1
|
Zhao N, Zhu M, Liu Q, Shen Y, Duan S, Zhu L, Yang J. AoPrdx2 Regulates Oxidative Stress, Reactive Oxygen Species, Trap Formation, and Secondary Metabolism in Arthrobotrys oligospora. J Fungi (Basel) 2024; 10:110. [PMID: 38392782 PMCID: PMC10890406 DOI: 10.3390/jof10020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Prdx2 is a peroxiredoxin (Prx) family protein that protects cells from attack via reactive oxygen species (ROS), and it has an important role in improving the resistance and scavenging capacity of ROS in fungi. Arthrobotrys oligospora is a widespread nematode-trapping fungus that can produce three-dimensional nets to capture and kill nematodes. In this study, AoPrdx2, a homologous protein of Prx5, was investigated in A. oligospora via gene disruption, phenotypic analysis, and metabolomics. The deletion of Aoprdx2 resulted in an increase in the number of mycelial septa and a reduction in the number of nuclei and spore yield. Meanwhile, the absence of Aoprdx2 increased sensitivity to oxidative stresses, whereas the ∆Aoprdx2 mutant strain resulted in higher ROS levels than that of the wild-type (WT) strain. In particular, the inactivation of Aoprdx2 severely influenced trap formation and pathogenicity; the number of traps produced by the ∆Aoprdx2 mutant strain was remarkably reduced and the number of mycelial rings of traps in the ∆Aoprdx2 mutant strain was less than that of the WT strain. In addition, the abundance of metabolites in the ∆Aoprdx2 mutant strain was significantly downregulated compared with the WT strain. These results indicate that AoPrdx2 plays an indispensable role in the scavenging of ROS, trap morphogenesis, and secondary metabolism.
Collapse
Affiliation(s)
- Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, China
| |
Collapse
|
2
|
Miao Q, Wang Z, Yin Z, Liu X, Li R, Zhang KQ, Li J. Nematode-induced trap formation regulated by the histone H3K4 methyltransferase AoSET1 in the nematode-trapping fungus Arthrobotrys oligospora. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2663-2679. [PMID: 37233873 DOI: 10.1007/s11427-022-2300-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/19/2023] [Indexed: 05/27/2023]
Abstract
The methylation of lysine 4 of histone H3 (H3K4), catalyzed by the histone methyltransferase KMT2/SET1, has been functionally identified in many pathogenic fungi but remains unexplored in nematode-trapping fungi (NTFs). Here, we report a regulatory mechanism of an H3K4-specific SET1 orthologue, AoSET1, in the typical nematode-trapping fungus Arthrobotrys oligospora. When the fungus is induced by the nematode, the expression of AoSET1 is up-regulated. Disruption of AoSet1 led to the abolishment of H3K4me. Consequently, the yield of traps and conidia of ΔAoSet1 was significantly lower than that of the WT strain, and the growth rate and pathogenicity were also compromised. Moreover, H3K4 trimethylation was enriched mainly in the promoter of two bZip transcription factor genes (AobZip129 and AobZip350) and ultimately up-regulated the expression level of these two transcription factor genes. In the ΔAoSet1 and AoH3K4A strains, the H3K4me modification level was significantly decreased at the promoter of transcription factor genes AobZip129 and AobZip350. These results suggest that AoSET1-mediated H3KEme serves as an epigenetic marker of the promoter region of the targeted transcription factor genes. Furthermore, we found that AobZip129 negatively regulates the formation of adhesive networks and the pathogenicity of downstream AoPABP1 and AoCPR1. Our findings confirm that the epigenetic regulatory mechanism plays a pivotal role in regulating trap formation and pathogenesis in NTFs, and provide novel insights into the mechanisms of interaction between NTFs and nematodes.
Collapse
Affiliation(s)
- Qiao Miao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhengqi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ziyu Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Xiaoying Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ran Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
3
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
4
|
Zhao X, Fan Y, Zhang W, Xiang M, Kang S, Wang S, Liu X. DhFIG_2, a gene of nematode-trapping fungus Dactylellina haptotyla that encodes a component of the low-affinity calcium uptake system, is required for conidiation and knob-trap formation. Fungal Genet Biol 2023; 166:103782. [PMID: 36849068 DOI: 10.1016/j.fgb.2023.103782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Calcium ion (Ca2+) is a universal second messenger involved in regulating diverse processes in animals, plants, and fungi. The low-affinity calcium uptake system (LACS) participates in acquiring Ca2+ from extracellular environments under high extracellular Ca2+ concentration. Unlike most fungi, which encode only one protein (FIG1) for LACS, nematode-trapping fungi (NTF) encode two related proteins. AoFIG_2, the NTF-specific LACS component encoded by adhesive network-trap forming Arthrobotrys oligospora, was shown to be required for conidiation and trap formation. We characterized the role of DhFIG_2, an AoFIG_2 ortholog encoded by knob-trap forming Dactylellina haptotyla, in growth and development to expand our understanding of the role of LACS in NTF. Because repeated attempts to disrupt DhFIG_2 failed, knocking down the expression of DhFIG_2 via RNA interference (RNAi) was used to study its function. RNAi of DhFIG_2 significantly decreased its expression, severely reduced conidiation and trap formation, and affected vegetative growth and stress responses, suggesting that this component of LACS is crucial for trap formation and conidiation in NTF. Our study demonstrated the utility of RNAi assisted by ATMT for studying gene function in D. haptotyla.
Collapse
Affiliation(s)
- Xiaozhou Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Seogchan Kang
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, PA 16802, USA
| | - Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China.
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Wang D, Ma N, Rao W, Zhang Y. Recent Advances in Life History Transition with Nematode-Trapping Fungus Arthrobotrys oligospora and Its Application in Sustainable Agriculture. Pathogens 2023; 12:pathogens12030367. [PMID: 36986289 PMCID: PMC10056792 DOI: 10.3390/pathogens12030367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 02/25/2023] Open
Abstract
Parasitic nematodes cause great annual loss in the agricultural industry globally. Arthrobotrys oligospora is the most prevalent and common nematode-trapping fungus (NTF) in the environment and the candidate for the control of plant- and animal-parasitic nematodes. A. oligospora is also the first recognized and intensively studied NTF species. This review highlights the recent research advances of A. oligospora as a model to study the biological signals of the switch from saprophytism to predation and their sophisticated mechanisms for interacting with their invertebrate hosts, which is of vital importance for improving the engineering of this species as an effective biocontrol fungus. The application of A. oligospora in industry and agriculture, especially as biological control agents for sustainable purposes, was summarized, and we discussed the increasing role of A. oligospora in studying its sexual morph and genetic transformation in complementing biological control research.
