1
|
Pham HG, Tran KN, Gomelsky L, Roy T, Gigley JP, Gomelsky M. Robust Inducible Gene Expression in Intracellular Listeria monocytogenes In Vivo. ACS Synth Biol 2025; 14:1397-1404. [PMID: 40277175 DOI: 10.1021/acssynbio.5c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Attenuated strains of the intracellular pathogen Listeria monocytogenes can deliver genetically encoded payloads inside tumor cells. L. monocytogenes preferentially accumulates and propagates in immune-suppressed tumor microenvironments. To maximize the payload impact in tumors and minimize damage to healthy tissues, it is desirable to induce payload synthesis when bacteria are eliminated from the healthy tissues but are grown to high numbers intratumorally. Here, we have engineered a tightly controlled gene expression system for intracellular L. monocytogenes inducible with a cumin derivative, cumate. Upon cumate addition, expression of a reporter gene is increased in L. monocytogenes growing in vitro by 80-fold and in intracellular L. monocytogenes in murine tumors by 75-fold. This study demonstrates the feasibility of activating gene expression in intracellular bacteria in live animals using an edible inducer. The system is expected to enhance the efficacy and safety of the attenuated L. monocytogenes strains as antitumor payload delivery bacterial drones.
Collapse
Affiliation(s)
- Huong Giang Pham
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kiet N Tran
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Larissa Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Tathagato Roy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
2
|
Skičková Š, Kratou M, Svobodová K, Maitre A, Abuin-Denis L, Wu-Chuang A, Obregón D, Said MB, Majláthová V, Krejčí A, Cabezas-Cruz A. Functional redundancy and niche specialization in honeybee and Varroa microbiomes. Int Microbiol 2025; 28:795-810. [PMID: 39172274 DOI: 10.1007/s10123-024-00582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.
Collapse
Affiliation(s)
- Štefánia Skičková
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia.
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Karolína Svobodová
- University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Apolline Maitre
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, 20250, Corte, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Alejandra Wu-Chuang
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Viktória Majláthová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia
| | - Alena Krejčí
- University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, 37005, Czech Republic
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
3
|
Chan DC, Winter L, Bjerg J, Krsmanovic S, Baldwin GS, Bernstein HC. Fine-Tuning Genetic Circuits via Host Context and RBS Modulation. ACS Synth Biol 2025; 14:193-205. [PMID: 39754601 PMCID: PMC11744933 DOI: 10.1021/acssynbio.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025]
Abstract
The choice of organism to host a genetic circuit, the chassis, is often defaulted to model organisms due to their amenability. The chassis-design space has therefore remained underexplored as an engineering variable. In this work, we explored the design space of a genetic toggle switch through variations in nine ribosome binding site compositions and three host contexts, creating 27 circuit variants. Characterization of performance metrics in terms of toggle switch output and host growth dynamics unveils a spectrum of performance profiles from our circuit library. We find that changes in host context cause large shifts in overall performance, while modulating ribosome binding sites leads to more incremental changes. We find that a combined ribosome binding site and host context modulation approach can be used to fine-tune the properties of a toggle switch according to user-defined specifications, such as toward greater signaling strength, inducer sensitivity, or both. Other auxiliary properties, such as inducer tolerance, are also exclusively accessed through changes in the host context. We demonstrate here that exploration of the chassis-design space can offer significant value, reconceptualizing the chassis organism as an important part in the synthetic biologist's toolbox with important implications for the field of synthetic biology.
Collapse
Affiliation(s)
- Dennis
Tin Chat Chan
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Lena Winter
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Johan Bjerg
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Stina Krsmanovic
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
| | - Geoff S. Baldwin
- Department
of Life Sciences, Imperial College London, South Kensington, London SW7 2AZ, U.K.
- Imperial
College Centre for Synthetic Biology, Imperial
College London, South
Kensington, London SW7
2AZ, U.K.
| | - Hans C. Bernstein
- Faculty
of Biosciences, Fisheries and Economics, UiT—The Arctic University of Norway, 9019 Tromsø, Norway
- The
Arctic Centre for Sustainable Energy, UiT—The
Arctic University of Norway, 9019 Tromsø, Norway
| |
Collapse
|
4
|
Živič Z, Lipoglavšek L, Lah J, Hadži S. A single vector system for tunable and homogeneous dual gene expression in Escherichia coli. Sci Rep 2025; 15:99. [PMID: 39747401 PMCID: PMC11695612 DOI: 10.1038/s41598-024-83628-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
Expression of recombinant genes can be controlled using inducible promoters. However, the most commonly used IPTG- and arabinose-inducible promoters result in an 'all-or-nothing' response, leading to fully induced and uninduced bacterial subpopulations. Here, we investigate whether appropriate modifications to these promoter systems can be combined into a single vector system, enabling homogenous expression of two genes of interest that can be precisely tuned using inducer concentration. We show that modifications of positive feedback loops related to inducer uptake result in homogeneous gene expression in both the T7 lactose and pBAD arabinose systems. Furthermore, these two modified systems were combined into a single vector, pRAT-sfGFP that provides the desired tunable expression of two genes of interest. Finally, we test this single-vector system as a tool for studying two-component genetic circuits, using toxin-antitoxin modules as model systems. This novel low-copy single vector expression system opens up new possibilities for investigating the function of two-component bacterial genetic circuits.
