1
|
Choonut A, Wongfaed N, Wongthong L, Poolpol A, Chaikitkaew S, Sittijunda S, Reungsang A. Microbial degradation of polypropylene microplastics and concomitant polyhydroxybutyrate production: An integrated bioremediation approach with metagenomic insights. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137806. [PMID: 40056517 DOI: 10.1016/j.jhazmat.2025.137806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
The persistence of plastics, particularly polypropylene (PP), and their conversion into microplastics (MPs), specifically PP-MPs, have emerged as serious ecological threats to soil and aquatic environments. In the present study, we aimed to isolate a microbial consortium capable of degrading PP-MPs. The results revealed that three microbial consortia (CPP-KKU1, CPP-KKU2, and CPP-KKU3) exhibited the ability to degrade PP-MPs, achieving weight losses ranging from 11.6 ± 0.2 % to 17.8 ± 0.5 % after 30 days. Fourier transform infrared (FTIR) spectroscopy analysis confirmed the degradation through oxidation, as evidenced by the presence of new functional groups (-OH and -C=O). In particular, CPP-KKU3 showed the highest degradation efficiency, with scanning electron microscopy (SEM) analysis revealing surface cracking after treatment. Additionally, gas chromatography-mass spectrometry (GC-MS) analysis identified various intermediate compounds, including heterocyclic aromatic compounds, phenyl groups, methylthio derivatives, and ethoxycarbonyl derivatives, indicating complex biochemical processes that were likely mediated by microbial enzymes. Furthermore, polyhydroxybutyrate (PHB) production by these consortia was also investigated. The result showed that both CPP-KKU2 and CPP-KKU3 successfully produced PHB, with CPP-KKU3 demonstrating superior performance in terms of PP-MP degradation and PHB production. Metagenomic analysis of CPP-KKU3 revealed abundant carbohydrate-active enzymes (CAZymes), particularly glycosyl transferases and glycoside hydrolases, which are associated with MP digestion. This study presents a promising bioremediation approach that addresses plastic waste degradation and sustainable bioplastic production, offering a potential solution for environmental plastic pollution.
Collapse
Affiliation(s)
- Aophat Choonut
- Faculty of Environment and Resource Studies Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nantharat Wongfaed
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lalita Wongthong
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Auraiwan Poolpol
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Srisuda Chaikitkaew
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies Mahidol University, Nakhon Pathom 73170, Thailand; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan, 43600, Malaysia.
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
2
|
Liu YJ, Yan F, Dong W, Sun Y, Wei R, Feng Y. Optimized whole-cell depolymerization of polyethylene terephthalate to monomers using engineered Clostridium thermocellum. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137441. [PMID: 39904161 DOI: 10.1016/j.jhazmat.2025.137441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Polyethylene terephthalate (PET) is a widely produced thermoplastic derived from fossil fuels, and its accumulation and improper waste disposal pose significant environmental concerns. Innovative bio-based recycling technologies have evolved in recent years, offering viable solutions to PET waste-related challenges. While the enzyme-based PET recycling technology utilizing free thermophilic enzymes has already been commercialized, related whole-cell recycling approaches are still in the early stages of research. Here, we improve a Clostridium thermocellum-based whole-cell catalyst for PET depolymerization by integrating beneficial variants of leaf-branch compost cutinase (LCC) into the bacterial chromosome DNA, ensuring stable enzyme expression. We also implement a pH-controlled bioreactor to counteract the pH drop during PET depolymerization, enhancing enzyme stability and stable cell growth. Using this optimized system, we achieve 96.7 % conversion of pretreated waste PET into its monomer, terephthalic acid (TPA), in a 1-L reactor within 10 days. This work demonstrates the potential of whole-cell biocatalysts for efficient PET recycling.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fei Yan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China; Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 8, Greifswald D-17489, Germany.
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Polêto MD, Lemkul JA. Structural and Electronic Properties of Poly(ethylene terephthalate) (PET) from Polarizable Molecular Dynamics Simulations. Macromolecules 2025; 58:403-414. [PMID: 39831292 PMCID: PMC11741139 DOI: 10.1021/acs.macromol.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025]
Abstract
The environmental and economic challenges posed by the widespread use and disposal of plastics, particularly poly(ethylene terephthalate) (PET), require innovative solutions to mitigate their impact. Such mitigation begins with understanding physical properties of the polymer that could enable new recycling technologies. Although molecular simulations have provided valuable insights into PET interactions with various PET hydrolases, current nonpolarizable force fields neglect the electronic polarization effects inherent to PET interactions. Here, we present parameters for PET polymer and its derivatives that are compatible with the Drude polarizable force field. Our parameter fitting protocol accurately reproduces electrostatic properties from quantum mechanical calculations. We then studied electronic properties of PET amorphous slabs and PET crystal units, revealing a crucial electronic polarization response of PET residues at the interface with water or vacuum, yielding insights into the modulation of electrostatic properties by solvent molecules. Finally, we showcase the interaction between a carbohydrate-binding protein and the PET crystal unit, revealing the role of electronic polarization in enhancing binding affinity. This study represents the first extension of the Drude polarizable force field to a synthetic polymer, offering a robust tool for exploring PET material properties and advancing the design of efficient (bio)technologies for addressing plastic pollution.
Collapse
Affiliation(s)
- Marcelo D. Polêto
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Justin A. Lemkul
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Center
for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
4
|
Rennison AP, Prestel A, Westh P, Møller MS. Comparative biochemistry of PET hydrolase-carbohydrate-binding module fusion enzymes on a variety of PET substrates. Enzyme Microb Technol 2024; 180:110479. [PMID: 39047349 DOI: 10.1016/j.enzmictec.2024.110479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Enzyme-driven recycling of PET has now become a fully developed industrial process. With the right pre-treatment, PET can be completely depolymerized within workable timeframes. This has been realized due to extensive research conducted over the past decade, resulting in a large set of engineered PET hydrolases. Among various engineering strategies to enhance PET hydrolases, fusion with binding domains has been used to tune affinity and boost activity of the enzymes. While fusion enzymes have demonstrated higher activity in many cases, these results are primarily observed under conditions that would not be economically viable at scale. Furthermore, the wide variation in PET substrates, conditions, and combinations of PET hydrolases and binding domains complicates direct comparisons. Here, we present a self-consistent and thorough analysis of two leading PET hydrolases, LCCICCG and PHL7. Both enzymes were evaluated both without and with a substrate-binding domain across a range of industrially relevant PET substrates. We demonstrate that the presence of a substrate-binding module does not significantly affect the affinity of LCCICCG and PHL7 for PET. However, significant differences exist in how the fusion enzymes act on different PET substrates and solid substrate loading, ranging from a 3-fold increase in activity to a 6-fold decrease. These findings could inform the tailoring of enzyme choice to different industrial scenarios.