Collapse
Affiliation(s)
- Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Nan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Wanqin Rao
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650032, China
- Correspondence:
| |
Collapse
|
6
|
Jiang Q, Li Y, Mao R, Bi Y, Liu Y, Zhang M, Li R, Yang Y, Prusky DB. AaCaMKs Positively Regulate Development, Infection Structure Differentiation and Pathogenicity in Alternaria alternata, Causal Agent of Pear Black Spot. Int J Mol Sci 2023; 24:ijms24021381. [PMID: 36674895 PMCID: PMC9865007 DOI: 10.3390/ijms24021381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase (CaMK), a key downstream target protein in the Ca2+ signaling pathway of eukaryotes, plays an important regulatory role in the growth, development and pathogenicity of plant fungi. Three AaCaMKs (AaCaMK1, AaCaMK2 and AaCaMK3) with conserved PKC_like superfamily domains, ATP binding sites and ACT sites have been cloned from Alternaria alternata, However, their regulatory mechanism in A. alternata remains unclear. In this study, the function of the AaCaMKs in the development, infection structure differentiation and pathogenicity of A. alternata was elucidated through targeted gene disruption. The single disruption of AaCaMKs had no impact on the vegetative growth and spore morphology but significantly influenced hyphae growth, sporulation, biomass accumulation and melanin biosynthesis. Further expression analysis revealed that the AaCaMKs were up-regulated during the infection structure differentiation of A. alternata on hydrophobic and pear wax substrates. In vitro and in vivo analysis further revealed that the deletion of a single AaCaMKs gene significantly reduced the A. alternata conidial germination, appressorium formation and infection hyphae formation. In addition, pharmacological analysis confirmed that the CaMK specific inhibitor, KN93, inhibited conidial germination and appressorium formation in A. alternata. Meanwhile, the AaCaMKs genes deficiency significantly reduced the A. alternata pathogenicity. These results demonstrate that AaCaMKs regulate the development, infection structure differentiation and pathogenicity of A. alternata and provide potential targets for new effective fungicides.
Collapse
Affiliation(s)
- Qianqian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1694
| | - Renyan Mao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongxiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Rong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
7
|
Abstract
Nematode-trapping fungi (NTF) are the majority of carnivorous microbes to capture nematodes through diverse and sophisticated trapping organs derived from hyphae. They can adopt carnivorous lifestyles in addition to saprophytism to obtain extra-nutrition from nematodes. As a special group of fungi, the NTF are not only excellent model organism for studying lifestyle transition of fungi but also natural resources of exploring biological control of nematodes. However, the carnivorous mechanism of NTF remains poorly understood. Nowadays, the omics studies of NTF have provided numerous genes and pathways that are associated with the phenotypes of carnivorous traits, which need molecular tools to verify. Here, we review the development and progress of gene manipulation tools in NTF, including methodology and strategy of transformation, random gene mutagenesis methods and target gene mutagenesis methods. The principle and practical approach for each method was summarized and discussed, and the basic operational flow for each tool was described. This paper offers a clear reference and instruction for researchers who work on NTF as well as other group of fungi.
Collapse
Affiliation(s)
- Shunxian Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
| | - Xingzhong Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, Tianjin, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Wang W, Zhao Y, Bai N, Zhang KQ, Yang J. AMPK Is Involved in Regulating the Utilization of Carbon Sources, Conidiation, Pathogenicity, and Stress Response of the Nematode-Trapping Fungus Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0222522. [PMID: 35916406 PMCID: PMC9431048 DOI: 10.1128/spectrum.02225-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
AMP-activated protein kinase (AMPK), a heterotrimeric complex, can sense energy and nutritional status in eukaryotic cells, thereby participating in the regulation of multiple cellular processes. In this study, we characterized the function of the catalytic α-subunit (SNF1) and the two regulatory β- and γ-subunits (GAL83 and SNF4) of AMPK in a representative nematode-trapping fungus, Arthrobotrys oligospora, by gene knockout, phenotypic analysis, and RNA sequencing. The ability of the AMPK complex mutants (including ΔAosnf1, ΔAogal83, and ΔAosnf4) to utilize a nonfermentable carbon source (glycerol) was reduced, and the spore yields and trap formation were remarkably decreased. Moreover, AMPK plays an important role in regulating stress response and nematode predation efficiency. Transcriptomic profiling between the wild-type strain and ΔAosnf1 showed that differentially expressed genes were enriched for peroxisome, endocytosis, fatty acid degradation, and multilipid metabolism (sphingolipid, ether lipid, glycerolipid, and glycerophospholipid). Meanwhile, a reduced lipid droplet accumulation in ΔAosnf1, ΔAogal83, and ΔAosnf4 mutants was observed, and more vacuoles appeared in the mycelia of the ΔAosnf1 mutant. These results highlight the important regulatory role of AMPK in the utilization of carbon sources and lipid metabolism, as well as providing novel insights into the regulatory mechanisms of the mycelia development, conidiation, and trap formation of nematode-trapping (NT) fungi. IMPORTANCE NT fungi are widely distributed in various ecosystems and are important factors in the control of nematode populations in nature; their trophic mycelia can form unique infectious devices (traps) for capturing nematodes. Arthrobotrys oligospora is a representative NT fungi which can develop complex three-dimensional networks (adhesive networks) for nematode predation. Here, we demonstrated that AMPK plays an important role in the glycerol utilization, conidiation, trap formation, and nematode predation of A. oligospora, which was further confirmed by transcriptomic analysis of the wild-type and mutant strains. In particular, our analysis indicated that AMPK is required for lipid metabolism, which is primarily associated with energy regulation and is essential for trap formation. Therefore, this study extends the functional study of AMPK in NT fungi and helps to elucidate the molecular mechanism of the regulation of trap development, as well as laying the foundation for the development of efficient nematode biocontrol agents.
Collapse
Affiliation(s)
- Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
9
|
Amphiphysin AoRvs167-Mediated Membrane Curvature Facilitates Trap Formation, Endocytosis, and Stress Resistance in Arthrobotrysoligospora. Pathogens 2022; 11:pathogens11090997. [PMID: 36145429 PMCID: PMC9501185 DOI: 10.3390/pathogens11090997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bin1/Amphiphysin/Rvs (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Nematode-trapping (NT) fungi can differentiate to form trapping structures through highly reorganized cell membranes and walls. In this study, we identified the NT fungus Arthrobotrys oligospora ortholog of yeast Rvs167 and documented its involvement in membrane bending and endocytosis. We further confirmed that the deletion of AoRvs167 makes the fungus more hypersensitive to osmotic salt (Nacl), higher temperatures (28 to 30 °C), and the cell wall perturbation agent Congo red. In addition, the disruption of AoRvs167 reduced the trap formation capacity. Hence, AoRvs167 may regulate fungal pathogenicity through the integrity of plasma membranes and cell walls.