Collapse
Affiliation(s)
- Z Živič
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - L Lipoglavšek
- Chair of Microbial Diversity, Microbiomics and Biotechnology, Biotechnical Faculty, University of Ljubljana, Groblje, Slovenia
| | - J Lah
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - S Hadži
- Department of Physical Chemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Zhang R, Kang SY, Gaascht F, Peña EL, Schmidt-Dannert C. Design of a Genetically Programmable and Customizable Protein Scaffolding System for the Hierarchical Assembly of Robust, Functional Macroscale Materials. ACS Synth Biol 2024; 13:3724-3745. [PMID: 39480180 DOI: 10.1021/acssynbio.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inspired by the properties of natural protein-based biomaterials, protein nanomaterials are increasingly designed with natural or engineered peptides or with protein building blocks. Few examples describe the design of functional protein-based materials for biotechnological applications that can be readily manufactured, are amenable to functionalization, and exhibit robust assembly properties for macroscale material formation. Here, we designed a protein-scaffolding system that self-assembles into robust, macroscale materials suitable for in vitro cell-free applications. By controlling the coexpression in Escherichia coli of self-assembling scaffold building blocks with and without modifications for covalent attachment of cross-linking cargo proteins, hybrid scaffolds with spatially organized conjugation sites are overproduced that can be readily isolated. Cargo proteins, including enzymes, are rapidly cross-linked onto scaffolds for the formation of functional materials. We show that these materials can be used for the in vitro operation of a coimmobilized two-enzyme reaction and that the protein material can be recovered and reused. We believe that this work will provide a versatile platform for the design and scalable production of functional materials with customizable properties and the robustness required for biotechnological applications.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Sun-Young Kang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - François Gaascht
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Eliana L Peña
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
6
|
Chang C, Phan MD, Schembri MA. Modified Tn 7 transposon vectors for controlled chromosomal gene expression. Appl Environ Microbiol 2024; 90:e0155624. [PMID: 39291982 PMCID: PMC11497813 DOI: 10.1128/aem.01556-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Complementation remains a foundation for demonstrating molecular Koch's postulates. While this is frequently achieved using plasmids, limitations such as increased gene copy number and the need for antibiotic supplementation to avoid plasmid loss can restrict their use. Chromosomal integration systems using the Tn7 transposon provide an alternative to plasmids for complementation and facilitate the stable insertion of genes at the chromosomal attTn7 site without the need for selection pressure. Here, we enhanced the utility of mini-Tn7 insertion vectors by the addition of inducible (Pcym) and constitutive (PcL and PrpsM) promoters, allowing differential transcriptional control of genes integrated into the chromosome. We validated the utility of these promoters by cloning the gfp gene, encoding green fluorescent protein, downstream of each promoter and integrating a mini-Tn7 construct harboring these elements into the attTn7 site on the chromosome of the Escherichia coli K-12 strain MG1655. The PcL and PrpsM promoters provided equivalent levels of GFP expression and offered flexibility based on the target host strain. Activation of the tightly regulated Pcym promoter with its inducer cumate resulted in tunable expression of GFP in a dose-dependent manner. We further demonstrated the tight control of the Pcym promoter using the toxic impCAB genes, and the expression of which is detrimental to E. coli viability. Together, these modified mini-Tn7 vectors allowing differential control of genes integrated into the chromosome at a conserved site offer an efficient system for complementation where plasmid use is restricted.IMPORTANCEChromosomal integration using mini-Tn7 vectors provides an efficient means to insert genes into the chromosome of many gram-negative bacteria. Insertion occurs at a conserved site and allows for the stable integration of genes in single copy. While this system has multiple benefits for enabling complementation, a cornerstone for fulfilling molecular Koch's postulates, greater flexibility for controlled gene expression would enhance its utility. Here, we have added to the function of mini-Tn7 vectors by the addition of inducible and constitutive promoters and demonstrated their capacity to drive the controlled expression of target genes integrated into the chromosome. In addition to complementation, these modified vectors offer broad application for other approaches including chromosomal tagging, in vivo expression, metabolic engineering, and synthetic biology.
Collapse
Affiliation(s)
- Chyden Chang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Fu B, Chen M, Bao X, Lu J, Zhu Z, Guan F, Yan C, Wang P, Fu L, Yu P. Site-directed mutagenesis of bifunctional riboflavin kinase/FMN adenylyltransferase via CRISPR/Cas9 to enhance riboflavin production. Synth Syst Biotechnol 2024; 9:503-512. [PMID: 38680946 PMCID: PMC11047187 DOI: 10.1016/j.synbio.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
Vitamin B2 is an essential water-soluble vitamin. For most prokaryotes, a bifunctional enzyme called FAD synthase catalyzes the successive conversion of riboflavin to FMN and FAD. In this study, the plasmid pNEW-AZ containing six key genes for the riboflavin synthesis was transformed into strain R2 with the deleted FMN riboswitch, yielding strain R5. The R5 strain could produce 540.23 ± 5.40 mg/L riboflavin, which was 10.61 % higher than the R4 strain containing plasmids pET-AE and pAC-Z harboring six key genes. To further enhance the production of riboflavin, homology matching and molecular docking were performed to identify key amino acid residues of FAD synthase. Nine point mutation sites were identified. By comparing riboflavin kinase activity, mutations of T203D and N210D, which respectively decreased by 29.90 % and 89.32 % compared to wild-type FAD synthase, were selected for CRISPR/Cas9 gene editing of the genome, generating engineered strains R203 and R210. pNEW-AZ was transformed into R203, generating R6. R6 produced 657.38 ± 47.48 mg/L riboflavin, a 21.69 % increase compared to R5. This study contributes to the high production of riboflavin in recombinant E. coli BL21.
Collapse
Affiliation(s)
- Bing Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
- College of Forestry Science and Technology, Lishui Vocational and Technical College, 357 Zhongshan Street North, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Meng Chen
- Lishui Institute for Quality Inspection and Testing, 395 Zhongshan Street, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Xianfeng Bao
- College of Forestry Science and Technology, Lishui Vocational and Technical College, 357 Zhongshan Street North, Lishui, Zhejiang Province, 323000, People's Republic of China
| | - Jiajie Lu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Zhiwen Zhu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Fuyao Guan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Chuyang Yan
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Peize Wang
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Linglin Fu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| | - Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, 149 Jiaogong Road, Hangzhou, Zhejiang Province, 310035, People's Republic of China
| |
Collapse
|
8
|
Pham HG, Tran KN, Gomelsky L, Roy T, Gigley JP, Gomelsky M. Robust inducible gene expression in intracellular Listeria monocytogenes in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596178. [PMID: 38853860 PMCID: PMC11160606 DOI: 10.1101/2024.05.28.596178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Attenuated strains of the intracellular pathogen Listeria monocytogenes can deliver genetically encoded payloads inside tumor cells. L. monocytogenes preferentially accumulates and propagates inside immune-suppressed tumor microenvironments. To maximize the payload impact in tumors and minimize damage to healthy tissues, it is desirable to induce payload synthesis when bacteria are eliminated from the healthy tissues but are grown to high numbers intratumorally. Here, we have engineered a tightly controlled gene expression system for intracellular L. monocytogenes inducible with a cumin derivative, cumate. Upon cumate addition, expression of a reporter gene is increased in L. monocytogenes growing in vitro by 80-fold, and in intracellular L. monocytogenes in murine tumors by 10-fold. This study demonstrates the feasibility of activating gene expression in intracellular bacteria in live animals using an edible inducer. The system is expected to enhance the efficacy and safety of the attenuated L. monocytogenes strains as antitumor payload delivery bacterial drones.