Collapse
Affiliation(s)
- Andrew Philip Rennison
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs Lyngby DK-2800, Denmark
| | - Andreas Prestel
- Department of Biology, Section for Biomolecular Sciences, University of Copenhagen, Ole Maaløes Vej, København N 2200, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs Lyngby DK-2800, Denmark
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, Kgs Lyngby DK-2800, Denmark.
| |
Collapse
|
5
|
Aer L, Jiang Q, Zhong L, Si Q, Liu X, Pan Y, Feng J, Zeng H, Tang L. Optimization of polyethylene terephthalate biodegradation using a self-assembled multi-enzyme cascade strategy. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134887. [PMID: 38901251 DOI: 10.1016/j.jhazmat.2024.134887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Although many efforts have been devoted to the modification of polyethylene terephthalate (PET) hydrolases for improving the efficiency of PET degradation, the catalytic performance of these enzymes at near-ambient temperatures remains a challenge. Herein, a multi-enzyme cascade system (PT-EC) was developed and validated by assembling three well-developed PETases, PETaseEHA, Fast-PETase, and Z1-PETase, respectively, together with carboxylesterase TfCa, and hydrophobic binding module CBM3a using scaffold proteins. The resulting PT-ECEHA, PT-ECFPE, PT-ECZPE all demonstrated outstanding PET degradation efficacy. Notably, PT-ECEHA exhibited a 16.5-fold increase in product release compared to PETaseEHA, and PT-ECZPE yielded the highest amount of product. Subsequently, PT-ECs were displayed on the surface of Escherichia coli, respectively, and their degradation efficiency toward three PET types was investigated. The displayed PT-ECEHA exhibited a 20-fold increase in degradation efficiency with PET film compared to the surface-displayed PETaseEHA. Remarkably, an almost linear increase in product release was observed for the displayed PT-ECZPE over a one-week degradation period, reaching 11.56 ± 0.64 mM after 7 days. TfCaI69W/L281Y evolved using a docking-based virtual screening strategy showed a further 2.5-fold increase in the product release of PET degradation. Collectively, these advantages of PT-EC demonstrated the potential of a multi-enzyme cascade system for PET bio-cycling.
Collapse
Affiliation(s)
- Lizhu Aer
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qifa Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Linling Zhong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiuyue Si
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xianghong Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Pan
- Medical School of University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hongjuan Zeng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
6
|
Silverio MP, Neumann T, Schaubruch K, Heermann R, Pérez-García P, Chow J, Streit WR. Metagenome-derived SusD-homologs affiliated with Bacteroidota bind to synthetic polymers. Appl Environ Microbiol 2024; 90:e0093324. [PMID: 38953372 PMCID: PMC11267923 DOI: 10.1128/aem.00933-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
Starch utilization system (Sus)D-homologs are well known for their carbohydrate-binding capabilities and are part of the sus operon in microorganisms affiliated with the phylum Bacteroidota. Until now, SusD-like proteins have been characterized regarding their affinity toward natural polymers. In this study, three metagenomic SusD homologs (designated SusD1, SusD38489, and SusD70111) were identified and tested with respect to binding to natural and non-natural polymers. SusD1 and SusD38489 are cellulose-binding modules, while SusD70111 preferentially binds chitin. Employing translational fusion proteins with superfolder GFP (sfGFP), pull-down assays, and surface plasmon resonance (SPR) has provided evidence for binding to polyethylene terephthalate (PET) and other synthetic polymers. Structural analysis suggested that a Trp triad might be involved in protein adsorption. Mutation of these residues to Ala resulted in an impaired adsorption to microcrystalline cellulose (MC), but not so to PET and other synthetic polymers. We believe that the characterized SusDs, alongside the methods and considerations presented in this work, will aid further research regarding bioremediation of plastics. IMPORTANCE SusD1 and SusD38489 can be considered for further applications regarding their putative adsorption toward fossil-fuel based polymers. This is the first time that SusD homologs from the polysaccharide utilization loci (PUL), largely described for the phylum Bacteroidota, are characterized as synthetic polymer-binding proteins.
Collapse
Affiliation(s)
| | - Tabea Neumann
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Kirsten Schaubruch
- Institute of Molecular Physiology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Ralf Heermann
- Institute of Molecular Physiology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Pablo Pérez-García
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
7
|
Wang T, Yang WT, Gong YM, Zhang YK, Fan XX, Wang GC, Lu ZH, Liu F, Liu XH, Zhu YS. Molecular engineering of PETase for efficient PET biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116540. [PMID: 38833982 DOI: 10.1016/j.ecoenv.2024.116540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 μM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 μM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.
Collapse
Affiliation(s)
- Tao Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Wen-Tao Yang
- School of Biological Science, Jining Medical University, Jining, China
| | - Yu-Ming Gong
- School of Biological Science, Jining Medical University, Jining, China
| | - Ying-Kang Zhang
- School of Biological Science, Jining Medical University, Jining, China
| | - Xin-Xin Fan
- School of Biological Science, Jining Medical University, Jining, China
| | - Guo-Cheng Wang
- School of Biological Science, Jining Medical University, Jining, China
| | - Zhen-Hua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - Xiao-Huan Liu
- School of Biological Science, Jining Medical University, Jining, China
| | - You-Shuang Zhu
- School of Biological Science, Jining Medical University, Jining, China.
| |
Collapse
|
8
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
9
|
Choi J, Kim H, Ahn YR, Kim M, Yu S, Kim N, Lim SY, Park JA, Ha SJ, Lim KS, Kim HO. Recent advances in microbial and enzymatic engineering for the biodegradation of micro- and nanoplastics. RSC Adv 2024; 14:9943-9966. [PMID: 38528920 PMCID: PMC10961967 DOI: 10.1039/d4ra00844h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024] Open
Abstract
This review examines the escalating issue of plastic pollution, specifically highlighting the detrimental effects on the environment and human health caused by microplastics and nanoplastics. The extensive use of synthetic polymers such as polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS) has raised significant environmental concerns because of their long-lasting and non-degradable characteristics. This review delves into the role of enzymatic and microbial strategies in breaking down these polymers, showcasing recent advancements in the field. The intricacies of enzymatic degradation are thoroughly examined, including the effectiveness of enzymes such as PETase and MHETase, as well as the contribution of microbial pathways in breaking down resilient polymers into more benign substances. The paper also discusses the impact of chemical composition on plastic degradation kinetics and emphasizes the need for an approach to managing the environmental impact of synthetic polymers. The review highlights the significance of comprehending the physical characteristics and long-term impacts of micro- and nanoplastics in different ecosystems. Furthermore, it points out the environmental and health consequences of these contaminants, such as their ability to cause cancer and interfere with the endocrine system. The paper emphasizes the need for advanced analytical methods and effective strategies for enzymatic degradation, as well as continued research and development in this area. This review highlights the crucial role of enzymatic and microbial strategies in addressing plastic pollution and proposes methods to create effective and environmentally friendly solutions.