Collapse
|
10
|
DdaCrz1, a C2H2-Type Transcription Factor, Regulates Growth, Conidiation, and Stress Resistance in the Nematode-Trapping Fungus Drechslerella dactyloides. J Fungi (Basel) 2022; 8:jof8070750. [PMID: 35887505 PMCID: PMC9322116 DOI: 10.3390/jof8070750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
The Ca2+/calmodulin-dependent signaling pathway regulates diverse cellular processes. Calcineurin is a calcium-dependent phosphatase acting in fungi mainly through Crz1, a zinc finger transcription factor. Although the likely involvement of Ca2+ in fungal carnivorism has been documented, how Crz1 functions in nematode-trapping fungi remains unknown. Here, we identified the Crz1 gene (named as DdaCrz1) in Drechslerella dactyloides, a species that forms constricting rings to trap nematodes. The deletion of DdaCrz1 significantly reduced hyphal growth and conidiation, trap formation, and ring cell inflation. Moreover, the mutation increased sensitivity to Mn2+ but decreased sensitivity to Ca2+, Mg2+, Zn2+, and Li+. Similarly, the mutant showed increased tolerance to osmotic stress but was more sensitive to Congo red, a cell wall-damaging agent. Our results confirmed the critical roles of the Ca2+/calmodulin-dependent signaling pathway in regulating growth, conidiation, and the stress response, and suggested its involvement in trapping nematodes.
Collapse
|
11
|
Li G, Liu S, Wu L, Wang X, Cuan R, Zheng Y, Liu D, Yuan Y. Characterization and Functional Analysis of a New Calcium/Calmodulin-Dependent Protein Kinase (CaMK1) in the Citrus Pathogenic Fungus Penicillium italicum. J Fungi (Basel) 2022; 8:667. [PMID: 35887424 PMCID: PMC9323541 DOI: 10.3390/jof8070667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/30/2022] Open
Abstract
Calcium (Ca2+)/calmodulin-dependent protein kinases (CaMKs) act as a class of crucial elements in Ca2+-signal transduction pathways that regulate fungal growth, sporulation, virulence, and environmental stress tolerance. However, little is known about the function of such protein kinase in phytopathogenic Penicillium species. In the present study, a new CaMK gene from the citrus pathogenic fungus P. italicum, designated PiCaMK1, was cloned and functionally characterized by gene knockout and transcriptome analysis. The open reading frame of PiCaMK1 is 1209 bp in full length, which encodes 402 amino acid residues (putative molecular weight ~45.2 KD) with the highest homologous (~96.3%) to the P. expansum CaMK. The knockout mutant ΔPiCaMK1 showed a significant reduction in vegetative growth, conidiation, and virulence (i.e., to induce blue mold decay on citrus fruit). ΔPiCaMK1 was less sensitive to NaCl- or KCl-induced salinity stress and less resistant to mannitol-induced osmotic stress, indicating the functional involvement of PiCaMK1 in such environmental stress tolerance. In contrast, the PiCaMK1-complemented strain ΔPiCaMK1COM can restore all the defective phenotypes. Transcriptome analysis revealed that knockout of PiCaMK1 down-regulated expression of the genes involved in DNA replication and repair, cell cycle, meiosis, pyrimidine and purine metabolisms, and MAPK signaling pathway. Our results suggested the critical role of PiCaMK1 in regulating multiple physical and cellular processes of citrus postharvest pathogen P. italicum, including growth, conidiation, virulence, and environmental stress tolerance.
Collapse
Affiliation(s)
- Guoqi Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Shaoting Liu
- School of Public Administration, Central China Normal University, Wuhan 430079, China;
| | - Lijuan Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Xiao Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Rongrong Cuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Yongliang Zheng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China;
| | - Deli Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| | - Yongze Yuan
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China; (G.L.); (L.W.); (X.W.); (R.C.); (D.L.)
| |
Collapse
|
12
|
Yang L, Li X, Ma Y, Zhang K, Yang J. The Arf-GAP Proteins AoGcs1 and AoGts1 Regulate Mycelial Development, Endocytosis, and Pathogenicity in Arthrobotrys oligospora. J Fungi (Basel) 2022; 8:463. [PMID: 35628718 PMCID: PMC9146637 DOI: 10.3390/jof8050463] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
Small GTPases from the ADP-ribosylation factor (Arf) family and their activating proteins (Arf-GAPs) regulate mycelial development, endocytosis, and virulence in fungi. Here, we identified two orthologous Arf-GAP proteins, AoGcs1 and AoGts1, in a typical nematode-trapping fungus Arthrobotrys oligospora. The transcription of Aogcs1 and Aogts1 was highly expressed in the sporulation stage. The deletion of Aogcs1 and Aogts1 caused defects in DNA damage, endocytosis, scavenging of reactive oxygen species, lipid droplet storage, mitochondrial activity, autophagy, serine protease activity, and the response to endoplasmic reticulum stress. The combined effects resulted in slow growth, decreased sporulation capacity, increased susceptibility to chemical stressors and heat shock, and decreased pathogenicity of the mutants compared with the wild-type (WT) strain. Although deletion of Aogcs1 and Aogts1 produced similar phenotfypic traits, their roles varied in conidiation and proteolytic activity. The ΔAogts1 mutant showed a remarkable reduction in conidial yield compared with the WT strain but not in proteolytic activity; in contrast, the ΔAogcs1 mutant showed an increase in proteolytic activity but not in sporulation. In addition, the growth of ΔAogcs1 and ΔAogts1 mutants was promoted by rapamycin, and the ΔAogts1 mutant was sensitive to H-89. Collectively, the ΔAogts1 mutant showed a more remarkable difference compared with the WT strain than the ΔAogcs1 mutant. Our study further illustrates the importance of Arf-GAPs in the growth, development, and pathogenicity of nematode-trapping fungi.