Collapse
|
9
|
Jiang X, Ke X, Tian X, Chu J. An inducible CRISPRi circuit for tunable dynamic regulation of gene expression in Saccharopolyspora erythraea. Biotechnol Lett 2024; 46:161-172. [PMID: 38279045 DOI: 10.1007/s10529-023-03462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/28/2024]
Abstract
Actinomyces are gram-positive bacteria known for their valuable secondary metabolites. Redirecting metabolic flux towards desired products in actinomycetes requires precise and dynamic regulation of gene expression. In this study, we integrated the CRISPR interference (CRISPRi) system with a cumate-inducible promoter to develop an inducible gene downregulation method in Saccharopolyspora erythraea, a prominent erythromycin-producing actinobacterium. The functionality of the cumate-inducible promoter was validated using the gusA gene as a reporter, and the successful inducible expression of the dCas9 gene was confirmed. The developed inducible CRISPRi strategy was then employed to downregulate the expression of target genes rppA in the wild-type strain NRRL2338 and sucC in the high erythromycin-producing strain E3. Through dynamic control of sucC expression, a significant enhancement in erythromycin production was achieved in strain E3. This study demonstrated the effectiveness of an inducible gene downregulation approach using CRISPRi and a cumate-inducible promoter, providing valuable insights for optimizing natural product production in actinomyces.
Collapse
Affiliation(s)
- Xing Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiang Ke
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
10
|
Zeng M, Sarker B, Howitz N, Shah I, Andrews LB. Synthetic Homoserine Lactone Sensors for Gram-Positive Bacillus subtilis Using LuxR-Type Regulators. ACS Synth Biol 2024; 13:282-299. [PMID: 38079538 PMCID: PMC10805106 DOI: 10.1021/acssynbio.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 01/23/2024]
Abstract
A universal biochemical signal for bacterial cell-cell communication could facilitate programming dynamic responses in diverse bacterial consortia. However, the classical quorum sensing paradigm is that Gram-negative and Gram-positive bacteria generally communicate via homoserine lactones (HSLs) or oligopeptide molecular signals, respectively, to elicit population responses. Here, we create synthetic HSL sensors for Gram-positive Bacillus subtilis 168 using allosteric LuxR-type regulators (RpaR, LuxR, RhlR, and CinR) and synthetic promoters. Promoters were combinatorially designed from different sequence elements (-35, -16, -10, and transcriptional start regions). We quantified the effects of these combinatorial promoters on sensor activity and determined how regulator expression affects its activation, achieving up to 293-fold activation. Using the statistical design of experiments, we identified significant effects of promoter regions and pairwise interactions on sensor activity, which helped to understand the sequence-function relationships for synthetic promoter design. We present the first known set of functional HSL sensors (≥20-fold dynamic range) in B. subtilis for four different HSL chemical signals: p-coumaroyl-HSL, 3-oxohexanoyl-HSL, n-butyryl-HSL, and n-(3-hydroxytetradecanoyl)-HSL. This set of synthetic HSL sensors for a Gram-positive bacterium can pave the way for designable interspecies communication within microbial consortia.
Collapse
Affiliation(s)
- Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Biprodev Sarker
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Nathaniel Howitz
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Ishita Shah
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
11
|
Yuan S, Zheng Y, Du Y, Song M, Sun CC, Cheng F, Yu H. Fine-tuning the cell morphology of Corynebacterium glutamicum via dual-valve regulation for enhanced hyaluronic acid production. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:135-145. [PMID: 39416921 PMCID: PMC11446395 DOI: 10.1016/j.biotno.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/09/2023] [Indexed: 10/19/2024]
Abstract
Enhanced synthesis of hyaluronic acid (HA) with recombinant Corynebacterium glutamicum as production host was achieved in this work. Hyaluronan synthase (HAS), which is a membrane protein acting as a key enzyme in HA biosynthesis, impacts both HA yield and its molecular weight. Cell morphology, which includes size, shape, and surface area, has a large impact on the expression and activity of HAS. Therefore, deliberate regulation of cell morphology holds the potential to enhance HA production. Here, we constructed three modules, namely the transporter module, the morphology tuning module and the HA synthesis module. The transporter module contains a strong constitutive promoter Ptuf and arabinose transport protein was used to control the maximum amount of inducer entering the cell, thus reducing excessive cell deformation. The morphology tuning module contains an arabinose-inducible weak promoter PBAD and a cell-division-relevant gene was used to sense intracellular inducer concentrations and achieve different degrees of change in cell size. These two modules worked together, described as a dual-valve regulation, to achieve fine-tuning of cell morphology, resulting in a 1.87-fold increase in cell length and a 2.08-fold increase in cell membrane. When combined with the HA synthesis module, the HA titer reached 16.0 g/L, which was 1.6 times the yield reported in the previous morphology-engineered strain. Hence, for the first time, a morphologically engineered strain resulting in both high cell density and HA titer was constructed.
