1
|
Sharma N, Ahlawat YK, Sharma AJ, Chamoli N, Thakur M, Sharma A, Mehmood S, Malik A, Ahmed M, Punia H, Choubey S. A comprehensive review on microbial production and significant applications of multifunctional biomolecules: biosurfactants. Biodegradation 2025; 36:26. [PMID: 40159571 DOI: 10.1007/s10532-025-10121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Microorganisms are very well known potential sources of many novel metabolites and biosurfactants (green molecules). Biosurfactants are biobased molecules which are synthesized by bacteria, yeasts, fungi and actinomycetes. These biomolecules have emerged as multifunctional biomolecules of the 21st century due to their remarkable functional properties like low toxicity, enhanced effectiveness, selectivity, stability, high biodegradability and eco-friendly nature. These characteristics enable them to remain high effective under extreme conditions and play a significant role in environmental protection. Biosurfactants play a pivotal role in bioremediation technologies, offering an environmentally sustainable alternative for cleaning up contaminants. Their unique ability to reduce interfacial tension in liquids enables them to perform crucial functions such as biodegradation, emulsification, foam formation, surface activity, washing performance and detergent formulation. These versatile properties make biosurfactants invaluable across various industries, including environmental remediation, pharmaceuticals, agriculture and cosmetics. This review discusses the microbial production, characterization, industrial applications and ecological significance of biosurfactants. By highlighting their impact in the bioremediation of contaminants, this article underscores the potential of biosurfactants in advancing green technologies and addressing global environmental challenges.
Collapse
Affiliation(s)
- Nisha Sharma
- Department of Biotechnology, Graphic Era, Deemed to Be University, Clement Town, Dehradun, Uttarakhand, 248002, India.
| | - Yogesh K Ahlawat
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India.
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
- Allied Health Sciences, Datta Meghe Institute of Higher Education and Research, Wardha, India.
| | - Arti Jamwal Sharma
- Department of Bio Sciences, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Navneeti Chamoli
- Department of Seed Sciences and Technology, HNB Garhwal University, Srinagar Garhwal, Uttarakhand, 246174, India
| | - Monika Thakur
- Department of Bio Sciences, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Anupriya Sharma
- Department of Bio Sciences, Career Point University, Hamirpur, Himachal Pradesh, 176041, India
| | - Sajid Mehmood
- Nanomaterials and Crystal Design Laboratory, Department of Chemistry, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, 484887, India
| | - Anurag Malik
- Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Meraj Ahmed
- Department of Soil Science and Agricultural Chemistry, Lovely Professional University, Jalandhar, Punjab, 144001, India
| | - Himani Punia
- Allied health sciences, Saraswati group of colleges, Gharuan, Punjab, 140413, India
| | - Sumati Choubey
- Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| |
Collapse
|
2
|
Li X, Yang Z, Liu J. Optimizing Systems for Robust Heterologous Production of Biosurfactants Rhamnolipid and Lyso-Ornithine Lipid in Pseudomonas putida KT2440. Molecules 2024; 29:3288. [PMID: 39064867 PMCID: PMC11279095 DOI: 10.3390/molecules29143288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Surfactants are amphiphilic molecules that are capable of mixing water and oil. Biosurfactants are eco-friendly, low-toxicity, and stable to a variety of environmental factors. Optimizing conditions for microorganisms to produce biosurfactants can lead to improved production suitable for scaling up. In this study, we compared heterologous expression levels of the luminescence system luxCDABE operon controlled by regulatable promoters araC-PBAD and its strong version araC-PBAD-SD in Escherichia coli K12, Pseudomonas aeruginosa PAO1, and P. putida KT2440. Real-time monitoring of luminescence levels in the three strains indicated that luxCDABE controlled by araC-PBAD-SD promoter with 0.2% arabinose supplementation in P. putida produced the highest level of luminescence. By using the araC-PBAD-SD promoter-controlled rhlAB expression in P. putida, we were able to produce mono-rhamnolipid at a level of 1.5 g L-1 when 0.02% arabinose was supplemented. With the same system to express olsB, lyso-ornithine lipid was produced at a level of 10 mg L-1 when 0.2% arabinose was supplemented. To our knowledge, this is the first report about optimizing conditions for lyso-ornithine lipid production at a level up to 10 mg L-1. Taken together, our results demonstrate that regulatable araC-PBAD-SD promoter in P. putida KT2440 is a useful system for heterologous production of biosurfactants.
Collapse
Affiliation(s)
| | | | - Jianhua Liu
- Systems Biology, School for Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China; (X.L.); (Z.Y.)
| |
Collapse
|
3
|
Chen Q, Lin F, Li W, Gu X, Chen Y, Su H, Zhang L, Zheng W, Zeng X, Lu X, Wang C, Chen W, Zhang B, Zhang H, Gong M. Distinctive Lipid Characteristics of Colorectal Cancer Revealed through Non-targeted Lipidomics Analysis of Tongue Coating. J Proteome Res 2024; 23:2054-2066. [PMID: 38775738 PMCID: PMC11165570 DOI: 10.1021/acs.jproteome.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.