Collapse
Affiliation(s)
| | | | | | | | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, School of Life Science, Yunnan University, Kunming 650032, China; (L.Y.); (X.L.); (Y.M.); (K.Z.)
| |
Collapse
|
13
|
Zhu MC, Li XM, Zhao N, Yang L, Zhang KQ, Yang JK. Regulatory Mechanism of Trap Formation in the Nematode-Trapping Fungi. J Fungi (Basel) 2022; 8:jof8040406. [PMID: 35448637 PMCID: PMC9031305 DOI: 10.3390/jof8040406] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 01/21/2023] Open
Abstract
Nematode-trapping (NT) fungi play a significant role in the biological control of plant- parasitic nematodes. NT fungi, as a predator, can differentiate into specialized structures called “traps” to capture, kill, and consume nematodes at a nutrient-deprived condition. Therefore, trap formation is also an important indicator that NT fungi transition from a saprophytic to a predacious lifestyle. With the development of gene knockout and multiple omics such as genomics, transcriptomics, and metabolomics, increasing studies have tried to investigate the regulation mechanism of trap formation in NT fungi. This review summarizes the potential regulatory mechanism of trap formation in NT fungi based on the latest findings in this field. Signaling pathways have been confirmed to play an especially vital role in trap formation based on phenotypes of various mutants and multi-omics analysis, and the involvement of small molecule compounds, woronin body, peroxisome, autophagy, and pH-sensing receptors in the formation of traps are also discussed. In addition, we also highlight the research focus for elucidating the mechanism underlying trap formation of NT fungi in the future.
Collapse
|
14
|
AoPEX1 and AoPEX6 Are Required for Mycelial Growth, Conidiation, Stress Response, Fatty Acid Utilization, and Trap Formation in Arthrobotrys oligospora. Microbiol Spectr 2022; 10:e0027522. [PMID: 35323036 PMCID: PMC9045386 DOI: 10.1128/spectrum.00275-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Arthrobotrys oligospora (A. oligospora) is a typical nematode-trapping (NT) fungus that can capture nematodes by producing adhesive networks. Peroxisomes are single membrane-bound organelles that perform multiple physiological functions in filamentous fungi. Peroxisome biogenesis proteins are encoded by PEX genes, and the functions of PEX genes in A. oligospora and other NT fungi remain largely unknown. Here, our results demonstrated that two PEX genes (AoPEX1 and AoPEX6) are essential for mycelial growth, conidiation, fatty acid utilization, stress tolerance, and pathogenicity in A. oligospora. AoPEX1 and AoPEX6 knockout resulted in a failure to produce traps, conidia, peroxisomes, and Woronin bodies and damaged cell walls, reduced autophagosome levels, and increased lipid droplet size. Transcriptome data analysis showed that AoPEX1 and AoPEX6 deletion resulted in the upregulation of the proteasome, membranes, ribosomes, DNA replication, and cell cycle functions, and the downregulation of MAPK signaling and nitrogen metabolism. In summary, our results provide novel insights into the functions of PEX genes in the growth, development, and pathogenicity of A. oligospora and contribute to the elucidation of the regulatory mechanism of peroxisomes in trap formation and lifestyle switching in NT fungi. IMPORTANCE Nematode-trapping (NT) fungi are important resources for the biological control of plant-parasitic nematodes. They are widely distributed in various ecological environments and capture nematodes by producing unique predatory organs (traps). However, the molecular mechanisms of trap formation and lifestyle switching in NT fungi are still unclear. Here, we provided experimental evidence that the AoPEX1 and AoPEX6 genes could regulate mycelial growth and development, trap formation, and nematode predation of A. oligospora. We further analyzed the global transcription level changes of wild-type and mutant strains using RNA-seq. This study highlights the important role of peroxisome biogenesis genes in vegetative growth, conidiation, trap formation, and pathogenicity, which contribute to probing the mechanism of organelle development and trap formation of NT fungi and lays a foundation for developing high-efficiency nematode biocontrol agents.
Collapse
|
15
|
Chen H, Hu Y, Liang X, Xie J, Xu H, Luo Q, Yang Z. Roles of hormones, calcium and PmWRKY31 in the defense of Pinus massoniana Lamb. against Dendrolimus punctatus Walker. FORESTRY RESEARCH 2021; 1:21. [PMID: 39524514 PMCID: PMC11524255 DOI: 10.48130/fr-2021-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2024]
Abstract
Dendrolimus punctatus Walker is a major pest affecting Pinus massoniana Lamb. forests and can cause serious economic and ecological losses. WRKY transcription factors play important roles in coping with various environmental stresses and plant responses against herbivorous insects. However, the mechanisms underlying the actions of WRKY in the defense responses of D. punctatus in P. massoniana are still unclear. Our previous study provided evidence that WRKY plays an important role in the insect resistance of P. massoniana. In this study, the treatments of exogenous hormones and Ca2+ increased the concentrations of endogenous hormones, and terpenoid synthases in P. massoniana effectively improving its resistance to D. punctatus. After analyzing the WRKY family of P. massoniana, PmWRKY31 was selected and studied. A direct interaction between PmWRKY31 and PmLp8 was observed by yeast double hybridization assay. Gene expression analysis showed that treatments of exogenous hormones and Ca2+ induced high PmWRKY31 expression. The expression pattern of PmWRKY31 was different under treatment of MeJA compared to those of GA, ABA and SA. These results indicated that PmWRYK31 and PmLp8 interacted with each other to promote the expression of terpenoid synthase genes and increase the content of terpenoid volatile substances by regulating the gene expression of hormone signaling pathways, to improve the ability of P. massoniana to resist D. punctatus, providing theoretical support for the involvement of WRKY transcription factors in enhancement of the insect resistance of P. massoniana through their regulation of hormone signaling.