Collapse
Affiliation(s)
- Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Yukun Zheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Mingye Song
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Claudia Chen Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Fangyu Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
12
|
Tavares LF, Ribeiro NV, Zocca VFB, Corrêa GG, Amorim LAS, Lins MRCR, Pedrolli DB. Preventing Production Escape Using an Engineered Glucose-Inducible Genetic Circuit. ACS Synth Biol 2023; 12:3124-3130. [PMID: 37772403 DOI: 10.1021/acssynbio.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A proper balance of metabolic pathways is crucial for engineering microbial strains that can efficiently produce biochemicals on an industrial scale while maintaining cell fitness. High production loads can negatively impact cell fitness and hinder industrial-scale production. To address this, fine-tuning gene expression using engineered promoters and genetic circuits can promote control over multiple targets in pathways and reduce the burden. We took advantage of the robust carbon catabolite repression system of Bacillus subtilis to engineer a glucose-inducible genetic circuit that supports growth and production. The circuit is resilient, enabling a quick switch in the production status when exposed to the correct carbon source. By performing serial cultivations for 61 generations under repressive conditions, we preserved the production capacity of the cells, which could be fully accessed by switching to glucose in the next cultivation step. Switching to glucose after 61 generations resulted in 34-fold activation and generated 70% higher production in comparison to standard cultivation in glucose. Conversely, serial cultivation under permanent induction resulted in 62% production loss after 67 generations alongside an increase in the culture growth rate. As a pathway-independent circuit activated by the preferred carbon source, our engineered glucose-inducible genetic circuit is broadly useful and imposes no additional cost to traditional production processes.
Collapse
Affiliation(s)
- Leonardo F Tavares
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Nathan V Ribeiro
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Vitória F B Zocca
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Graciely G Corrêa
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Laura A S Amorim
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| | - Milca R C R Lins
- Federal University of ABC (UFABC), Center for Natural and Human Sciences, Campus Santo André, 09210-580, Brazil
| | - Danielle B Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Araraquara, 14800-903, Brazil
| |
Collapse
|
13
|
Zeghal M, Laroche G, Freitas JD, Wang R, Giguère PM. Profiling of basal and ligand-dependent GPCR activities by means of a polyvalent cell-based high-throughput platform. Nat Commun 2023; 14:3684. [PMID: 37407564 DOI: 10.1038/s41467-023-39132-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Representing the most attractive and successful druggable receptors of the proteome, GPCRs regulate a myriad of physiological and pathophysiological functions. Although over half of present pharmaceuticals target GPCRs, the advancement of drug discovery is hampered by a lack of adequate screening tools, the majority of which are limited to probing agonist-induced G-protein and β-arrestin-2-mediated events as a measure of receptor activation. Here, we develop Tango-Trio, a comprehensive cell-based high-throughput platform comprising cumate-inducible expression of transducers, capable of the parallelized profiling of both basal and agonist-dependent GPCR activities. We capture the functional diversity of GPCRs, reporting β-arrestin-1/2 couplings, selectivities, and receptor internalization signatures across the GPCRome. Moreover, we present the construction of cumate-induced basal activation curves at approximately 200 receptors, including over 50 orphans. Overall, Tango-Trio's robustness is well-suited for the functional characterization and screening of GPCRs, especially for parallel interrogation, and is a valuable addition to the pharmacological toolbox.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Julia Douglas Freitas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Rebecca Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
| |
Collapse
|
14
|
Gauttam R, Eng T, Zhao Z, Ul Ain Rana Q, Simmons BA, Yoshikuni Y, Mukhopadhyay A, Singer SW. Development of genetic tools for heterologous protein expression in a pentose-utilizing environmental isolate of Pseudomonas putida. Microb Biotechnol 2023; 16:645-661. [PMID: 36691869 PMCID: PMC9948227 DOI: 10.1111/1751-7915.14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/17/2022] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts. However, P. putida is not capable of metabolizing pentose sugars, which can constitute up to 25% of biomass hydrolysates. Related P. putida isolates that metabolize a larger fraction of biomass-derived carbon may be attractive as complementary hosts to P. putida KT2440. Here we describe genetic tool development for P. putida M2, a soil isolate that can metabolize pentose sugars. The functionality of five inducible promoter systems and 12 ribosome binding sites was assessed to regulate gene expression. The utility of these expression systems was confirmed by the production of indigoidine from C6 and C5 sugars. Chromosomal integration and expression of non-native genes was achieved by using chassis-independent recombinase-assisted genome engineering (CRAGE) for single-step gene integration of biosynthetic pathways directly into the genome of P. putida M2. These genetic tools provide a foundation to develop hosts complementary to P. putida KT2440 and expand the ability of this versatile microbial group to convert biomass to bioproducts.
Collapse
Affiliation(s)
- Rahul Gauttam
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Thomas Eng
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Zhiying Zhao
- Joint Genome Institute, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Qurrat Ul Ain Rana
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Blake A Simmons
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yasuo Yoshikuni
- Joint Genome Institute, Berkeley, California, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aindrila Mukhopadhyay
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Steven W Singer
- The Joint BioEnergy Institute, Emeryville, California, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
15
|
Xiao F, Zhang Y, Zhang L, Ding Z, Shi G, Li Y. Construction of the genetic switches in response to mannitol based on artificial MtlR box. BIORESOUR BIOPROCESS 2023; 10:9. [PMID: 38647829 PMCID: PMC10992428 DOI: 10.1186/s40643-023-00634-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
Synthetic biology has rapidly advanced from the setup of native genetic devices to the design of artificial elements able to provide organisms with highly controllable functions. In particular, genetic switches are crucial for deploying new layers of regulation into the engineered organisms. While the assembly and mutagenesis of native elements have been extensively studied, limited progress has been made in rational design of genetic switches due to a lack of understanding of the molecular mechanism by which a specific transcription factor interacts with its target gene. Here, a reliable workflow is presented for designing two categories of genetic elements, one is the switch element-MtlR box and the other is the transcriptional regulatory element- catabolite control protein A (CcpA) box. The MtlR box was designed for ON/OFF-state selection and is controlled by mannitol. The rational design of MtlR box-based molecular structures can flexibly tuned the selection of both ON and OFF states with different output switchability in response to varied kind effectors. Different types of CcpA boxes made the switches with more markedly inducer sensitivities. Ultimately, the OFF-state value was reduced by 90.69%, and the maximum change range in the presence of two boxes was 15.31-fold. This study presents a specific design of the switch, in a plug-and-play manner, which has great potential for controlling the flow of the metabolic pathway in synthetic biology.
