390/ijms22136890] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Populus trees meet continuous difficulties from the environment through their life cycle. To warrant their durability and generation, Populus trees exhibit various types of defenses, including the production of secondary metabolites. Syntheses derived from the shikimate-phenylpropanoid pathway are a varied and plentiful class of secondary metabolites manufactured in Populus. Amongst other main classes of secondary metabolites in Populus are fatty acid and terpenoid-derivatives. Many of the secondary metabolites made by Populus trees have been functionally described. Any others have been associated with particular ecological or biological processes, such as resistance against pests and microbial pathogens or acclimatization to abiotic stresses. Still, the functions of many Populus secondary metabolites are incompletely understood. Furthermore, many secondary metabolites have therapeutic effects, leading to more studies of secondary metabolites and their biosynthesis. This paper reviews the biosynthetic pathways and therapeutic impacts of secondary metabolites in Populus using a genomics approach. Compared with bacteria, fewer known pathways produce secondary metabolites in Populus despite P. trichocarpa having had its genome sequenced.
Collapse
Affiliation(s)
- Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
- Correspondence: ; Fax: +86-25-8542-8701
| | - Amir Almasi Zadeh Yaghuti
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Hui Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Paul Rutland
- Clinical and Molecular Genetics Units, Institute of Child Health, London WC1N 1EH, UK;
| | - Weibo Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Mohaddeseh Mousavi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Dawei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.A.Z.Y.); (H.W.); (W.S.); (M.M.); (D.L.); (Q.Z.)
| |
Collapse
|
15
|
Daley SK, Cordell GA. Natural Products, the Fourth Industrial Revolution, and the Quintuple Helix. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211003029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The profound interconnectedness of the sciences and technologies embodied in the Fourth Industrial Revolution is discussed in terms of the global role of natural products, and how that interplays with the development of sustainable and climate-conscious practices of cyberecoethnopharmacolomics within the Quintuple Helix for the promotion of a healthier planet and society.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL, USA
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
16
|
Sheng H, Jing Y, An N, Shen X, Sun X, Yan Y, Wang J, Yuan Q. Extending the shikimate pathway for microbial production of maleate from glycerol in engineered Escherichia coli. Biotechnol Bioeng 2021; 118:1840-1850. [PMID: 33512000 DOI: 10.1002/bit.27700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/12/2022]
Abstract
Maleate is one of the most important unsaturated four-carbon dicarboxylic acids. It serves as an attractive building block in cosmetic, polymer, and pharmaceutical industries. Currently, industrial production of maleate relies mainly on chemical synthesis using benzene or butane as the starting materials under high temperature, which suffers from strict reaction conditions and low product yield. Here, we propose a novel biosynthetic pathway for maleate production in engineered Escherichia coli. We screened a superior salicylate 5-hydroxylase that can catalyze hydroxylation of salicylate into gentisate with high conversion rate. Then, introduction of salicylate biosynthetic pathway and gentisate ring cleavage pathway allowed the synthesis of maleate from glycerol. Further optimizations including enhancement of precursors supply, disruption of competing pathways, and construction of a pyruvate recycling system, boosted maleate titer to 2.4 ± 0.1 g/L in shake flask experiments. Subsequent scale-up biosynthesis of maleate in a 3-L bioreactor under fed-batch culture conditions enabled the production of 14.5 g/L of maleate, indicating a 268-fold improvement compared with the titer generated by the wildtype E. coli strain carrying the entire maleate biosynthetic pathway. This study provided a promising microbial platform for industrial level synthesis of maleate, and demonstrated the highest titer of maleate production in microorganisms so far.
Collapse
Affiliation(s)
- Huakang Sheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yijie Jing
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Yajun Yan
- College of Engineering, The University of Georgia, Athens, Georgia, USA
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
17
|
Umar MF, Abbas SZ, Mohamad Ibrahim MN, Ismail N, Rafatullah M. Insights into Advancements and Electrons Transfer Mechanisms of Electrogens in Benthic Microbial Fuel Cells. MEMBRANES 2020; 10:E205. [PMID: 32872260 PMCID: PMC7558326 DOI: 10.3390/membranes10090205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
Benthic microbial fuel cells (BMFCs) are a kind of microbial fuel cell (MFC), distinguished by the absence of a membrane. BMFCs are an ecofriendly technology with a prominent role in renewable energy harvesting and the bioremediation of organic pollutants through electrogens. Electrogens act as catalysts to increase the rate of reaction in the anodic chamber, acting in electrons transfer to the cathode. This electron transfer towards the anode can either be direct or indirect using exoelectrogens by oxidizing organic matter. The performance of a BMFC also varies with the types of substrates used, which may be sugar molasses, sucrose, rice paddy, etc. This review presents insights into the use of BMFCs for the bioremediation of pollutants and for renewable energy production via different electron pathways.