Collapse
Affiliation(s)
- Hu Chen
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Masson Pine Engineering Research Center of the State Forestry Administration, Masson Pine Engineering Research Center of Guangxi, Guangxi Forestry Research Institute, Nanning 530002, PR China
| | - Ying Hu
- Guangxi University, Nanning 530002, PR China
| | - Xingxing Liang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Masson Pine Engineering Research Center of the State Forestry Administration, Masson Pine Engineering Research Center of Guangxi, Guangxi Forestry Research Institute, Nanning 530002, PR China
| | - Junkang Xie
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Masson Pine Engineering Research Center of the State Forestry Administration, Masson Pine Engineering Research Center of Guangxi, Guangxi Forestry Research Institute, Nanning 530002, PR China
| | - Huilan Xu
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Masson Pine Engineering Research Center of the State Forestry Administration, Masson Pine Engineering Research Center of Guangxi, Guangxi Forestry Research Institute, Nanning 530002, PR China
| | - Qunfeng Luo
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Masson Pine Engineering Research Center of the State Forestry Administration, Masson Pine Engineering Research Center of Guangxi, Guangxi Forestry Research Institute, Nanning 530002, PR China
| | - Zhangqi Yang
- Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Masson Pine Engineering Research Center of the State Forestry Administration, Masson Pine Engineering Research Center of Guangxi, Guangxi Forestry Research Institute, Nanning 530002, PR China
| |
Collapse
|
16
|
Ma N, Zhao Y, Wang Y, Yang L, Li D, Yang J, Jiang K, Zhang KQ, Yang J. Functional analysis of seven regulators of G protein signaling (RGSs) in the nematode-trapping fungus Arthrobotrys oligospora. Virulence 2021; 12:1825-1840. [PMID: 34224331 PMCID: PMC8259722 DOI: 10.1080/21505594.2021.1948667] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/06/2021] [Accepted: 06/18/2021] [Indexed: 01/09/2023] Open
Abstract
Regulators of G protein signaling (RGSs) are proteins that negatively regulate G protein signal transduction. In this study, seven putative RGSs were characterized in the nematode-trapping (NT) fungus, Arthrobotrys oligospora. Deleting Rgs genes significantly increased intracellular cAMP levels, and caused defects in mycelia growth, stress resistance, conidiation, trap formation, and nematocidal activity. In particular, the ΔAoFlbA mutant was unable to produce conidia and traps. Transcriptomic analysis showed that amino acid metabolic and biosynthetic processes were significantly enriched in the ΔAoFlbA mutant compared to WT. Interestingly, Gas1 family genes are significantly expanded in A. oligospora and other NT fungi that produce adhesive traps, and are differentially expressed during trap formation in A. oligospora. Disruption of two Gas1 genes resulted in defective conidiation, trap formation, and pathogenicity. Our results indicate that RGSs play pleiotropic roles in regulating A. oligospora mycelial growth, development, and pathogenicity. Further, AoFlbA is a prominent member and required for conidiation and trap formation, possibly by regulating amino acid metabolism and biosynthesis. Our results provide a basis for elucidating the signaling mechanism of vegetative growth, lifestyle transition, and pathogenicity in NT fungi.
Collapse
Affiliation(s)
- Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Yunchuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, KunmingP. R. China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Dongni Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Jiangliu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Kexin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, KunmingP. R. China
- School of Life Sciences, Yunnan University, KunmingP. R. China
| |
Collapse
|
17
|
Xie M, Ma N, Bai N, Zhu M, Zhang KQ, Yang J. Phospholipase C (AoPLC2) regulates mycelial development, trap morphogenesis, and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora. J Appl Microbiol 2021; 132:2144-2156. [PMID: 34797022 DOI: 10.1111/jam.15370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022]
Abstract
AIMS Phospholipase C (PLC) is a hydrolase involved in signal transduction in eukaryotic cells. This study aimed to understand the function of PLC in the nematode-trapping fungus Arthrobotrys oligospora. METHODS AND RESULTS Orthologous PLC (AoPLC2) of A. oligospora was functionally analysed using gene disruption and multi-phenotypic analysis. Disrupting Aoplc2 caused a deformation of partial hyphal cells (about 10%) and conidia (about 50%), decreased the number of nuclei in both conidia and hyphal cells, and increased the accumulation of lipid droplets. Meanwhile, the sporulation-related genes fluG and abaA were downregulated in ΔAoplc2 mutants than in the wild-type strain. Moreover, ΔAoplc2 mutants were more sensitive to osmotic stressors. Importantly, the number of traps, electron-dense bodies in traps, and nematicidal activity of ΔAoplc2 mutants were reduced, and the shape of the traps was deformed. In addition, AoPLC2 was involved in the biosynthesis of secondary metabolites in A. oligospora. CONCLUSIONS AoPLC2 plays an important role in the development of hyphae, spores, and cell nuclei, responses to stress, formation of traps, and predation of nematodes in A. oligospora. SIGNIFICANCE AND IMPACT OF STUDY This study reveals the various functions of phospholipase C and elucidates the regulation of trap morphogenesis in nematode-trapping fungi.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China.,School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China.,Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China
| |
Collapse
|
18
|
Zhou D, Xu J, Dong J, Li H, Wang D, Gu J, Zhang KQ, Zhang Y. Historical Differentiation and Recent Hybridization in Natural Populations of the Nematode-Trapping Fungus Arthrobotrys oligospora in China. Microorganisms 2021; 9:1919. [PMID: 34576814 PMCID: PMC8465350 DOI: 10.3390/microorganisms9091919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Maintaining the effects of nematode-trapping fungi (NTF) agents in order to control plant-parasitic nematodes (PPNs) in different ecological environments has been a major challenge in biological control applications. To achieve such an objective, it is important to understand how populations of the biocontrol agent NTF are geographically and ecologically structured. A previous study reported evidence for ecological adaptation in the model NTF species Arthrobotrys oligospora. However, their large-scale geographic structure, patterns of gene flow, their potential phenotypic diversification, and host specialization remain largely unknown. In this study, we developed a new panel of 20 polymorphic short tandem repeat (STR) markers and analyzed 239 isolates of A. oligospora from 19 geographic populations in China. In addition, DNA sequences at six nuclear gene loci and strain mating types (MAT) were obtained for these strains. Our analyses suggest historical divergence within the A. oligospora population in China. The genetically differentiated populations also showed phenotypic differences that may be related to their ecological adaptations. Interestingly, our analyses identified evidence for recent dispersion and hybridization among the historically subdivided geographic populations in nature. Together, our results indicate a changing population structure of A. oligospora in China and that care must be taken in selecting the appropriate strains as biocontrol agents that can effectively reproduce in agriculture soil while maintaining their nematode-trapping ability.