Collapse
Affiliation(s)
- Jaewon Choi
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hongbin Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Seona Yu
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Nanhyeon Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Su Yeon Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Suk-Jin Ha
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Kwang Suk Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University Chuncheon Korea
- Department of Smart Health Science and Technology, Kangwon National University Chuncheon Korea
| |
Collapse
|
10
|
Qiu J, Chen Y, Zhang L, Wu J, Zeng X, Shi X, Liu L, Chen J. A comprehensive review on enzymatic biodegradation of polyethylene terephthalate. ENVIRONMENTAL RESEARCH 2024; 240:117427. [PMID: 37865324 DOI: 10.1016/j.envres.2023.117427] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/23/2023]
Abstract
Polyethylene terephthalate (PET) is a polymer synthesized via the dehydration and condensation reaction between ethylene glycol and terephthalic acid. PET has emerged as one of the most extensively employed plastic materials due to its exceptional plasticity and durability. Nevertheless, PET has a complex structure and is extremely difficult to degrade in nature, causing severe pollution to the global ecological environment and posing a threat to human health. Currently, the methods for PET processing mainly include physical, chemical, and biological methods. Biological enzyme degradation is considered the most promising PET degradation method. In recent years, an increasing number of enzymes that can degrade PET have been identified, and they primarily target the ester bond of PET. This review comprehensively introduced the latest research progress in PET enzymatic degradation from the aspects of PET-degrading enzymes, PET biodegradation pathways, the catalytic mechanism of PET-degrading enzymes, and biotechnological strategies for enhancing PET-degrading enzymes. On this basis, the current challenges within the enzymatic PET degradation process were summarized, and the directions that need to be worked on in the future were pointed out. This review provides a reference and basis for the subsequent effective research on PET biodegradation.
Collapse
Affiliation(s)
- Jiarong Qiu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China; Development Center of Science and Education Park of Fuzhou University, Jinjiang, 362251, China
| | - Yuxin Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Liangqing Zhang
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China; Development Center of Science and Education Park of Fuzhou University, Jinjiang, 362251, China.
| | - Jinzhi Wu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Xinguo Shi
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Lemian Liu
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| | - Jianfeng Chen
- School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
| |
Collapse
|
11
|
Hu X, Gu H, Sun X, Wang Y, Liu J, Yu Z, Li Y, Jin J, Wang G. Metagenomic exploration of microbial and enzymatic traits involved in microplastic biodegradation. CHEMOSPHERE 2024; 348:140762. [PMID: 38006912 DOI: 10.1016/j.chemosphere.2023.140762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/08/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023]
Abstract
Agricultural mulch films are frequently applied to achieve high yield, resulting in large quantities of microplastic (MP) pollution in agroecosystem. However, studies focusing specifically on the diversity of MP-degrading enzymes and related microbial communities have yet to be conducted. Here, we established a soil microcosmic incubation with addition of 5% (w/w) conventional (low-density polyethylene (LDPE)) and biodegradable (blend of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT)) MPs for incubation 90 days. The DNA samples extracted from soils and plastisphere of MPs were examined by metagenomics and genome binning methods, specifically targeting carbohydrate-active enzymes (CAZymes) and plastic-degrading enzymes (PDZymes). The results revealed that plastisphere of MPs exhibited significantly distinct patterns of CAZymes and PDZymes from soils, and abundances of all examined exoenzymes were higher in plastisphere than those in soils. Plastisphere of LDPE-MPs selectively enriched proteases and alkane monooxygenase (alkB), and required families of carbohydrate-binding module (CBM) to increase the binding of CAZymes with MPs. Dissimilarly, diverse CAZymes with high abundances were observed in the plastisphere of PBAT-PLA MPs and esterases were important indicative PDZymes for PBAT-PLA degradation. The enriched exoenzymes in plastisphere of LDPE-MPs were mainly assigned to Actinobacteria while Proteobacteria with higher abundance in plastisphere of PBAT-PLA MPs containing most indicative exoenzymes. Moreover, a high-quality genome classified as Amycolatopsis japonica was reconstructed and found to contain one or more gene copies of indicative exoenzymes for polyethylene. Two novel genomes classified as Sphingomonas were selectively enriched in plastisphere of PBAT-PLA MPs and contained diverse genes encoding degrading exoenzymes. Taken together, our study highlighted the CAZymes and PDZymes can be exploited as potent microbial strategies for solving MPs pollution in croplands.
Collapse
Affiliation(s)
- Xiaojing Hu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Haidong Gu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xiangxin Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongbin Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Junjie Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Yansheng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Jian Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Guanghua Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
12
|
Sui B, Wang T, Fang J, Hou Z, Shu T, Lu Z, Liu F, Zhu Y. Recent advances in the biodegradation of polyethylene terephthalate with cutinase-like enzymes. Front Microbiol 2023; 14:1265139. [PMID: 37849919 PMCID: PMC10577388 DOI: 10.3389/fmicb.2023.1265139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023] Open
Abstract
Polyethylene terephthalate (PET) is a synthetic polymer in the polyester family. It is widely found in objects used daily, including packaging materials (such as bottles and containers), textiles (such as fibers), and even in the automotive and electronics industries. PET is known for its excellent mechanical properties, chemical resistance, and transparency. However, these features (e.g., high hydrophobicity and high molecular weight) also make PET highly resistant to degradation by wild-type microorganisms or physicochemical methods in nature, contributing to the accumulation of plastic waste in the environment. Therefore, accelerated PET recycling is becoming increasingly urgent to address the global environmental problem caused by plastic wastes and prevent plastic pollution. In addition to traditional physical cycling (e.g., pyrolysis, gasification) and chemical cycling (e.g., chemical depolymerization), biodegradation can be used, which involves breaking down organic materials into simpler compounds by microorganisms or PET-degrading enzymes. Lipases and cutinases are the two classes of enzymes that have been studied extensively for this purpose. Biodegradation of PET is an attractive approach for managing PET waste, as it can help reduce environmental pollution and promote a circular economy. During the past few years, great advances have been accomplished in PET biodegradation. In this review, current knowledge on cutinase-like PET hydrolases (such as TfCut2, Cut190, HiC, and LCC) was described in detail, including the structures, ligand-protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts were highlighted, such as improving the PET hydrolytic activity by constructing fusion proteins. The review is expected to provide novel insights for the biodegradation of complex polymers.
Collapse
Affiliation(s)
- Beibei Sui
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Jingxiang Fang
- Rizhao Administration for Market Regulation, Rizhao, Shandong, China
| | - Zuoxuan Hou
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Ting Shu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Zhenhua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fei Liu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| | - Youshuang Zhu
- School of Biological Science, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
13
|
Liu F, Wang T, Yang W, Zhang Y, Gong Y, Fan X, Wang G, Lu Z, Wang J. Current advances in the structural biology and molecular engineering of PETase. Front Bioeng Biotechnol 2023; 11:1263996. [PMID: 37795175 PMCID: PMC10546322 DOI: 10.3389/fbioe.2023.1263996] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Poly(ethylene terephthalate) (PET) is a highly useful synthetic polyester plastic that is widely used in daily life. However, the increase in postconsumer PET as plastic waste that is recalcitrant to biodegradation in landfills and the natural environment has raised worldwide concern. Currently, traditional PET recycling processes with thermomechanical or chemical methods also result in the deterioration of the mechanical properties of PET. Therefore, it is urgent to develop more efficient and green strategies to address this problem. Recently, a novel mesophilic PET-degrading enzyme (IsPETase) from Ideonella sakaiensis was found to streamline PET biodegradation at 30°C, albeit with a lower PET-degrading activity than chitinase or chitinase-like PET-degrading enzymes. Consequently, the molecular engineering of more efficient PETases is still required for further industrial applications. This review details current knowledge on IsPETase, MHETase, and IsPETase-like hydrolases, including the structures, ligand‒protein interactions, and rational protein engineering for improved PET-degrading performance. In particular, applications of the engineered catalysts are highlighted, including metabolic engineering of the cell factories, enzyme immobilization or cell surface display. The information is expected to provide novel insights for the biodegradation of complex polymers.