Collapse
Affiliation(s)
- Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, People's Republic of China.
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, People's Republic of China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Dong X, Guthrie BGH, Alexander M, Noecker C, Ramirez L, Glasser NR, Turnbaugh PJ, Balskus EP. Genetic manipulation of the human gut bacterium Eggerthella lenta reveals a widespread family of transcriptional regulators. Nat Commun 2022; 13:7624. [PMID: 36494336 PMCID: PMC9734109 DOI: 10.1038/s41467-022-33576-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/21/2022] [Indexed: 12/13/2022] Open
Abstract
Eggerthella lenta is a prevalent human gut Actinobacterium implicated in drug, dietary phytochemical, and bile acid metabolism and associated with multiple human diseases. No genetic tools are currently available for the direct manipulation of E. lenta. Here, we construct shuttle vectors and develop methods to transform E. lenta and other Coriobacteriia. With these tools, we characterize endogenous E. lenta constitutive and inducible promoters using a reporter system and construct inducible expression systems, enabling tunable gene regulation. We also achieve genome editing by harnessing an endogenous type I-C CRISPR-Cas system. Using these tools to perform genetic knockout and complementation, we dissect the functions of regulatory proteins and enzymes involved in catechol metabolism, revealing a previously unappreciated family of membrane-spanning LuxR-type transcriptional regulators. Finally, we employ our genetic toolbox to study the effects of E. lenta genes on mammalian host biology. By greatly expanding our ability to study and engineer gut Coriobacteriia, these tools will reveal mechanistic details of host-microbe interactions and provide a roadmap for genetic manipulation of other understudied human gut bacteria.
Collapse
Affiliation(s)
- Xueyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Ben G H Guthrie
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Margaret Alexander
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Cecilia Noecker
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California San Francisco, San Francisco, CA, 94143, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
17
|
Characterization, genome analysis and genetic tractability studies of a new nanocellulose producing Komagataeibacter intermedius isolate. Sci Rep 2022; 12:20520. [PMID: 36443480 PMCID: PMC9705422 DOI: 10.1038/s41598-022-24735-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial nanocellulose (BC) is a highly versatile biopolymer currently pursued as a material of choice in varied themes of biomedical and material science research fields. With the aim to extend the biotechnological applications, the genetic tractability of the BC producers within the Komagataeibacter genus and its potential as an alternative host chassis in synthetic biology have been extensively studied. However, such studies have been largely focused on the model Komagataeibacter spp. Here, we present a novel K. intermedius strain capable of utilizing glucose, and glycerol sources for biomass and BC synthesis. Genome assembly identified one bacterial cellulose synthetase (bcs) operon containing the complete gene set encoding the BC biogenesis machinery (bcsI) and three additional copies (bcsII-IV). Investigations on the genetic tractability confirmed plasmid transformation, propagation of vectors with pBBR1 and p15A origin of replications and constitutive and inducible induction of recombinant protein in K. intermedius ENS15. This study provides the first report on the genetic tractability of K. intermedius, serving as starting point towards future genetic engineering of this strain.
Collapse
|
18
|
Greeson EM, Madsen CS, Makela AV, Contag CH. Magnetothermal Control of Temperature-Sensitive Repressors in Superparamagnetic Iron Nanoparticle-Coated Bacillus subtilis. ACS NANO 2022; 16:16699-16712. [PMID: 36200984 DOI: 10.1021/acsnano.2c06239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), and resulting images can be used to guide magnetothermal heating. Alternating magnetic fields (AMF) cause local temperature increases in regions with SPIONs, and we investigated the ability of magnetic hyperthermia to regulate temperature-sensitive repressors (TSRs) of bacterial transcription. The TSR, TlpA39, was derived from a Gram-negative bacterium and used here for thermal control of reporter gene expression in Gram-positive, Bacillus subtilis. In vitro heating of B. subtilis with TlpA39 controlling bacterial luciferase expression resulted in a 14.6-fold (12 hours; h) and 1.8-fold (1 h) increase in reporter transcripts with a 10.0-fold (12 h) and 12.1-fold (1 h) increase in bioluminescence. To develop magnetothermal control, B. subtilis cells were coated with three SPION variations. Electron microscopy coupled with energy dispersive X-ray spectroscopy revealed an external association with, and retention of, SPIONs on B. subtilis. Furthermore, using long duration AMF we demonstrated magnetothermal induction of the TSRs in SPION-coated B. subtilis with a maximum of 5.6-fold increases in bioluminescence. After intramuscular injections of SPION-coated B. subtilis, histology revealed that SPIONs remained in the same locations as the bacteria. For in vivo studies, 1 h of AMF is the maximum exposure due to anesthesia constraints. Both in vitro and in vivo, there was no change in bioluminescence after 1 h of AMF treatment. Pairing TSRs with magnetothermal energy using SPIONs for localized heating with AMF can lead to transcriptional control that expands options for targeted bacteriotherapies.
Collapse
Affiliation(s)
- Emily M Greeson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cody S Madsen
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ashley V Makela
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Christopher H Contag
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
19
|
Piñero-Lambea C, Garcia-Ramallo E, Miravet-Verde S, Burgos R, Scarpa M, Serrano L, Lluch-Senar M. SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome. Nucleic Acids Res 2022; 50:e127. [PMID: 36215032 PMCID: PMC9825166 DOI: 10.1093/nar/gkac836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/03/2022] [Accepted: 09/28/2022] [Indexed: 01/29/2023] Open
Abstract
The development of advanced genetic tools is boosting microbial engineering which can potentially tackle wide-ranging challenges currently faced by our society. Here we present SURE editing, a multi-recombinase engineering rationale combining oligonucleotide recombineering with the selective capacity of antibiotic resistance via transient insertion of selector plasmids. We test this method in Mycoplasma pneumoniae, a bacterium with a very inefficient native recombination machinery. Using SURE editing, we can seamlessly generate, in a single step, a wide variety of genome modifications at high efficiencies, including the largest possible deletion of this genome (30 Kb) and the targeted complementation of essential genes in the deletion of a region of interest. Additional steps can be taken to remove the selector plasmid from the edited area, to obtain markerless or even scarless edits. Of note, SURE editing is compatible with different site-specific recombinases for mediating transient plasmid integration. This battery of selector plasmids can be used to select different edits, regardless of the target sequence, which significantly reduces the cloning load associated to genome engineering projects. Given the proven functionality in several microorganisms of the machinery behind the SURE editing logic, this method is likely to represent a valuable advance for the synthetic biology field.