Collapse
Affiliation(s)
- Duanyong Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianyong Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Da Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Juan Gu
- School of Life Science, Yunnan University, Kunming 650032, China;
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
| | - Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (D.Z.); (J.D.); (H.L.); (D.W.)
| |
Collapse
|
19
|
Bai N, Zhang G, Wang W, Feng H, Yang X, Zheng Y, Yang L, Xie M, Zhang KQ, Yang J. Ric8 acts as a regulator of G-protein signalling required for nematode-trapping lifecycle of Arthrobotrys oligospora. Environ Microbiol 2021; 24:1714-1730. [PMID: 34431203 DOI: 10.1111/1462-2920.15735] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Resistance to inhibitors of cholinesterase 8 (Ric8) is a conserved guanine nucleotide exchange factor that is involved in the regulation of G-protein signalling in filamentous fungi. Here, we characterized an orthologous Ric8 (AoRic8) in Arthrobotrys oligospora by multi-omics analyses. The Aoric8 deletion (ΔAoric8) mutants lost an ability to produce traps essential for nematode predation, accompanied by a marked reduction in cAMP level. Yeast two-hybrid assay revealed that AoRic8 interacted with G-protein subunit Gα1. Moreover, the mutants were compromised in mycelia growth, conidiation, stress resistance, endocytosis, cellular components and intrahyphal hyphae. Revealed by transcriptomic analysis differentially upregulated genes in the absence of Aoric8 were involved in cell cycle, DNA replication and recombination during trap formation while downregulated genes were primarily involved in organelles, carbohydrate metabolism and amino acid metabolism. Metabolomic analysis showed that many compounds were markedly downregulated in ΔAoric8 mutants versus the wild-type strain. Our results demonstrated a crucial role for AoRic8 in the fungal growth, environmental adaption and nematode predation through control of cell cycle, organelle and secondary metabolism by G-protein signalling.
Collapse
Affiliation(s)
- Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Wenjie Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Huihua Feng
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Yaqing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
20
|
Pleiotropic roles of Ras GTPases in the nematode-trapping fungus Arthrobotrys oligospora identified through multi-omics analyses. iScience 2021; 24:102820. [PMID: 34337364 PMCID: PMC8313493 DOI: 10.1016/j.isci.2021.102820] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/10/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
The nematode-trapping fungi are ideal agents for controlling pathogenic nematodes. Arthrobotrys oligospora is a representative species of the same, producing traps for nematode predation. Here, three orthologous Ras GTPases (Ras2, Ras3, and Rheb) were characterized in A. oligospora. Our results indicate that they play pleiotropic roles in regulating the mycelial growth, conidiation, stress resistance, and pathogenicity of A. oligospora. Furthermore, deletion of Aoras2 and Aorheb significantly affected the mitochondrial activity, reactive oxygen species levels, lipid storage, and autophagy. Transcriptome analyses of ΔAoras2 mutant revealed that many repressed genes were associated with signal transduction, energy production, and carbohydrate transport and metabolism. Moreover, metabolic profile analyses showed that AoRas2 and AoRheb affect the biosynthesis of secondary metabolites in A. oligospora. Collectively, these findings provide an in-depth insight into the essential roles of Ras GTPases in vegetative growth, development, and pathogenicity and highlight their importance in the lifestyle switch of the nematode-trapping fungi. Ras GTPases play a multifunctional role in the lifestyle switch of A. oligospora Ras GTPases affect multiple cellular processes, including mitochondrial activity AoRas2 plays a key role in regulating global gene expression and nematode predation AoRas2 and AoRheb significantly affect the biosynthesis of secondary metabolites
Collapse
|
21
|
Ding JL, Hou J, Li XH, Feng MG, Ying SH. Transcription Activator Swi6 Interacts with Mbp1 in MluI Cell Cycle Box-Binding Complex and Regulates Hyphal Differentiation and Virulence in Beauveria bassiana. J Fungi (Basel) 2021; 7:jof7060411. [PMID: 34070348 PMCID: PMC8273693 DOI: 10.3390/jof7060411] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Mbp1 protein acts as a DNA-binding protein in MluI cell cycle box-binding complex (MBF) and plays an essential role in filamentous myco-pathogen Beauveria bassiana.In the current study, BbSwi6 (a homologue of yeast Swi6) was functionally characterized in B.bassiana. Both BbSwi6 and BbMbp1 localize in the nucleus and display a direct interaction relationship which is indicated by a yeast two-hybrid assay. BbSwi6 significantly contributes to hyphal growth, asexual sporulation and virulence. On the aerial surface, ΔBbSwi6 grew slower on various nutrients and displayed abnormal conidia-producing structures, which hardly produced conidia. In liquid media, BbSwi6 loss led to 90% reduction in blastospore yield. Finally, the virulence of the ΔBbSwi6 mutant was modestly weakened with a reduction of 20% in median lethal time. Comparative transcriptomics revealed that BbSwi6 mediated different transcriptomes during fungal development into conidia and blastospores. Notably, under the indicated condition, the BbSwi6-mediated transcriptome significantly differed to that mediated by BbMbp1. Our results demonstrate that, in addition to their roles as the interactive components in MBF, BbSwi6 and BbMbp1 mediate divergent genetic pathways during morphological transitions in B. bassiana.
Collapse
|
22
|
AoATG5 plays pleiotropic roles in vegetative growth, cell nucleus development, conidiation, and virulence in the nematode-trapping fungus Arthrobotrys oligospora. SCIENCE CHINA-LIFE SCIENCES 2021; 65:412-425. [PMID: 34031812 DOI: 10.1007/s11427-020-1913-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Autophagy is an evolutionarily conserved process in eukaryotes, which is regulated by autophagy-related genes (ATGs). Arthrobotrys oligospora is a representative species of nematode-trapping (NT) fungi that can produce special traps for nematode predation. To elucidate the biological roles of autophagy in NT fungi, we characterized an orthologous Atg protein, AoAtg5, in A. oligospora. We found that AoATG5 deletion causes a significant reduction in vegetative growth and conidiation, and that the transcript levels of several sporulation-related genes were significantly downregulated during sporulation stage. In addition, the cell nuclei were significantly reduced in the ΔAoATG5 mutant, and the transcripts of several genes involved in DNA biosynthesis, repair, and ligation were significantly upregulated. In ΔAoATG5 mutants, the autophagic process was significantly impaired, and trap formation and nematocidal activity were significantly decreased. Comparative transcriptome analysis results showed that AoAtg5 is involved in the regulation of multiple cellular processes, such as autophagy, nitrogen metabolism, DNA biosynthesis and repair, and vesicular transport. In summary, our results suggest that AoAtg5 is essential for autophagy and significantly contributes to vegetative growth, cell nucleus development, sporulation, trap formation, and pathogenicity in A. oligospora, thus providing a basis for future studies focusing on related mechanisms of autophagy in NT fungi.