Collapse
Affiliation(s)
- Fei Liu
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Tao Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Wentao Yang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yingkang Zhang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Yuming Gong
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Xinxin Fan
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Guocheng Wang
- School of Biological Science, Jining Medical University, Rizhao, China
| | - Zhenhua Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Wang
- School of Pharmacy, Jining Medical University, Rizhao, China
| |
Collapse
|
14
|
Ji X, Peng Z, Song J, Zhang G, Zhang J. Fusion of Substrate-Binding Domains Enhances the Catalytic Capacity of Keratinases and Promotes Enzymatic Conversion of Feather Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11579-11586. [PMID: 37462367 DOI: 10.1021/acs.jafc.3c03064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The unique role of keratinases in keratin hydrolysis has garnered huge interest in the recovery of feather waste. However, owing to the high hydrophobicity of feather keratins, the catalytic capacity of keratinases for hydrolyzing feathers is typically low. In this study, we aimed to improve the keratinase feather hydrolysis efficiency by fusing a substrate-binding domain into the enzyme. We screened several carbohydrate-binding modules (CBMs) and linking peptides. We selected the most promising candidates to construct, clone, and express a fusion keratinase enzyme KerZ1/CBM-L8 with a feather hydrolysis efficiency of 7.8 × 10-8 g/U. Compared with those of KerZ1, KerZ1/CBM-L8 has a feather hydrolysis efficiency that is 2.71 times higher, a kcat value that is 179% higher, which translates to higher catalytic efficiency, and Km and binding constant (K) values that are lower, which indicate a higher KerZ1/CBM-L8-keratin binding affinity. Moreover, the number of binding sites to the substrate (N), determined using isothermal titration calorimetry, was 24.1 times higher than that of KerZ1. Thus, the fusion of the substrate-binding domain improved the binding ability of the keratinase enzyme to the hydrophobic substrate, which improved its feather hydrolysis efficiency. Therefore, using the fusion keratinase would significantly improve the recovery of feather waste.
Collapse
Affiliation(s)
- Xiaomei Ji
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guoqiang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Rennison AP, Westh P, Møller MS. Protein-plastic interactions: The driving forces behind the high affinity of a carbohydrate-binding module for polyethylene terephthalate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161948. [PMID: 36739021 DOI: 10.1016/j.scitotenv.2023.161948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Polyethylene terephthalate (PET) waste is a common pollutant in the environment, mainly due to resistance of the plastic to bio-degradation. Nevertheless, hydrolytic enzymes have been identified with activity on this substrate, which are continually being engineered to increase activity. Some insoluble biological polymers are degraded by enzymes with a multi-domain architecture, comprising of a catalytic domain, and a substrate-binding domain, such as a carbohydrate-binding module (CBM). Enzymes that degrade PET have been shown to have a higher activity when fused with these CBMs, indicating a promising route for engineering better enzymes for plastic bioprocessing. However, no detailed study of the affinity and binding mechanism of these domains on PET has yet been made. Here, we perform an in depth analysis of a binding domain from CBM family 2 on PET, showing that the affinity of the protein for the plastic is highly dependent on temperature and crystallinity of the plastic. We also investigate the mechanism of the interaction, and show how affinity may be engineered in both directions. CBM affinity for other synthetic polymers is also demonstrated for the first time. Our results demonstrate that the substrate affinity of fusion enzymes with binding modules can be tuned to the desired level.
Collapse
Affiliation(s)
- Andrew Philip Rennison
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | - Marie Sofie Møller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
16
|
Determinants for an Efficient Enzymatic Catalysis in Poly(Ethylene Terephthalate) Degradation. Catalysts 2023. [DOI: 10.3390/catal13030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The enzymatic degradation of the recalcitrant poly(ethylene terephthalate) (PET) has been an important biotechnological goal. The present review focuses on the state of the art in enzymatic degradation of PET, and the challenges ahead. This review covers (i) enzymes acting on PET, (ii) protein improvements through selection or engineering, (iii) strategies to improve biocatalyst–polymer interaction and monomer yields. Finally, this review discusses critical points on PET degradation, and their related experimental aspects, that include the control of physicochemical parameters. The search for, and engineering of, PET hydrolases, have been widely studied to achieve this, and several examples are discussed here. Many enzymes, from various microbial sources, have been studied and engineered, but recently true PET hydrolases (PETases), active at moderate temperatures, were reported. For a circular economy process, terephtalic acid (TPA) production is critical. Some thermophilic cutinases and engineered PETases have been reported to release terephthalic acid in significant amounts. Some bottlenecks in enzyme performance are discussed, including enzyme activity, thermal stability, substrate accessibility, PET microstructures, high crystallinity, molecular mass, mass transfer, and efficient conversion into reusable fragments.
Collapse
|
17
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
18
|
Chen Y, Zhang S, Zhai Z, Zhang S, Ma J, Liang X, Li Q. Construction of Fusion Protein with Carbohydrate-Binding Module and Leaf-Branch Compost Cutinase to Enhance the Degradation Efficiency of Polyethylene Terephthalate. Int J Mol Sci 2023; 24:2780. [PMID: 36769118 PMCID: PMC9917269 DOI: 10.3390/ijms24032780] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Poly(ethylene terephthalate) (PET) is a manufactured plastic broadly available, whereas improper disposal of PET waste has become a serious burden on the environment. Leaf-branch compost cutinase (LCC) is one of the most powerful and promising PET hydrolases, and its mutant LCCICCG shows high catalytic activity and excellent thermal stability. However, low binding affinity with PET has been found to dramatically limit its further industrial application. Herein, TrCBM and CfCBM were rationally selected from the CAZy database to construct fusion proteins with LCCICCG, and mechanistic studies revealed that these two domains could bind with PET favorably via polar amino acids. The optimal temperatures of LCCICCG-TrCBM and CfCBM-LCCICCG were measured to be 70 and 80 °C, respectively. Moreover, these two fusion proteins exhibited favorable thermal stability, maintaining 53.1% and 48.8% of initial activity after the incubation at 90 °C for 300 min. Compared with LCCICCG, the binding affinity of LCCICCG-TrCBM and CfCBM-LCCICCG for PET has been improved by 1.4- and 1.3-fold, respectively, and meanwhile their degradation efficiency on PET films was enhanced by 3.7% and 24.2%. Overall, this study demonstrated that the strategy of constructing fusion proteins is practical and prospective to facilitate the enzymatic PET degradation ability.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Mrigwani A, Thakur B, Guptasarma P. Counter-intuitive enhancement of degradation of polyethylene terephthalate through engineering of lowered enzyme binding to solid plastic. Proteins 2023; 91:807-821. [PMID: 36629323 DOI: 10.1002/prot.26468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Degradation of solid polyethylene terephthalate (PET) by leaf branch compost cutinase (LCC) produces various PET-derived degradation intermediates (DIs), in addition to terephthalic acid (TPA), which is the recyclable terminal product of all PET degradation. Although DIs can also be converted into TPA, in solution, by LCC, the TPA that is obtained through enzymatic degradation of PET, in practice, is always contaminated by DIs. Here, we demonstrate that the primary reason for non-degradation of DIs into TPA in solution is the efficient binding of LCC onto the surface of solid PET. Although such binding enhances the degradation of solid PET, it depletes the surrounding solution of enzyme that could otherwise have converted DIs into TPA. To retain a subpopulation of enzyme in solution that would mainly degrade DIs, we introduced mutations to reduce the hydrophobicity of areas surrounding LCC's active site, with the express intention of reducing LCC's binding to solid PET. Despite the consequent reduction in invasion and degradation of solid PET, overall levels of production of TPA were ~3.6-fold higher, due to the partitioning of enzyme between solid PET and the surrounding solution, and the consequent heightened production of TPA from DIs. Further, synergy between such mutated LCC (F125L/F243I LCC) and wild-type LCC resulted in even higher yields, and TPA of nearly ~100% purity.