Collapse
Affiliation(s)
- Qubo Chen
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Fengye Lin
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Wanhua Li
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xiangyu Gu
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Ying Chen
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Hairong Su
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Lu Zhang
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuan Zeng
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xinyi Lu
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Chuyang Wang
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Weicheng Chen
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Beiping Zhang
- Department
of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Haiyan Zhang
- Department
of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Meng Gong
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
- Institutes
for Systems Genetics, Frontiers Science Center for Disease-related
Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Chhiba V, Pillay P, Mtimka S, Moonsamy G, Kwezi L, Pooe OJ, Tsekoa TL. South Africa's indigenous microbial diversity for industrial applications: A review of the current status and opportunities. Heliyon 2023; 9:e16723. [PMID: 37484259 PMCID: PMC10360602 DOI: 10.1016/j.heliyon.2023.e16723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 07/25/2023] Open
Abstract
The unique metagenomic, metaviromic libraries and indigenous micro diversity within Southern Africa have the potential for global beneficiation in academia and industry. Microorganisms that flourish at high temperatures, adverse pH conditions, and high salinity are likely to have enzyme systems that function efficiently under those conditions. These attributes afford researchers and industries alternative approaches that could replace existing chemical processes. Thus, a better understanding of African microbial/genetic diversity is crucial for the development of "greener" industries. A concerted drive to exploit the potential locked in biological resources has been previously seen with companies such as Diversa Incorporated and Verenium (Badische Anilin-und SodaFabrik-BASF) both building business models that pioneered the production of high-performance specialty enzymes for a variety of different industrial applications. The market potential and accompanying industry offerings have not been fully exploited in South Africa, nor in Africa at large. Utilization of the continent's indigenous microbial repositories could create long-lasting, sustainable growth in various production sectors, providing economic growth in resource-poor regions. By bolstering local manufacture of high-value bio-based products, scientific and engineering discoveries have the potential to generate new industries which in turn would provide employment avenues for many skilled and unskilled laborers. The positive implications of this could play a role in altering the face of business markets on the continent from costly import-driven markets to income-generating export markets. This review focuses on identifying microbially diverse areas located in South Africa while providing a profile for all associated microbial/genetically derived libraries in this country. A comprehensive list of all the relevant researchers and potential key players is presented, mapping out existing research networks for the facilitation of collaboration. The overall aim of this review is to facilitate a coordinated journey of exploration, one which will hopefully realize the value that South Africa's microbial diversity has to offer.
Collapse
Affiliation(s)
- Varsha Chhiba
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Priyen Pillay
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Sibongile Mtimka
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Ghaneshree Moonsamy
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Lusisizwe Kwezi
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| | - Ofentse J. Pooe
- School of Life Sciences, Discipline of Biochemistry, University of KwaZulu-Natal, Durban, South Africa
| | - Tsepo L. Tsekoa
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research (CSIR), Pretoria, South Africa
| |
Collapse
|
5
|
Kukkar D, Sharma PK, Kim KH. Recent advances in metagenomic analysis of different ecological niches for enhanced biodegradation of recalcitrant lignocellulosic biomass. ENVIRONMENTAL RESEARCH 2022; 215:114369. [PMID: 36165858 DOI: 10.1016/j.envres.2022.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose wastes stemming from agricultural residues can offer an excellent opportunity as alternative energy solutions in addition to fossil fuels. Besides, the unrestrained burning of agricultural residues can lead to the destruction of the soil microflora and associated soil sterilization. However, the difficulties associated with the biodegradation of lignocellulose biomasses remain as a formidable challenge for their sustainable management. In this respect, metagenomics can be used as an effective option to resolve such dilemma because of its potential as the next generation sequencing technology and bioinformatics tools to harness novel microbial consortia from diverse environments (e.g., soil, alpine forests, and hypersaline/acidic/hot sulfur springs). In light of the challenges associated with the bulk-scale biodegradation of lignocellulose-rich agricultural residues, this review is organized to help delineate the fundamental aspects of metagenomics towards the assessment of the microbial consortia and novel molecules (such as biocatalysts) which are otherwise unidentifiable by conventional laboratory culturing techniques. The discussion is extended further to highlight the recent advancements (e.g., from 2011 to 2022) in metagenomic approaches for the isolation and purification of lignocellulolytic microbes from different ecosystems along with the technical challenges and prospects associated with their wide implementation and scale-up. This review should thus be one of the first comprehensive reports on the metagenomics-based analysis of different environmental samples for the isolation and purification of lignocellulose degrading enzymes.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India; University Centre for Research and Development, Chandigarh University, Gharuan, Mohali - 140413, Punjab, India.
| | | | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Wangsimni-ro, Seoul - 04763, South Korea.
| |
Collapse
|
6
|
Mining Small Molecules from Teredinibacter turnerae Strains Isolated from Philippine Teredinidae. Metabolites 2022; 12:metabo12111152. [DOI: 10.3390/metabo12111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Endosymbiotic relationship has played a significant role in the evolution of marine species, allowing for the development of biochemical machinery for the synthesis of diverse metabolites. In this work, we explore the chemical space of exogenous compounds from shipworm endosymbionts using LC-MS-based metabolomics. Priority T. turnerae strains (1022X.S.1B.7A, 991H.S.0A.06B, 1675L.S.0A.01) that displayed antimicrobial activity, isolated from shipworms collected from several sites in the Philippines were cultured, and fractionated extracts were subjected for profiling using ultrahigh-performance liquid chromatography with high-resolution mass spectrometry quadrupole time-of-flight mass analyzer (UHPLC-HRMS QTOF). T. turnerae T7901 was used as a reference microorganism for dereplication analysis. Tandem MS data were analyzed through the Global Natural Products Social (GNPS) molecular networking, which resulted to 93 clusters with more than two nodes, leading to four putatively annotated clusters: lipids, lysophosphatidylethanolamines, cyclic dipeptides, and rhamnolipids. Additional clusters were also annotated through molecular networking with cross-reference to previous publications. Tartrolon D cluster with analogues, turnercyclamycins A and B; teredinibactin A, dechloroteredinibactin, and two other possible teredinibactin analogues; and oxylipin (E)-11-oxooctadec-12-enoic acid were putatively identified as described. Molecular networking also revealed two additional metabolite clusters, annotated as lyso-ornithine lipids and polyethers. Manual fragmentation analysis corroborated the putative identification generated from GNPS. However, some of the clusters remained unclassified due to the limited structural information on marine natural products in the public database. The result of this study, nonetheless, showed the diversity in the chemical space occupied by shipworm endosymbionts. This study also affirms the use of bioinformatics, molecular networking, and fragmentation mechanisms analysis as tools for the dereplication of high-throughput data to aid the prioritization of strains for further analysis.
Collapse
|
7
|
Mgbechidinma CL, Akan OD, Zhang C, Huang M, Linus N, Zhu H, Wakil SM. Integration of green economy concepts for sustainable biosurfactant production - A review. BIORESOURCE TECHNOLOGY 2022; 364:128021. [PMID: 36167175 DOI: 10.1016/j.biortech.2022.128021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The link between increasing global population, food demand, industrialization, and agricultural waste is strong. Decomposing by-products from food cycles can introduce harmful toxic heavy metals, active degrading microbes, and enzymes to the environment. Additionally, high greenhouse gas emissions from the decomposing wastes contribute to global change and a high carbon economy. The bioeconomy and circular economy of biosurfactant production utilize these cheap feedstocks and promote waste to valuable product initiatives. Waste reduction, reuse, and recycling in an integrating green economy bioprocess ensure the sustainability of novel, cost-effective, safe, and renewable health-grade biosurfactants. This work reviews green economy concepts integration with sustainable biosurfactant production and its application in health-related industries. Benefits from recent advances in the production, characterization, and health-wise classification of biosurfactants were further discussed, including its limitations, techno-economic assessment, market evaluations, possible roadblocks, and future directions.
Collapse
Affiliation(s)
- Chiamaka Linda Mgbechidinma
- Integrated Life Sciences, University of Georgia, Athens, GA 30602, USA; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; Microbiology Department, Akwa-Ibom State University, Akwa-Ibom State, Nigeria
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Mengzhen Huang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China
| | - Nsemeke Linus
- Biochemistry Department, University of Uyo, Uyo, Nigeria
| | - He Zhu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; College of Food Science and Engineering, Shandong Agriculture and Engineering University, Shandong, China
| | | |
Collapse
|
8
|
Trindade M, Sithole N, Kubicki S, Thies S, Burger A. Screening Strategies for Biosurfactant Discovery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:17-52. [PMID: 34518910 DOI: 10.1007/10_2021_174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The isolation and screening of bacteria and fungi for the production of surface-active compounds has been the basis for the majority of the biosurfactants discovered to date. Hence, a wide variety of well-established and relatively simple methods are available for screening, mostly focused on the detection of surface or interfacial activity of the culture supernatant. However, the success of any biodiscovery effort, specifically aiming to access novelty, relies directly on the characteristics being screened for and the uniqueness of the microorganisms being screened. Therefore, given that rather few novel biosurfactant structures have been discovered during the last decade, advanced strategies are now needed to widen access to novel chemistries and properties. In addition, more modern Omics technologies should be considered to the traditional culture-based approaches for biosurfactant discovery. This chapter summarizes the screening methods and strategies typically used for the discovery of biosurfactants and highlights some of the Omics-based approaches that have resulted in the discovery of unique biosurfactants. These studies illustrate the potentially enormous diversity that has yet to be unlocked and how we can begin to tap into these biological resources.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa.