Collapse
Affiliation(s)
- Mohammad Faisal Umar
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.F.U.); (N.I.)
| | - Syed Zaghum Abbas
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China
| | | | - Norli Ismail
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.F.U.); (N.I.)
| | - Mohd Rafatullah
- Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.F.U.); (N.I.)
| |
Collapse
|
18
|
Common problems associated with the microbial productions of aromatic compounds and corresponding metabolic engineering strategies. Biotechnol Adv 2020; 41:107548. [DOI: 10.1016/j.biotechadv.2020.107548] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
|
19
|
Li Z, Wang H, Ding D, Liu Y, Fang H, Chang Z, Chen T, Zhang D. Metabolic engineering of Escherichia coli for production of chemicals derived from the shikimate pathway. ACTA ACUST UNITED AC 2020; 47:525-535. [DOI: 10.1007/s10295-020-02288-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Abstract
The shikimate pathway is indispensable for the biosynthesis of natural products with aromatic moieties. These products have wide current and potential applications in food, cosmetics and medicine, and consequently have great commercial value. However, compounds extracted from various plants or synthesized from petrochemicals no longer satisfy the requirements of contemporary industries. As a result, an increasing number of studies has focused on this pathway to enable the biotechnological manufacture of natural products, especially in E. coli. Furthermore, the development of synthetic biology, systems metabolic engineering and high flux screening techniques has also contributed to improving the biosynthesis of high-value compounds based on the shikimate pathway. Here, we review approaches based on a combination of traditional and new metabolic engineering strategies to increase the metabolic flux of the shikimate pathway. In addition, applications of this optimized pathway to produce aromatic amino acids and a range of natural products is also elaborated. Finally, this review sums up the opportunities and challenges facing this field.
Collapse
Affiliation(s)
- Zhu Li
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Huiying Wang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Dongqin Ding
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.410726.6 0000 0004 1797 8419 University of Chinese Academy of Sciences 100049 Beijing China
| | - Yongfei Liu
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Huan Fang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
| | - Zhishuai Chang
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
| | - Tao Chen
- grid.33763.32 0000 0004 1761 2484 Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education); SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology Tianjin University 300072 Tianjin China
| | - Dawei Zhang
- grid.9227.e 0000000119573309 Key Laboratory of Systems Microbial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.9227.e 0000000119573309 Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 300308 Tianjin China
- grid.410726.6 0000 0004 1797 8419 University of Chinese Academy of Sciences 100049 Beijing China
| |
Collapse
|
20
|
Guo W, Huang Q, Feng Y, Tan T, Niu S, Hou S, Chen Z, Du Z, Shen Y, Fang X. Rewiring central carbon metabolism for tyrosol and salidroside production in
Saccharomyces cerevisiae. Biotechnol Bioeng 2020; 117:2410-2419. [DOI: 10.1002/bit.27370] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Wei Guo
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Qiulan Huang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Yuhui Feng
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Taicong Tan
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Suhao Niu
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Shaoli Hou
- Yantai Huakangrongzan Biotechnology Co., Ltd.Yantai China
| | - Zhigang Chen
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Zhi‐Qiang Du
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Yu Shen
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
| | - Xu Fang
- State Key Laboratory of Microbial TechnologyShandong University Qingdao China
- National Glycoengineering Research CenterShandong University Qingdao China
| |
Collapse
|
21
|
Patra JK, Das G, Bose S, Banerjee S, Vishnuprasad CN, Del Pilar Rodriguez-Torres M, Shin HS. Star anise (Illicium verum): Chemical compounds, antiviral properties, and clinical relevance. Phytother Res 2020; 34:1248-1267. [PMID: 31997473 DOI: 10.1002/ptr.6614] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/25/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022]
Abstract
Medicinal herbs are one of the imperative sources of drugs all over the world. Star anise (Illicium verum), an evergreen, medium-sized tree with star-shaped fruit, is an important herb with wide distribution throughout southwestern parts of the Asian continent. Besides its use as spice in culinary, star anise is one of the vital ingredients of the Chinese medicinal herbs and is widely known for its antiviral effects. It is also the source of the precursor molecule, shikimic acid, which is used in the manufacture of oseltamivir (Tamiflu®), an antiviral medication for influenza A and influenza B. Besides, several other molecules with numerous biological benefits including the antiviral effects have been reported from the same plant. Except the antiviral potential, star anise possesses a number of other potentials such as antioxidant, antimicrobial, antifungal, anthelmintic, insecticidal, secretolytic, antinociceptive, anti-inflammatory, gastroprotective, sedative properties, expectorant and spasmolytic, and estrogenic effects. This review aimed to integrate the information on the customary attributes of the plant star anise with a specific prominence on its antiviral properties and the phytochemical constituents along with its clinical aptness.