Collapse
Affiliation(s)
- Arpita Mrigwani
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| | - Bhishem Thakur
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| | - Purnananda Guptasarma
- Centre for Protein Science, Design and Engineering (CPSDE) and Hyperthermophile Enzyme Hydrolase Research Centre (HEHRC), Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Punjab, India
| |
Collapse
|
20
|
Hwang DH, Lee ME, Cho BH, Oh JW, You SK, Ko YJ, Hyeon JE, Han SO. Enhanced biodegradation of waste poly(ethylene terephthalate) using a reinforced plastic degrading enzyme complex. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156890. [PMID: 35753492 DOI: 10.1016/j.scitotenv.2022.156890] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/28/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Poly(ethylene terephthalate) (PET) is synthesized via a rich ester bond between terephthalate (TPA) and ethylene glycol (EG). Because of this, PET degradation takes a long time and PET accumulates in the environment. Many studies have been conducted to improve PET degrading enzyme to increase the efficiency of PET depolymerization. However, enzymatic PET decomposition is still restricted, making upcycling and recycling difficult. Here, we report a novel PET degrading complex composed of Ideonella sakaiensis PETase and Candida antarctica lipase B (CALB) that improves degradability, binding ability and enzyme stability. The reaction mechanism of chimeric PETase (cPETase) and chimeric CALB (cCALB) was confirmed by PET and bis (2-hydroxyethyl terephthalate) (BHET). cPETase generated BHET and mono (2-hydroxyethyl terephthalate (MHET) and cCALB produced terephthalate (TPA). Carbohydrate binding module 3 (CBM3) in the scaffolding protein greatly improved PET film binding affinity. Finally, the final enzyme complex demonstrated a 6.5-fold and 8.0-fold increase in the efficiency of hydrolysis from PET with either high crystalline or waste to TPA than single enzymes, respectively. This complex could effectively break down waste PET while maintaining enzyme stability and would be applied for biological upcycling of TPA.
Collapse
Affiliation(s)
- Dong-Hyeok Hwang
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Myeong-Eun Lee
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Byeong-Hyeon Cho
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jun Won Oh
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seung Kyou You
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Next Generation Applied Sciences, The Graduate School of Sungshin University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
21
|
Liu Y, Wang P, Tian J, Seidi F, Guo J, Zhu W, Xiao H, Song J. Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers (Basel) 2022; 14:1806. [PMID: 35566977 PMCID: PMC9100146 DOI: 10.3390/polym14091806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Great interests have recently been aroused in the independent associative domain of glycoside hydrolases that utilize insoluble polysaccharides-carbohydrate-binding module (CBM), which responds to binding while the catalytic domain reacts with the substrate. In this mini-review, we first provide a brief introduction on CBM and its subtypes including the classifications, potential sources, structures, and functions. Afterward, the applications of CBMs in substrate recognition based on different types of CBMs have been reviewed. Additionally, the progress of CBMs in paper industry as a new type of environmentally friendly auxiliary agent for fiber treatment is summarized. At last, other applications of CBMs and the future outlook have prospected. Due to the specificity in substrate recognition and diversity in structures, CBM can be a prosperous and promising 'tool' for wood and fiber processing in the future.
Collapse
Affiliation(s)
- Yena Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Peipei Wang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jing Tian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jiaqi Guo
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Wenyuan Zhu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| |
Collapse
|
22
|
Wei R, von Haugwitz G, Pfaff L, Mican J, Badenhorst CP, Liu W, Weber G, Austin HP, Bednar D, Damborsky J, Bornscheuer UT. Mechanism-Based Design of Efficient PET Hydrolases. ACS Catal 2022; 12:3382-3396. [PMID: 35368328 PMCID: PMC8939324 DOI: 10.1021/acscatal.1c05856] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Indexed: 01/06/2023]
Abstract
Polyethylene terephthalate (PET) is the most widespread synthetic polyester, having been utilized in textile fibers and packaging materials for beverages and food, contributing considerably to the global solid waste stream and environmental plastic pollution. While enzymatic PET recycling and upcycling have recently emerged as viable disposal methods for a circular plastic economy, only a handful of benchmark enzymes have been thoroughly described and subjected to protein engineering for improved properties over the last 16 years. By analyzing the specific material properties of PET and the reaction mechanisms in the context of interfacial biocatalysis, this Perspective identifies several limitations in current enzymatic PET degradation approaches. Unbalanced enzyme-substrate interactions, limited thermostability, and low catalytic efficiency at elevated reaction temperatures, and inhibition caused by oligomeric degradation intermediates still hamper industrial applications that require high catalytic efficiency. To overcome these limitations, successful protein engineering studies using innovative experimental and computational approaches have been published extensively in recent years in this thriving research field and are summarized and discussed in detail here. The acquired knowledge and experience will be applied in the near future to address plastic waste contributed by other mass-produced polymer types (e.g., polyamides and polyurethanes) that should also be properly disposed by biotechnological approaches.
Collapse
Affiliation(s)
- Ren Wei
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Gerlis von Haugwitz
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Lara Pfaff
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Jan Mican
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Christoffel P.