Collapse
|
23
|
Zhou D, Xie M, Bai N, Yang L, Zhang KQ, Yang J. The Autophagy-Related Gene Aolatg4 Regulates Hyphal Growth, Sporulation, Autophagosome Formation, and Pathogenicity in Arthrobotrys oligospora. Front Microbiol 2020; 11:592524. [PMID: 33304340 PMCID: PMC7701090 DOI: 10.3389/fmicb.2020.592524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Autophagy plays an important role in cell growth and development. The autophagy-related gene atg4 encodes a cysteine protease, which can cleave the carboxyl terminus of Atg8, thus plays a role in autophagosome formation in yeast and filamentous fungi. Arthrobotrys oligospora is well known for producing special trapping-devices (traps) and capturing nematodes. In this study, two ΔAolatg4 mutants were generated using targeted gene replacement and were used to investigate the biological functions of autophagy in A. oligospora. Autophagic process was observed using the AoAtg8-GFP fusion protein. The mutants showed a defective in hyphal growth and sporulation and were sensitive to chemical stressors, including menadione and Congo red. The spore yield of the ΔAolatg4 mutants was decreased by 88.5% compared to the wild type (WT), and the transcript levels of six sporulation-related genes, such as abaA, fluG, brlA, and wetA, were significantly downregulated during the conidiation stage. Deletion of Aolatg4 also affected the cell nuclei and mycelial septal development in A. oligospora. Importantly, autophagosome formation and the autophagic process were impaired in the ΔAolatg4 mutant. Moreover, the ΔAolatg4 mutant lost its ability to form mature traps. Our results provide novel insights into the roles of autophagy in A. oligospora.
Collapse
Affiliation(s)
- Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
24
|
CgCmk1 Activates CgRds2 To Resist Low-pH Stress in Candida glabrata. Appl Environ Microbiol 2020; 86:AEM.00302-20. [PMID: 32245757 DOI: 10.1128/aem.00302-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
In Candida glabrata, the transcription factor CgRds2 has been previously characterized as a regulator of glycerophospholipid metabolism, playing a crucial role in the response to osmotic stress. Here, we report that CgRds2 is also involved in the response to pH 2.0 stress. At pH 2.0, the deletion of CgRDS2 led to reduced cell growth and survival, by 33% and 57%, respectively, compared with those of the wild-type strain. These adverse phenotypes resulted from the downregulation of genes related to energy metabolism in the Cgrds2Δ strain at pH 2.0, which led to a 34% reduction of the intracellular ATP content and a 24% decrease in membrane permeability. In contrast, the overexpression of CgRDS2 rescued the growth defect of the Cgrds2Δ strain and increased cell survival at pH 2.0 by 17% compared with that of the wild-type strain, and this effect was accompanied by significant increases in ATP content and membrane permeability, by 42% and 19%, respectively. Furthermore, we found that the calcium/calmodulin-dependent protein kinase (CaMK) CgCmk1 physically interacts with the PAS domain of CgRds2, and CgCmk1 is required for CgRds2 activation and translocation from the cytoplasm to the nucleus under pH 2.0 stress. Moreover, CgCmk1 is critical for CgRds2 function in resistance to pH 2.0 stress, because cells of the Cgrds2-pas strain with a disrupted CgCmk1-CgRds2 interaction exhibited impaired energy metabolism and membrane permeability at pH 2.0. Therefore, our results indicate that CgCmk1 positively regulates CgRds2 and suggest that they promote resistance to low-pH stress by enhancing energy metabolism and membrane permeability in C. glabrata IMPORTANCE An acidic environment is the main problem in the production of organic acids in C. glabrata The present study reports that the calcium/calmodulin-dependent protein kinase CgCmk1 positively regulates CgRds2 to increase intracellular ATP content, membrane permeability, and resistance to low-pH stress. Hence, the transcription factor CgRds2 may be a potential target for improving the acid stress tolerance of C. glabrata during the fermentation of organic acids. The present study also establishes a new link between the calcium signaling pathway and energy metabolism.
Collapse
|
25
|
Ma Y, Yang X, Xie M, Zhang G, Yang L, Bai N, Zhao Y, Li D, Zhang KQ, Yang J. The Arf-GAP AoGlo3 regulates conidiation, endocytosis, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 2020; 138:103352. [PMID: 32087364 DOI: 10.1016/j.fgb.2020.103352] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/18/2022]
Abstract
Small GTPases of the ADP-ribosylation factor (Arf) family and their activating proteins (Arf-GAPs) regulate mycelial development and pathogenicity in yeast and filamentous fungi; however, little is known about their roles in nematode-trapping (NT) fungi. In this study, an ortholog of Arf-GAP Glo3 (AoGlo3) in Saccharomyces cerevisiae was characterized in the NT fungus Arthrobotrys oligospora. Deletion of the Aoglo3 gene resulted in growth defects and an increase in hyphal septum. Meanwhile, the sporulation capacity of the ΔAoglo3 mutant was decreased by 98%, and 67.1-71.2% spores became gourd or claviform in shape (from obovoid), which was accompanied by a significant decrease in the spore germination rate. This reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes including fluG, rodA, abaA, medA, and lreA. The ΔAoglo3 mutant was also sensitive to several chemical stressors such as Congo red, NaCl, and sorbitol. Additionally, AoGlo3 was found to be involved in endocytosis, and more myelin figures were observed in the ΔAoglo3 mutant than in the wild-type strain, which was consistent with the presence of more autophagosomes observed in the mutant. Importantly, AoGlo3 affected the production of mycelial traps and serine proteases for nematode predation. In summary, AoGlo3 is involved in the regulation of multiple cellular processes such as mycelial growth, conidiation, environmental adaption, endocytosis, and pathogenicity in A. oligospora.