Collapse
Affiliation(s)
- Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| | - Sankhadip Bose
- Department of Pharmacognosy, Bengal School of Technology, Sugandha, Hooghly 712102, West Bengal, India
| | - Sabyasachi Banerjee
- Department of Phytochemistry, Gupta College of Technological Sciences, Asansol, West Bengal, India
| | - Chethala N Vishnuprasad
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, Karnataka, India
| | - Maria Del Pilar Rodriguez-Torres
- Laboratorio de Ondas de Choque (LOCH), Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México Campus UNAM Juriquilla Boulevard Juriquilla no. 3001 Santiago de Querétaro, Qro., C.P. 76230, Mexico
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyang-si 10326, Republic of Korea
| |
Collapse
|
22
|
Alva A, Sabido-Ramos A, Escalante A, Bolívar F. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli. Appl Microbiol Biotechnol 2020; 104:1463-1479. [PMID: 31900563 DOI: 10.1007/s00253-019-10335-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 12/27/2022]
Abstract
The fast-growing capability of Escherichia coli strains used to produce industrially relevant metabolites relies on their capability to transport efficiently glucose or potential industrial feedstocks such as sucrose or xylose as carbon sources. E. coli imports extracellular glucose into the periplasmic space across the outer membrane porins: OmpC, OmpF, and LamB. As the internal membrane is an impermeable barrier for sugars, the cell employs several primary and secondary active transport systems, and the phosphoenolpyruvate (PEP)-sugar phosphotransferase (PTS) system for glucose transport. PTS:glucose is the preferred system by E. coli to transport and phosphorylate the periplasmic glucose; nevertheless, PTS imposes a strict metabolic control mechanism on the preferential consumption of glucose over other carbon sources in sugar mixtures such as glucose and xylose resulting from the hydrolysis of lignocellulosic biomass, by the carbon catabolite repression. In this contribution, we summarize the major sugar transport systems for glucose and disaccharide transport, the exhibited substrate plasticity, and their impact on the growth of E. coli, highlighting the relevance of PTS in the control of the expression of genes for the transport and catabolism of other sugars as xylose. We discuss the strategies developed by evolved mutants of E. coli during adaptive laboratory evolution experiments to overcome the nutritional stress condition imposed by inactivation of PTS as a strategy for the selection of fast-growing derivatives in glucose, xylose, or mixtures of glucose:xylose. This approach results in the recruitment of other primary and secondary active transporters, demonstrating relevant sugar plasticity in derivative-evolved mutants. Elucidation of the molecular and biochemical basis of sugar-transport substrate plasticity represents a consistent approach for sugar-transport system engineering for the design of efficient E. coli derivative strains with improved substrate assimilation for biotechnological purposes.
Collapse
Affiliation(s)
- Alma Alva
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Andrea Sabido-Ramos
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana-Unidad Cuajimalpa, Ciudad de México, México
| | - Adelfo Escalante
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
23
|
Men J, Dong C, Shi H, Hou B, Wang R, Cui J, Wang L. Methacrylic acid functionalized CPS microspheres to adsorb shikimic acid. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1664913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiying Men
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Chengya Dong
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Hongxing Shi
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Biao Hou
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Ruixin Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Jianlan Cui
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| | - Limin Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, People’s Republic of China
| |
Collapse
|
24
|
Choi SS, Seo SY, Park SO, Lee HN, Song JS, Kim JY, Park JH, Kim S, Lee SJ, Chun GT, Kim ES. Cell Factory Design and Culture Process Optimization for Dehydroshikimate Biosynthesis in Escherichia coli. Front Bioeng Biotechnol 2019; 7:241. [PMID: 31649923 PMCID: PMC6795058 DOI: 10.3389/fbioe.2019.00241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
3-Dehydroshikimate (DHS) is a useful starting metabolite for the biosynthesis of muconic acid (MA) and shikimic acid (SA), which are precursors of various valuable polymers and drugs. Although DHS biosynthesis has been previously reported in several bacteria, the engineered strains were far from satisfactory, due to their low DHS titers. Here, we created an engineered Escherichia coli cell factory to produce a high titer of DHS as well as an efficient system for the conversion DHS into MA. First, the genes showing negative effects on DHS accumulation in E. coli, such as tyrR (tyrosine dependent transcriptional regulator), ptsG (glucose specific sugar: phosphoenolpyruvate phosphotransferase), and pykA (pyruvate kinase 2), were disrupted. In addition, the genes involved in DHS biosynthesis, such as aroB (DHQ synthase), aroD (DHQ dehydratase), ppsA (phosphoenolpyruvate synthase), galP (D-galactose transporter), aroG (DAHP synthase), and aroF (DAHP synthase), were overexpressed to increase the glucose uptake and flux of intermediates. The redesigned DHS-overproducing E. coli strain grown in an optimized medium produced ~117 g/L DHS in 7-L fed-batch fermentation, which is the highest level of DHS production demonstrated in E. coli. To accomplish the DHS-to-MA conversion, which is originally absent in E. coli, a codon-optimized heterologous gene cassette containing asbF, aroY, and catA was expressed as a single operon under a strong promoter in a DHS-overproducing E. coli strain. This redesigned E. coli grown in an optimized medium produced about 64.5 g/L MA in 7-L fed-batch fermentation, suggesting that the rational cell factory design of DHS and MA biosynthesis could be a feasible way to complement petrochemical-based chemical processes.