S. Badenhorst
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Weidong Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin, 300308, China
| | - Gert Weber
- Macromolecular
Crystallography, Helmholtz-Zentrum Berlin
für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany
| | - Harry P. Austin
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, 625 00 Brno, Czech Republic
- International
Clinical Research Center, St. Anne’s University Hospital and
Faculty of Medicine, Masaryk University, 656 91 Brno, Czech Republic
| | - Uwe T. Bornscheuer
- Institute
of Biochemistry, Department of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| |
Collapse
|
23
|
Enhancement of PET biodegradation by anchor peptide-cutinase fusion protein. Enzyme Microb Technol 2022; 156:110004. [DOI: 10.1016/j.enzmictec.2022.110004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/04/2021] [Accepted: 01/31/2022] [Indexed: 11/18/2022]
|
24
|
Xue R, Chen Y, Rong H, Wei R, Cui Z, Zhou J, Dong W, Jiang M. Fusion of Chitin-Binding Domain From Chitinolyticbacter meiyuanensis SYBC-H1 to the Leaf-Branch Compost Cutinase for Enhanced PET Hydrolysis. Front Bioeng Biotechnol 2021; 9:762854. [PMID: 34976965 PMCID: PMC8715031 DOI: 10.3389/fbioe.2021.762854] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Polyethylene terephthalate (PET) is a mass-produced petroleum-based non-biodegradable plastic that contributes to the global plastic pollution. Recently, biocatalytic degradation has emerged as a viable recycling approach for PET waste, especially with thermophilic polyester hydrolases such as a cutinase (LCC) isolated from a leaf-branch compost metagenome and its variants. To improve the enzymatic PET hydrolysis performance, we fused a chitin-binding domain (ChBD) from Chitinolyticbacter meiyuanensis SYBC-H1 to the C-terminus of the previously reported LCCICCG variant, demonstrating higher adsorption to PET substrates and, as a result, improved degradation performance by up to 19.6% compared to with its precursor enzyme without the binding module. For compare hydrolysis with different binding module, the catalytic activity of LCCICCG-ChBD, LCCICCG-CBM, LCCICCG-PBM and LCCICCG-HFB4 were further investigated with PET substrates of various crystallinity and it showed measurable activity on high crystalline PET with 40% crystallinity. These results indicated that fusing a polymer-binding module to LCCICCG is a promising method stimulating the enzymatic hydrolysis of PET.
Collapse
Affiliation(s)
- Rui Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yinping Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Huan Rong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Ren Wei
- Junior Research Group Plastic Biodegradation, Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, College of Life Science, Nanjing Agriculture University, Nanjing, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
25
|
Zerva A, Pentari C, Ferousi C, Nikolaivits E, Karnaouri A, Topakas E. Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2021; 342:126058. [PMID: 34597805 DOI: 10.1016/j.biortech.2021.126058] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The field of enzymatic degradation of lignocellulose is actively growing and the recent updates of the last few years indicate that there is still much to learn. The growing number of protein sequences with unknown function in microbial genomes indicates that there is still much to learn on the mechanisms of lignocellulose degradation. In this review, a summary of the progress in the field is presented, including recent discoveries on the nature of the structural polysaccharides, new technologies for the discovery and functional annotation of gene sequences including omics technologies, and the novel lignocellulose-acting enzymes described. Novel enzymatic activities and enzyme families as well as accessory enzymes and their synergistic relationships regarding biomass breakdown are described. Moreover, it is shown that all the valuable knowledge of the enzymatic decomposition of plant biomass polymers can be employed towards the decomposition and upgrading of synthetic polymers, such as plastics.
Collapse
Affiliation(s)
- Anastasia Zerva
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Pentari
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Christina Ferousi
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Anthi Karnaouri
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece; Biochemical Process Engineering, Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden.
| |
Collapse
|
26
|
In-Situ Growth of Nucleus Geometry to Dual Types of Periodically Ringed Assemblies in Poly(nonamethylene terephthalate). CRYSTALS 2021. [DOI: 10.3390/cryst11111338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring of nucleus geometry and growth into dual types of periodically ring-banded morphology in poly(nonamethylene terephthalate) (PNT), respectively, Type-1 and Type-2, are done with detailed analyses using polarized-light optical microscopy (POM) in-situ CCD recording; the periodic assembly morphologies are characterized using atomic-force microscopy (AFM) and scanning electron microscopy (SEM). Different annealing treatments (Tmax = 110, 120, 130 °C) are accomplished at a crystallization temperature of 85 °C; effects on the nucleus geometry, number (25–10%) and volume fractions (33–15%) of Type-2 among two types of banded PNT spherulites are expounded. Growth of a specific type of periodically banded PNT spherulite is initiated from either highly elongated sheaf-like or well-rounded nuclei, with the final grown lamellae being self-packed as multi-shell structures. Nucleation geometry and crystallization parameters collectively lead to development of multiple types of banded PNT spherulites of different relative fractions.
Collapse
|
27
|
Carniel A, Waldow VDA, Castro AMD. A comprehensive and critical review on key elements to implement enzymatic PET depolymerization for recycling purposes. Biotechnol Adv 2021; 52:107811. [PMID: 34333090 DOI: 10.1016/j.biotechadv.2021.107811] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
Abstract
Plastics production and recycling chains must be refitted to a circular economy. Poly(ethylene terephthalate) (PET) is especially suitable for recycling because of its hydrolysable ester bonds and high environmental impact due to employment in single-use packaging, so that recycling processes utilizing enzymes are a promising biotechnological route to monomer recovery. However, enzymatic PET depolymerization still faces challenges to become a competitive route at an industrial level. In this review, PET characteristics as a substrate for enzymes are discussed, as well as the analytical methods used to evaluate the reaction progress. A comprehensive view on the biocatalysts used is discussed. Subsequently, different strategies pursued to improve enzymatic PET depolymerization are presented, including enzyme modification through mutagenesis, utilization of multiple enzymes, improvement of the interaction between enzymes and the hydrophobic surface of PET, and various reaction conditions (e.g., particle size, reaction medium, agitation, and additives). All scientific developments regarding these different aspects of PET depolymerization are crucial to offer a scalable and competitive technology. However, they must be integrated into global processes from upstream to downstream, discussed here at the final sections, which must be evaluated for their economic feasibility and life cycle assessment to check if PET recycling chains can be broadly incorporated into the future circular economy.
Collapse
Affiliation(s)
- Adriano Carniel
- School of Chemistry, Federal University of Rio de Janeiro (UFRJ) - Cidade Universitária, Rio de Janeiro, RJ CEP 21949-900, Brazil
| | - Vinicius de Abreu Waldow
- Petrobras Research, Development and Innovation Center (Cenpes), Av. Horácio Macedo, n° 950 - Cidade Universitária, Rio de Janeiro, RJ CEP 21941-915, Brazil
| | - Aline Machado de Castro
- Petrobras Research, Development and Innovation Center (Cenpes), Av. Horácio Macedo, n° 950 - Cidade Universitária, Rio de Janeiro, RJ CEP 21941-915, Brazil.