Collapse
Affiliation(s)
| | | | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raul Burgos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | | | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain,Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain,ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Correspondence may also be addressed to Maria Lluch-Senar. Tel: +34 661963680;
| |
Collapse
|
20
|
Krause AL, Stinear TP, Monk IR. Barriers to genetic manipulation of Enterococci: Current Approaches and Future Directions. FEMS Microbiol Rev 2022; 46:6650352. [PMID: 35883217 PMCID: PMC9779914 DOI: 10.1093/femsre/fuac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are Gram-positive commensal gut bacteria that can also cause fatal infections. To study clinically relevant multi-drug resistant E. faecalis and E. faecium strains, methods are needed to overcome physical (thick cell wall) and enzymatic barriers that limit the transfer of foreign DNA and thus prevent facile genetic manipulation. Enzymatic barriers to DNA uptake identified in E. faecalis and E. faecium include type I, II and IV restriction modification systems and CRISPR-Cas. This review examines E. faecalis and E. faecium DNA defence systems and the methods with potential to overcome these barriers. DNA defence system bypass will allow the application of innovative genetic techniques to expedite molecular-level understanding of these important, but somewhat neglected, pathogens.
Collapse
Affiliation(s)
- Alexandra L Krause
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Ian R Monk
- Corresponding author: Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia. E-mail:
| |
Collapse
|
21
|
Development of Methylorubrum extorquens AM1 as a promising platform strain for enhanced violacein production from co-utilization of methanol and acetate. Metab Eng 2022; 72:150-160. [PMID: 35301124 DOI: 10.1016/j.ymben.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Violacein, a blue-violet compound with a wide range of beneficial bioactivities, is an attractive product for microbial production. Currently, violacein production has been demonstrated in several sugar heterotrophs through metabolic engineering; however, the cost of production remains an obstacle for business ventures. To address this issue, the development of host strains that can utilize inexpensive alternative substrates to reduce production costs would enable the commercialization of violacein. In this study, we engineered a facultative methylotroph, Methylorubrum extorquens AM1, to develop a methanol-based platform for violacein production. By optimizing expression vectors as well as inducer concentrations, 11.7 mg/L violacein production was first demonstrated using methanol as the sole substrate. Considering that unidentified bottlenecks for violacein biosynthesis in the shikimate pathway of M. extorquens AM1 would be difficult to address using generic metabolic engineering approaches, random mutagenesis and site-directed mutagenesis were implemented, and a 2-fold improvement in violacein production was achieved. Finally, by co-utilization of methanol and acetate, a remarkable enhancement of violacein production to 118 mg/L was achieved. Our results establish a platform strain for violacein production from non-sugar feedstocks, which may contribute to the development of an economically efficient large-scale fermentation system for violacein production.
Collapse
|
22
|
Wang Y, Sang S, Zhang X, Tao H, Guan Q, Liu C. Efficient Genome Editing by a Miniature CRISPR-AsCas12f1 Nuclease in Bacillus anthracis. Front Bioeng Biotechnol 2022; 9:825493. [PMID: 35096801 PMCID: PMC8795892 DOI: 10.3389/fbioe.2021.825493] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 01/19/2023] Open
Abstract
A miniature CRISPR-Cas12f has been demonstrated to serve as an effective genome editing tool in gram negative bacteria as well as human cells. Here, we developed an alternative method to edit the genome of Bacillus anthracis based on the AsCas12f1 nuclease from Acidibacillus sulfuroxidans. When the htrA gene on the chromosome and the lef gene on the plasmid pXO1 were selected as targets, the CRISPR-AsCas12f1 system showed very high efficiency (100%). At the same time, a high efficiency was observed for large-fragment deletion. Our results also indicated that the length of the homologous arms of the donor DNA had a close relationship with the editing efficiency. Furthermore, a two-plasmid CRISPR-AsCas12f1 system was also constructed and combined with the endonuclease I-SceI for potential multi-gene modification. This represents a novel tool for mutant strain construction and gene function analyses in B. anthracis and other Bacillus cereus group bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunjie Liu
- *Correspondence: Yanchun Wang, ; Chunjie Liu,
| |
Collapse
|
23
|
Gnuchikh EY, Manukhov IV, Zavilgelsky GB. Biosensors to Assess the Activity of Promoters and Chaperones in Bacillus subtilis Cells. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821080020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Kang SY, Pokhrel A, Bratsch S, Benson JJ, Seo SO, Quin MB, Aksan A, Schmidt-Dannert C. Engineering Bacillus subtilis for the formation of a durable living biocomposite material. Nat Commun 2021; 12:7133. [PMID: 34880257 PMCID: PMC8654922 DOI: 10.1038/s41467-021-27467-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/17/2021] [Indexed: 01/23/2023] Open
Abstract
Engineered living materials (ELMs) are a fast-growing area of research that combine approaches in synthetic biology and material science. Here, we engineer B. subtilis to become a living component of a silica material composed of self-assembling protein scaffolds for functionalization and cross-linking of cells. B. subtilis is engineered to display SpyTags on polar flagella for cell attachment to SpyCatcher modified secreted scaffolds. We engineer endospore limited B. subtilis cells to become a structural component of the material with spores for long-term storage of genetic programming. Silica biomineralization peptides are screened and scaffolds designed for silica polymerization to fabricate biocomposite materials with enhanced mechanical properties. We show that the resulting ELM can be regenerated from a piece of cell containing silica material and that new functions can be incorporated by co-cultivation of engineered B. subtilis strains. We believe that this work will serve as a framework for the future design of resilient ELMs.