Collapse
Affiliation(s)
- Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Seung-Yeul Seo
- STR Biotech Co., Ltd., Chuncheon-si, South Korea.,Department of Molecular Bio-Science, Kangwon National University, Chuncheon-si, South Korea
| | - Sun-Ok Park
- STR Biotech Co., Ltd., Chuncheon-si, South Korea
| | - Han-Na Lee
- Department of Biological Engineering, Inha University, Incheon, South Korea.,STR Biotech Co., Ltd., Chuncheon-si, South Korea
| | - Ji-Soo Song
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Ji-Yeon Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Ji-Hoon Park
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Sangyong Kim
- Green Chemistry and Materials Group, Korea Institute of Industrial Technology, Cheonan-si, South Korea.,Green Process and System Engineering Major, Korea University of Science and Technology (UST), Daejeon, South Korea
| | | | - Gie-Taek Chun
- Department of Molecular Bio-Science, Kangwon National University, Chuncheon-si, South Korea
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
25
|
Wang X, Abbas M, Zhang Y, Elshahawi SI, Ponomareva LV, Cui Z, Van Lanen SG, Sajid I, Voss SR, Shaaban KA, Thorson JS. Baraphenazines A-G, Divergent Fused Phenazine-Based Metabolites from a Himalayan Streptomyces. JOURNAL OF NATURAL PRODUCTS 2019; 82:1686-1693. [PMID: 31117525 PMCID: PMC6630045 DOI: 10.1021/acs.jnatprod.9b00289] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The structures and bioactivities of three unprecedented fused 5-hydroxyquinoxaline/alpha-keto acid amino acid metabolites (baraphenazines A-C, 1-3), two unique diastaphenazine-type metabolites (baraphenazines D and E, 4 and 5) and two new phenazinolin-type (baraphenazines F and G, 6 and 7) metabolites from the Himalayan isolate Streptomyces sp. PU-10A are reported. This study highlights the first reported bacterial strain capable of producing diastaphenazine-type, phenazinolin-type, and izumiphenazine A-type metabolites and presents a unique opportunity for the future biosynthetic interrogation of late-stage phenazine-based metabolite maturation.
Collapse
Affiliation(s)
- Xiachang Wang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam campus, Lahore 54590, Pakistan
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People’s Republic of China
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Sherif I. Elshahawi
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G. Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Imran Sajid
- Department of Microbiology and Molecular Genetics, University of the Punjab, Quid-i-Azam campus, Lahore 54590, Pakistan
| | - S. Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40506, United States
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40506, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
- Corresponding Authors.,
| |
Collapse
|
26
|
Cao Y, Mu H, Liu W, Zhang R, Guo J, Xian M, Liu H. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities. Microb Cell Fact 2019; 18:39. [PMID: 30782155 PMCID: PMC6380051 DOI: 10.1186/s12934-019-1087-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/12/2019] [Indexed: 11/10/2022] Open
Abstract
Microbial fuel cell (MFC) is an environmentally friendly technology for electricity harvesting from a variety of substrates. Microorganisms used as catalysts in the anodic chamber, which are termed as electricigens, play a major role in the operation of MFCs. This review provides an introduction to the currently identified electricigens on their taxonomical groups and electricity producing abilities. The mechanism of electron transfer from electricigens to electrode is highlighted. The performances of pure culture and mixed communities are compared particularly. It has been proved that the electricity generation capacity and the ability to adapt to the complex environment of MFC systems constructed by pure microbial cultures are less than the systems constructed by miscellaneous consortia. However, pure cultures are useful to clarify the electron transfer mechanism at the microbiological level and further reduce the complexity of mixed communities. Future research trends of electricigens in MFCs should be focused on screening, domestication, modification and optimization of multi-strains to improve their electrochemical activities. Although the MFC techniques have been greatly advanced during the past few years, the present state of this technology still requires to be combined with other processes for cost reduction.
Collapse
Affiliation(s)
- Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Hui Mu
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jing Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| | - Huizhou Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|