| |
Collapse
|
28
|
Nakamura A, Kobayashi N, Koga N, Iino R. Positive Charge Introduction on the Surface of Thermostabilized PET Hydrolase Facilitates PET Binding and Degradation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01204] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Akihiko Nakamura
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka, Shizuoka, 422-8529, Japan
| | - Naoya Kobayashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Nobuyasu Koga
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan
| | - Ryota Iino
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
- School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
29
|
Vogel K, Wei R, Pfaff L, Breite D, Al-Fathi H, Ortmann C, Estrela-Lopis I, Venus T, Schulze A, Harms H, Bornscheuer UT, Maskow T. Enzymatic degradation of polyethylene terephthalate nanoplastics analyzed in real time by isothermal titration calorimetry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145111. [PMID: 33940717 DOI: 10.1016/j.scitotenv.2021.145111] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Plastics are globally used for a variety of benefits. As a consequence of poor recycling or reuse, improperly disposed plastic waste accumulates in terrestrial and aquatic ecosystems to a considerable extent. Large plastic waste items become fragmented to small particles through mechanical and (photo)chemical processes. Particles with sizes ranging from millimeter (microplastics, <5 mm) to nanometer (nanoplastics, NP, <100 nm) are apparently persistent and have adverse effects on ecosystems and human health. Current research therefore focuses on whether and to what extent microorganisms or enzymes can degrade these NP. In this study, we addressed the question of what information isothermal titration calorimetry, which tracks the heat of reaction of the chain scission of a polyester, can provide about the kinetics and completeness of the degradation process. The majority of the heat represents the cleavage energy of the ester bonds in polymer backbones providing real-time kinetic information. Calorimetry operates even in complex matrices. Using the example of the cutinase-catalyzed degradation of polyethylene terephthalate (PET) nanoparticles, we found that calorimetry (isothermal titration calorimetry-ITC) in combination with thermokinetic models is excellently suited for an in-depth analysis of the degradation processes of NP. For instance, we can separately quantify i) the enthalpy of surface adsorption ∆AdsH = 129 ± 2 kJ mol-1, ii) the enthalpy of the cleavage of the ester bonds ∆EBH = -58 ± 1.9 kJ mol-1 and the apparent equilibrium constant of the enzyme substrate complex K = 0.046 ± 0.015 g L-1. It could be determined that the heat production of PET NP degradation depends to 95% on the reaction heat and only to 5% on the adsorption heat. The fact that the percentage of cleaved ester bonds (η = 12.9 ± 2.4%) is quantifiable with the new method is of particular practical importance. The new method promises a quantification of enzymatic and microbial adsorption to NP and their degradation in mimicked real-world aquatic conditions.
Collapse
Affiliation(s)
- Kristina Vogel
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, D-04318 Leipzig, Germany; Institute for Drug Discovery, Leipzig University Medical School, Leipzig University, Bruederstr, 34, D-04103 Leipzig, Germany
| | - Ren Wei
- Department of Biotechnology and Enzyme Catalysis, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Lara Pfaff
- Department of Biotechnology and Enzyme Catalysis, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Daniel Breite
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany
| | - Hassan Al-Fathi
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
| | | | - Irina Estrela-Lopis
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr, 16-18, D-04107 Leipzig, Germany
| | - Tom Venus
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr, 16-18, D-04107 Leipzig, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, D-04318 Leipzig, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology and Enzyme Catalysis, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany
| | - Thomas Maskow
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, D-04318 Leipzig, Germany.
| |
Collapse
|
30
|
Dissanayake L, Jayakody LN. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate. Front Bioeng Biotechnol 2021; 9:656465. [PMID: 34124018 PMCID: PMC8193722 DOI: 10.3389/fbioe.2021.656465] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022] Open
Abstract
Polyethylene terephthalate (PET) is globally the largest produced aromatic polyester with an annual production exceeding 50 million metric tons. PET can be mechanically and chemically recycled; however, the extra costs in chemical recycling are not justified when converting PET back to the original polymer, which leads to less than 30% of PET produced annually to be recycled. Hence, waste PET massively contributes to plastic pollution and damaging the terrestrial and aquatic ecosystems. The global energy and environmental concerns with PET highlight a clear need for technologies in PET "upcycling," the creation of higher-value products from reclaimed PET. Several microbes that degrade PET and corresponding PET hydrolase enzymes have been successfully identified. The characterization and engineering of these enzymes to selectively depolymerize PET into original monomers such as terephthalic acid and ethylene glycol have been successful. Synthetic microbiology and metabolic engineering approaches enable the development of efficient microbial cell factories to convert PET-derived monomers into value-added products. In this mini-review, we present the recent progress of engineering microbes to produce higher-value chemical building blocks from waste PET using a wholly biological and a hybrid chemocatalytic-biological strategy. We also highlight the potent metabolic pathways to bio-upcycle PET into high-value biotransformed molecules. The new synthetic microbes will help establish the circular materials economy, alleviate the adverse energy and environmental impacts of PET, and provide market incentives for PET reclamation.
Collapse
Affiliation(s)
- Lakshika Dissanayake
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
| | - Lahiru N. Jayakody
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, United States
- Fermentation Science Institute, Southern Illinois University, Carbondale, IL, United States
| |
Collapse
|
31
|
From lignocellulose to plastics: Knowledge transfer on the degradation approaches by fungi. Biotechnol Adv 2021; 50:107770. [PMID: 33989704 DOI: 10.1016/j.biotechadv.2021.107770] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
In this review, we argue that there is much to be learned by transferring knowledge from research on lignocellulose degradation to that on plastic. Plastic waste accumulates in the environment to hazardous levels, because it is inherently recalcitrant to biological degradation. Plants evolved lignocellulose to be resistant to degradation, but with time, fungi became capable of utilising it for their nutrition. Examples of how fungal strategies to degrade lignocellulose could be insightful for plastic degradation include how fungi overcome the hydrophobicity of lignin (e.g. production of hydrophobins) and crystallinity of cellulose (e.g. oxidative approaches). In parallel, knowledge of the methods for understanding lignocellulose degradation could be insightful such as advanced microscopy, genomic and post-genomic approaches (e.g. gene expression analysis). The known limitations of biological lignocellulose degradation, such as the necessity for physiochemical pretreatments for biofuel production, can be predictive of potential restrictions of biological plastic degradation. Taking lessons from lignocellulose degradation for plastic degradation is also important for biosafety as engineered plastic-degrading fungi could also have increased plant biomass degrading capabilities. Even though plastics are significantly different from lignocellulose because they lack hydrolysable C-C or C-O bonds and therefore have higher recalcitrance, there are apparent similarities, e.g. both types of compounds are mixtures of hydrophobic polymers with amorphous and crystalline regions, and both require hydrolases and oxidoreductases for their degradation. Thus, many lessons could be learned from fungal lignocellulose degradation.