Collapse
Affiliation(s)
- Sun-Young Kang
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Anaya Pokhrel
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Sara Bratsch
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Joey J. Benson
- grid.17635.360000000419368657Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Seung-Oh Seo
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Maureen B. Quin
- grid.17635.360000000419368657Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN 55455 USA ,grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA
| | - Alptekin Aksan
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN 55108 USA ,grid.17635.360000000419368657Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biochemistry, University of Minnesota, Minneapolis, MN, 55455, USA. .,BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
25
|
Yang H, Qu J, Zou W, Shen W, Chen X. An overview and future prospects of recombinant protein production in Bacillus subtilis. Appl Microbiol Biotechnol 2021; 105:6607-6626. [PMID: 34468804 DOI: 10.1007/s00253-021-11533-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/27/2022]
Abstract
Bacillus subtilis is a well-characterized Gram-positive bacterium and a valuable host for recombinant protein production because of its efficient secretion ability, high yield, and non-toxicity. Here, we comprehensively review the recent studies on recombinant protein production in B. subtilis to update and supplement other previous reviews. We have focused on several aspects, including optimization of B. subtilis strains, enhancement and regulation of expression, improvement of secretion level, surface display of proteins, and fermentation optimization. Among them, optimization of B. subtilis strains mainly involves undirected chemical/physical mutagenesis and selection and genetic manipulation; enhancement and regulation of expression comprises autonomous plasmid and integrated expression, promoter regulation and engineering, and fine-tuning gene expression based on proteases and molecular chaperones; improvement of secretion level predominantly involves secretion pathway and signal peptide screening and optimization; surface display of proteins includes surface display of proteins on spores or vegetative cells; and fermentation optimization incorporates medium optimization, process condition optimization, and feeding strategy optimization. Furthermore, we propose some novel methods and future challenges for recombinant protein production in B. subtilis.Key points• A comprehensive review on recombinant protein production in Bacillus subtilis.• Novel techniques facilitate recombinant protein expression and secretion.• Surface display of proteins has significant potential for different applications.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Jinfeng Qu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Zou
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin, 644000, Sichuan, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
26
|
Souza CCD, Guimarães JM, Pereira SDS, Mariúba LAM. The multifunctionality of expression systems in Bacillus subtilis: Emerging devices for the production of recombinant proteins. Exp Biol Med (Maywood) 2021; 246:2443-2453. [PMID: 34424091 PMCID: PMC8649419 DOI: 10.1177/15353702211030189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacillus subtilis is a successful host for producing recombinant proteins. Its GRAS (generally recognized as safe) status and its remarkable innate ability to absorb and incorporate exogenous DNA into its genome make this organism an ideal platform for the heterologous expression of bioactive substances. The factors that corroborate its value can be attributed to the scientific knowledge obtained from decades of study regarding its biology that has fostered the development of several genetic engineering strategies, such as the use of different plasmids, engineering of constitutive or double promoters, chemical inducers, systems of self-inducing expression with or without a secretion system that uses a signal peptide, and so on. Tools that enrich the technological arsenal of this expression platform improve the efficiency and reduce the costs of production of proteins of biotechnological importance. Therefore, this review aims to highlight the major advances involving recombinant expression systems developed in B. subtilis, thus sustaining the generation of knowledge and its application in future research. It was verified that this bacterium is a model in constant demand and studies of the expression of recombinant proteins on a large scale are increasing in number. As such, it represents a powerful bacterial host for academic research and industrial purposes.
Collapse
Affiliation(s)
- Caio Coutinho de Souza
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil
| | - Jander Matos Guimarães
- Centro Multiusuário de Análise de Fenômenos Biomédicos (CMABio) da Universidade do Estado do Amazonas (UEA), Manaus, AM 69065-00, Brazil
| | - Soraya Dos Santos Pereira
- Fundação Oswaldo Cruz (FIOCRUZ) Unidade de Rondônia, Porto Velho-RO 76812-245, Brazil.,Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia-PGBIOEXP/UNIR, Porto Velho-RO 76801-974, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil
| | - Luis André Morais Mariúba
- Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Amazonas - UFAM, Manaus, AM 69067-005, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro 21040-360, Brazil.,Instituto Leônidas e Maria Deane (ILMD), Fundação Oswaldo Cruz (FIOCRUZ), Manaus, AM 69057-070, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM 69067-00, Brazil
| |
Collapse
|
27
|
Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain. Essays Biochem 2021; 65:173-185. [PMID: 34028523 DOI: 10.1042/ebc20210011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022]
Abstract
Currently, increasing demand of biochemicals produced from renewable resources has motivated researchers to seek microbial production strategies instead of traditional chemical methods. As a microbial platform, Bacillus subtilis possesses many advantages including the generally recognized safe status, clear metabolic networks, short growth cycle, mature genetic editing methods and efficient protein secretion systems. Engineered B. subtilis strains are being increasingly used in laboratory research and in industry for the production of valuable proteins and other chemicals. In this review, we first describe the recent advances of bioinformatics strategies during the research and applications of B. subtilis. Secondly, the applications of B. subtilis in enzymes and recombinant proteins production are summarized. Further, the recent progress in employing metabolic engineering and synthetic biology strategies in B. subtilis platform strain to produce commodity chemicals is systematically introduced and compared. Finally, the major limitations for the further development of B. subtilis platform strain and possible future directions for its research are also discussed.
Collapse
|
28
|
Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 2021; 50:107767. [PMID: 33974979 DOI: 10.1016/j.biotechadv.2021.107767] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
To overcome environmental problems caused by the use of fossil resources, microbial cell factories have become a promising technique for the sustainable and eco-friendly development of valuable products from renewable resources. Constructing microbial cell factories with high titers, yields, and productivity requires a balance between growth and production; to this end, tuning gene expression and regulation is necessary to optimise and precisely control complicated metabolic fluxes. In this article, we review the current trends and advances in tuning gene expression and regulation and consider their engineering at each of the three stages of gene regulation: genomic, mRNA, and protein. In particular, the technological approaches utilised in a diverse range of genetic-engineering-based tools for the construction of microbial cell factories are reviewed and representative applications of these strategies are presented. Finally, the prospects for strategies and systems for tuning gene expression and regulation are discussed.