Collapse
Affiliation(s)
- Yuxin Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Xuewei Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Dongni Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
26
|
Xie M, Bai N, Yang J, Jiang K, Zhou D, Zhao Y, Li D, Niu X, Zhang KQ, Yang J. Protein Kinase Ime2 Is Required for Mycelial Growth, Conidiation, Osmoregulation, and Pathogenicity in Nematode-Trapping Fungus Arthrobotrys oligospora. Front Microbiol 2020; 10:3065. [PMID: 31993040 PMCID: PMC6971104 DOI: 10.3389/fmicb.2019.03065] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022] Open
Abstract
Inducer of meiosis 2 (Ime2), a protein kinase that has been identified in diverse fungal species, functions in the regulation of various cellular processes, such as ascospore formation, pseudohyphal growth, and sexual reproduction. In this study, AoIme2, an ortholog of Saccharomyces cerevisiae Ime2, was characterized in the nematode-trapping fungus Arthrobotrys oligospora. Disruption of the gene Aoime2 caused defective growth, with slower mycelial growth in ΔAoime2 mutants than the wild type (WT) strain, and in the mutants, the number of hyphal septa in mycelia was higher and the number of cell nuclei in mycelia and conidia was considerably lower than in the WT strain. The conidial yields of the ΔAoime2 mutants were decreased by ∼33% relative to the WT strain, and the transcription of several sporulation-related genes, including abaA, fluG, rodA, aspB, velB, and vosA, was markedly downregulated during the conidiation stage. The ΔAoime2 mutants were highly sensitive to the osmotic stressors NaCl and sorbitol, and the cell wall of partial hyphae in the mutants was deformed. Further examination revealed that the cell wall of the traps produced by ΔAoime2 mutants became loose, and that the electron-dense bodies in trap cells were also few than in the WT strain. Moreover, Aoime2 disruption caused a reduction in trap formation and serine-protease production, and most hyphal traps produced by ΔAoime2 mutants did not form an intact hyphal loop; consequently, substantially fewer nematodes were captured by the mutants than by the WT strain. In summary, an Ime2-MAPK is identified here for the first time from a nematode-trapping fungus, and the kinase is shown to be involved in the regulation of mycelial growth and development, conidiation, osmolarity, and pathogenicity in A. oligospora.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Jiangliu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Kexin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Dongni Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
27
|
Xie M, Wang Y, Tang L, Yang L, Zhou D, Li Q, Niu X, Zhang KQ, Yang J. AoStuA, an APSES transcription factor, regulates the conidiation, trap formation, stress resistance and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora. Environ Microbiol 2019; 21:4648-4661. [PMID: 31433890 DOI: 10.1111/1462-2920.14785] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 01/30/2023]
Abstract
The APSES protein family comprises a conserved class of fungus-specific transcriptional regulators. Some members have been identified in partial ascomycetes. In this study, the APSES protein StuA (AoStuA) of the nematode-trapping fungus Arthrobotrys oligospora was characterized. Compared with the wild-type (WT) strain, three ΔAoStuA mutants grew relatively slowly, displayed a 96% reduction in sporulation capacity and a delay in conidial germination. The reduced sporulation capacity correlated with transcriptional repression of several sporulation-related genes. The mutants were also more sensitive to chemical stressors than the WT strain. Importantly, the mutants were unable to produce mycelial traps for nematode predation. Moreover, peroxisomes and Woronin bodies were abundant in the WT cells but hardly found in the cells of those mutants. The lack of such organelles correlated with transcriptional repression of some genes involved in the biogenesis of peroxisomes and Woronin bodies. The transcript levels of several genes involved in the cAMP/PKA signalling pathway were also significantly reduced in the mutants versus the WT strain, implicating a regulatory role of AoStuA in the transcription of genes involved in the cAMP/PKA signalling pathway that regulates an array of cellular processes and events. In particular, AoStuA is indispensable for A. oligospora trap formation and virulence.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong, 675000, P. R. China
| | - Yunchuan Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, P. R. China
| | - Liyan Tang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, P. R. China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, P. R. China
| | - Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, P. R. China
| | - Qing Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, P. R. China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, P. R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, P. R. China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P. R. China.,School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
28
|
Zhang G, Zheng Y, Ma Y, Yang L, Xie M, Zhou D, Niu X, Zhang KQ, Yang J. The Velvet Proteins VosA and VelB Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora. Front Microbiol 2019; 10:1917. [PMID: 31481946 PMCID: PMC6710351 DOI: 10.3389/fmicb.2019.01917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 11/30/2022] Open
Abstract
The velvet family proteins VosA and VelB are involved in growth regulation and differentiation in the model fungus Aspergillus nidulans and other filamentous fungi. In this study, the orthologs of VosA and VelB, AoVosA, and AoVelB, respectively, were characterized in the nematode-trapping fungus Arthrobotrys oligospora, which captures nematodes by producing trapping devices (traps). Deletion of the AovelB gene resulted in growth defects in different media, and the aerial hyphae from the ΔAovelB mutant lines were fewer in number and their colonies were less dense than those from the wild-type (WT) strain. The ΔAovelB mutants each displayed serious sporulation defects, and the transcripts of several sporulation-related genes (e.g., abaA, flbC, rodA, and vosA) were significantly down-regulated compared to those from the WT strain. Furthermore, the ΔAovelB mutant strains became more sensitive to chemical reagents, including sodium dodecyl sulfate and H2O2. Importantly, the ΔAovelB mutants were unable to produce nematode-capturing traps. Similarly, extracellular proteolytic activity was also lower in the ΔAovelB mutants than in the WT strain. In contrast, the ΔAovosA mutants displayed no obvious differences from the WT strain in these phenotypic traits, whereas conidial germination was lower in the ΔAovosA mutants, which became more sensitive to heat shock stress. Our results demonstrate that the velvet protein AoVelB is essential for conidiation, trap formation, and pathogenicity in A. oligospora, while AoVosA plays a role in the regulation of conidial germination and heat shock stress.
Collapse
Affiliation(s)
- Guosheng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Yaqing Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Yuxin Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
29
|
Fang Y, Klosterman SJ, Tian C, Wang Y. Insights into VdCmr1-mediated protection against high temperature stress and UV irradiation in Verticillium dahliae. Environ Microbiol 2019; 21:2977-2996. [PMID: 31136051 DOI: 10.1111/1462-2920.14695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/21/2022]
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on more than 200 plant species worldwide. This fungus can survive for years in soil as melanized microsclerotia. We found that VdCmr1, a transcription factor, is required for the melanin production and increased survival following UV irradiation in V. dahliae but not for microsclerotia production or virulence. Here, we provided evidence how VdCmr1 protects against high temperature (HT) and UV irradiation in V. dahliae. The results indicate that VdCmr1 mediates entry to the diapause period in V. dahliae in response to HT and contributes to the expression of proteins to minimize protein misfolding and denaturation. VdCmr1 deletion results in the misregulation of DNA repair machinery, suggestive of reduced DNA repair capacity following UV irradiation and in correlation with the low survival rate of UV-treated VdCmr1 mutants. We discovered a putative VdCmr1-dependent gene cluster associated with secondary metabolism and stress responses. We also functionally characterized two VdCmr1-responsive genes participating in HT and UV response. These results shed further light on the roles of VdCmr1 in protection from HT or UV irradiation, and the additional insights into the mechanisms of this protection may be useful to exploit for more effective disease control.
Collapse
Affiliation(s)
- Yulin Fang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA, 93905, USA
| | - Chengming Tian
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|