Collapse
|
32
|
Zhu B, Wang D, Wei N. Enzyme Discovery and Engineering for Sustainable Plastic Recycling. Trends Biotechnol 2021; 40:22-37. [PMID: 33676748 DOI: 10.1016/j.tibtech.2021.02.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The drastically increasing amount of plastic waste is causing an environmental crisis that requires innovative technologies for recycling post-consumer plastics to achieve waste valorization while meeting environmental quality goals. Biocatalytic depolymerization mediated by enzymes has emerged as an efficient and sustainable alternative for plastic treatment and recycling. A variety of plastic-degrading enzymes have been discovered from microbial sources. Meanwhile, protein engineering has been exploited to modify and optimize plastic-degrading enzymes. This review highlights the recent trends and up-to-date advances in mining novel plastic-degrading enzymes through state-of-the-art omics-based techniques and improving the enzyme catalytic efficiency and stability via various protein engineering strategies. Future research prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Baotong Zhu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Dong Wang
- Department of Computer Science and Engineering, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, Indiana 46556, USA.
| |
Collapse
|
33
|
Bååth JA, Borch K, Jensen K, Brask J, Westh P. Comparative Biochemistry of Four Polyester (PET) Hydrolases*. Chembiochem 2021; 22:1627-1637. [PMID: 33351214 DOI: 10.1002/cbic.202000793] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/22/2020] [Indexed: 11/08/2022]
Abstract
The potential of bioprocessing in a circular plastic economy has strongly stimulated research into the enzymatic degradation of different synthetic polymers. Particular interest has been devoted to the commonly used polyester, poly(ethylene terephthalate) (PET), and a number of PET hydrolases have been described. However, a kinetic framework for comparisons of PET hydrolases (or other plastic-degrading enzymes) acting on the insoluble substrate has not been established. Herein, we propose such a framework, which we have tested against kinetic measurements for four PET hydrolases. The analysis provided values of kcat and KM , as well as an apparent specificity constant in the conventional units of M-1 s-1 . These parameters, together with experimental values for the number of enzyme attack sites on the PET surface, enabled comparative analyses. A variant of the PET hydrolase from Ideonella sakaiensis was the most efficient enzyme at ambient conditions; it relied on a high kcat rather than a low KM . Moreover, both soluble and insoluble PET fragments were consistently hydrolyzed much faster than intact PET. This suggests that interactions between polymer strands slow down PET degradation, whereas the chemical steps of catalysis and the low accessibility associated with solid substrate were less important for the overall rate. Finally, the investigated enzymes showed a remarkable substrate affinity, and reached half the saturation rate on PET when the concentration of attack sites in the suspension was only about 50 nM. We propose that this is linked to nonspecific adsorption, which promotes the nearness of enzyme and attack sites.
Collapse
Affiliation(s)
- Jenny Arnling Bååth
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs., Lyngby, Denmark
| | - Kim Borch
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs., Lyngby, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs., Lyngby, Denmark
| | - Jesper Brask
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs., Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
34
|
Pfaff L, Breite D, Badenhorst CPS, Bornscheuer UT, Wei R. Fluorimetric high-throughput screening method for polyester hydrolase activity using polyethylene terephthalate nanoparticles. Methods Enzymol 2021; 648:253-270. [PMID: 33579406 DOI: 10.1016/bs.mie.2020.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biocatalysis has recently emerged as a powerful and eco-friendly technology in waste plastic recycling, especially for the widely used polyethylene terephthalate (PET). So far, however, a high-throughput screening assay specifically toward PET-hydrolyzing activity has rarely been applied. This hinders the identification of new polyester hydrolases and their variants with adequate activities fulfilling the requirements for industrial applications. This chapter describes the detailed procedure for assaying terephthalate as a major product of enzymatic PET hydrolysis in a 96-well microtiter plate format. Using PET nanoparticles derived readily from waste food packaging as a substrate, an active thermophilic PET hydrolase was clearly distinguished from an inactive variant by a Fenton chemistry-mediated fluorimetric detection. The assay uses enzymes in crude cell lysates, obtained by a simple freeze-thaw protocol. The experimental work validates the applicability of this method for screening mutant libraries of novel PET hydrolases and will thus facilitate the identification of promising variants useful for effective plastic waste recycling.
Collapse
Affiliation(s)
- Lara Pfaff
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Daniel Breite
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - Christoffel P S Badenhorst
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Ren Wei
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
35
|
Califano D, Kadowaki MAS, Calabrese V, Prade RA, Mattia D, Edler KJ, Polikarpov I, Scott JL. Multienzyme Cellulose Films as Sustainable and Self-Degradable Hydrogen Peroxide-Producing Material. Biomacromolecules 2020; 21:5315-5322. [PMID: 33202126 DOI: 10.1021/acs.biomac.0c01393] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of hydrogen peroxide-releasing enzymes as a component to produce alternative and sustainable antimicrobial materials has aroused interest in the scientific community. However, the preparation of such materials requires an effective enzyme binding method that often involves the use of expensive and toxic chemicals. Here, we describe the development of an enzyme-based hydrogen peroxide-producing regenerated cellulose film (RCF) in which a cellobiohydrolase (TrCBHI) and a cellobiose dehydrogenase (MtCDHA) were efficiently adsorbed, 90.38 ± 2.2 and 82.40 ± 5.7%, respectively, without making use of cross-linkers. The enzyme adsorption kinetics and binding isotherm experiments showed high affinity of the proteins possessing cellulose-binding modules for RCF, suggesting that binding on regenerated cellulose via specific interactions can be an alternative method for enzyme immobilization. Resistance to compression and porosity at a micrometer scale were found to be tunable by changing cellulose concentration prior to film regeneration. The self-degradation process, triggered by stacking TrCBHI and MtCDHA (previously immobilized onto separate RCF), produced 0.15 nmol/min·cm2 of H2O2. Moreover, the production of H2O2 was sustained for at least 24 h reaching a concentration of ∼2 mM. The activity of MtCDHA immobilized on RCF was not affected by reuse for at least 3 days (1 cycle/day), suggesting that no significant enzyme leakage occurred in that timeframe. In the material herein designed, cellulose (regenerated from a 1-ethyl-3-methylimidazolium acetate/dimethyl sulfoxide (DMSO) solution) serves both as support and substrate for the immobilized enzymes. The sequential reaction led to the production of H2O2 at a micromolar-millimolar level revealing the potential use of the material as a self-degradable antimicrobial agent.
Collapse
Affiliation(s)
- Davide Califano
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Marco A S Kadowaki
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil
| | | | - Rolf Alexander Prade
- Departments of Microbiology & Molecular Genetics and Biochemistry & Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Davide Mattia
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Karen J Edler
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, Avenida Trabalhador São-Carlense, 400, São Carlos 13566-590, SP, Brazil
| | - Janet L Scott
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| |
Collapse
|
36
|
Dedisch S, Wiens A, Davari MD, Söder D, Rodriguez‐Emmenegger C, Jakob F, Schwaneberg U. Matter‐
tag
: A universal immobilization platform for enzymes on polymers, metals, and silicon‐based materials. Biotechnol Bioeng 2019; 117:49-61. [DOI: 10.1002/bit.27181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Sarah Dedisch
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| | - Annika Wiens
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| | - Mehdi D. Davari
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| | - Dominik Söder
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
| | - Cesar Rodriguez‐Emmenegger
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityAachen Germany
| | - Felix Jakob
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| | - Ulrich Schwaneberg
- DWI – Leibniz‐Institute for Interactive MaterialsAachen Germany
- Lehrstuhl für BiotechnologieRWTH Aachen UniversityAachen Germany
| |
Collapse
|