Collapse
|
29
|
Yuan S, Zhang R, Cao Y, Guo J, Xian M, Liu W. New expression system to increase the yield of phloroglucinol. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1764386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Shan Yuan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, PR China
| | - Yujin Cao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, PR China
| | - Jing Guo
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, PR China
| | - Mo Xian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, PR China
| | - Wei Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong, PR China
| |
Collapse
|
30
|
Fang CW, Tsai LC, Fu YS, Cheng TY, Wu PC. Gel-based Microemulsion Design and Evaluation for Topical Application of Rivastigmine. Curr Pharm Biotechnol 2019; 21:298-304. [PMID: 31729297 DOI: 10.2174/1389201020666191113144636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/04/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of the present study was to design nanocarriers for the topical application of rivastigmine. METHODS The effect of cosurfactants, hydrophilic gel and loading amount on the permeability of rivastigmine through rat skin was evaluated. Skin irritation tests and stability tests were performed to evaluate the utility of tested formulations. RESULTS The results showed that the microemulsion formation and characteristics of drug-loaded formulations were related to many parameters of the components. When using microemulsion systems as a vehicle, the permeation rate remarkably increased about 13.2~24.3-fold and the lag time was significantly shortened from 24 h to 4.7 h. Formulations containing a cosurfactant of Diethylene Glycol Monobutyl Ether (DEGBE) showed higher enhancement effect, while increasing the loading dose from 0.5% to 5% further increased the flux about 2.1-fold and shortened the lag time. CONCLUSION The drug-loaded experimental formulation did not cause skin irritation and had good stability at 20ºC and 40ºC storage for at least 3 months. The result showed that gel-based microemulsion formulation could be a promising approach for topical administration.
Collapse
Affiliation(s)
- Chih-Wen Fang
- Division of Pharmacy, Zuoying Branch of Kaohsiung Armed Forces General Hospital, 553 Junxiao Road, Kaohsiung City 813, Taiwan, China
| | - Ling-Chun Tsai
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 807, Taiwan, China
| | - Yaw-Syan Fu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 807, Taiwan, China
| | - Ting-Yu Cheng
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 807, Taiwan, China
| | - Pao-Chu Wu
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung City 807, Taiwan, China.,Department of Medical Research, Kaohsiung Medical University Hospital, 100 Shih-Chuan 1st Road, Kaohsiung City 807, Taiwan, China
| |
Collapse
|
31
|
Cobos-Puc L, Rodríguez-Herrera R, Cano-Cabrera JC, Aguayo-Morales H, Silva-Belmares SY, Gallegos ACF, Hernández JLM. Classical and New Pharmaceutical Uses of Bacterial Penicillin G Acylase. Curr Pharm Biotechnol 2019; 21:287-297. [PMID: 31713475 DOI: 10.2174/1389201020666191111151642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND β-lactam antibiotics are the most used worldwide for the treatment of bacterial infections. The consumption of these classes of drugs is high, and it is increasing around the world. To date, the best way to produce them is using penicillin G Acylase (PGA) as a biocatalyst. OBJECTIVE This manuscript offers an overview of the most recent advances in the current tools to improve the activity of the PGA and its pharmaceutical application. RESULTS Several microorganisms produce PGA, but some bacterial strains represent the primary source of this enzyme. The activity of bacterial PGA depends on its adequate expression and carbon or nitrogen source, as well as a specific pH or temperature depending on the nature of the PGA. Additionally, the PGA activity can be enhanced by immobilizing it to a solid support to recycle it for a prolonged time. Likewise, PGAs more stable and with higher activity are obtained from bacterial hosts genetically modified. CONCLUSION PGA is used to produce b-lactam antibiotics. However, this enzyme has pharmaceutical potential to be used to obtain critical molecules for the synthesis of anti-tumor, antiplatelet, antiemetic, antidepressive, anti-retroviral, antioxidant, and antimutagenic drugs.
Collapse
Affiliation(s)
- Luis Cobos-Puc
- Department of Biotechnology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- Department of Food Research, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Juan C Cano-Cabrera
- Department of Biotechnology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Hilda Aguayo-Morales
- Department of Biotechnology, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Sonia Y Silva-Belmares
- Department of Food Research, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - Adriana C F Gallegos
- Department of Food Research, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| | - José L M Hernández
- Department of Food Research, Faculty of Chemistry, Autonomous University of Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
32
|
|
33
|
Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl Microbiol Biotechnol 2019; 103:4455-4465. [PMID: 30968162 DOI: 10.1007/s00253-019-09788-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/12/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
Abstract
In this study, stress tolerance devices consisting of heat shock protein (HSP) genes from thermophiles Geobacillus and Parageobacillus were introduced into riboflavin-producing strain Bacillus subtilis 446 to improve its stress tolerance and riboflavin production. The 12 HSP homologs were selected from 28 Geobacillus and Parageobacillus genomes according to their sequence clustering and phylogenetically analysis which represents the diversity of HSPs from thermophilic bacillus. The 12 HSP genes and 2 combinations of them (PtdnaK-PtdnaJ-PtgrpE and PtgroeL-PtgroeS) were heterologously expressed in B. subtilis 446 under the control of a strong constitutive promoter P43. Most of the 14 engineered strains showed increased cell density at 44 to 48 °C and less cell death at 50 °C compared with the control strains. Among them, strains B.s446-HSP20-3, B.s446-HSP20-2, and B.s446-PtDnaK-PtDnaJ-PtGrpE increased their cell densities over 25% at 44 to 48 °C. They also showed 5-, 4-, and 4-fold improved cell survivals after the 10-h heat shock treatment at 50 °C, respectively. These three strains also showed reduced cell death rates under osmotic stress of 10% NaCl, indicating that the introduction of HSPs improved not only the heat tolerance of B. subtilis 446 but also its osmotic tolerance. Fermentation of these three strains at higher temperatures of 39 and 43 °C showed 23-66% improved riboflavin titers, as well as 24-h shortened fermentation period. These results indicated that implanting HSPs from thermophiles to B. subtilis 446 would be an efficient approach to improve its stress tolerance and riboflavin production.
Collapse
|