| | - Nombuso Sithole
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| | - Sonja Kubicki
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Anita Burger
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
9
|
Kristoffersen V, Jenssen M, Jawad HR, Isaksson J, Hansen EH, Rämä T, Hansen KØ, Andersen JH. Two Novel Lyso-Ornithine Lipids Isolated from an Arctic Marine Lacinutrix sp. Bacterium. Molecules 2021; 26:molecules26175295. [PMID: 34500726 PMCID: PMC8434205 DOI: 10.3390/molecules26175295] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Lacinutrix genus was discovered in 2005 and includes 12 Gram-negative bacterial species. To the best of our knowledge, the secondary metabolite production potential of this genus has not been explored before, and examination of Lacinutrix species may reveal novel chemistry. As part of a screening project of Arctic marine bacteria, the Lacinutrix sp. strain M09B143 was cultivated, extracted, fractionated and tested for antibacterial and cytotoxic activities. One fraction had antibacterial activity and was subjected to mass spectrometry analysis, which revealed two compounds with elemental composition that did not match any known compounds in databases. This resulted in the identification and isolation of two novel isobranched lyso-ornithine lipids, whose structures were elucidated by mass spectrometry and NMR spectroscopy. Lyso-ornithine lipids consist of a 3-hydroxy fatty acid linked to the alpha amino group of an ornithine amino acid through an amide bond. The fatty acid chains were determined to be iso-C15:0 (1) and iso-C16:0 (2). Compound 1 was active against the Gram-positive S. agalactiae, while 2 showed cytotoxic activity against A2058 human melanoma cells.
Collapse
Affiliation(s)
- Venke Kristoffersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
- Correspondence:
| | - Marte Jenssen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Heba Raid Jawad
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Johan Isaksson
- Department of Chemistry, Faculty of Natural Sciences, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway;
| | - Espen H. Hansen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Teppo Rämä
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Kine Ø. Hansen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| | - Jeanette Hammer Andersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Breivika, N-9037 Tromsø, Norway; (M.J.); (H.R.J.); (E.H.H.); (T.R.); (K.Ø.H.); (J.H.A.)
| |
Collapse
|
10
|
Xu S, Qi X, Gao S, Zhang Y, Wang H, Shao Y, Yang Y, An Y. Modification of DNA regions with metagenomic DNA fragments (MDRMDF): A convenient strategy for efficient protein engineering. Biochimie 2021; 187:75-81. [PMID: 34051307 DOI: 10.1016/j.biochi.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 10/25/2022]
Abstract
In this study, we have established a convenient and efficient approach named Modification of DNA Regions with Metagenomic DNA Fragments (MDRMDF) for protein engineering. Degenerate primers were designed corresponding to conserved regions of the gene of interest which were used for amplification of fragments with template of the metagenomic DNA. The resulting PCR products were used to replace the corresponding regions of the gene of interest to introduce modified gene for function-based screening. Therefore, this method can make full use of the metagenomic DNA sequences with unknown metagenomic gene information for efficient protein engineering. The β-xylosidase BH3683 was used to construct a MDRMDF library which was screened with a newly designed p-NPX-M9 medium-based strategy. As a result, a mutant protein Xyl-M56 showing high activity, improved pH stability and higher tolerance to organic solvents was obtained which may have potential for industrial application. The MDRMDF method may find wide application in enzyme engineering, metabolic engineering and other fields, especially offering a new methodological option for the directed evolution of proteins.
Collapse
Affiliation(s)
- Shumin Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yifeng Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Hongling Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yilun Shao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yao Yang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yingfeng An
- College of Food Science, Shenyang Agricultural University, Shenyang, China; College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
11
|
Loeschcke A, Thies S. Engineering of natural product biosynthesis in Pseudomonas putida. Curr Opin Biotechnol 2020; 65:213-224. [PMID: 32498036 DOI: 10.1016/j.copbio.2020.03.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/01/2020] [Accepted: 03/30/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
12
|
Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications. Mar Drugs 2019; 17:md17070408. [PMID: 31323998 PMCID: PMC6669457 DOI: 10.3390/md17070408] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/04/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are amphiphilic secondary metabolites produced by microorganisms. Marine bacteria have recently emerged as a rich source for these natural products which exhibit surface-active properties, making them useful for diverse applications such as detergents, wetting and foaming agents, solubilisers, emulsifiers and dispersants. Although precise structural data are often lacking, the already available information deduced from biochemical analyses and genome sequences of marine microbes indicates a high structural diversity including a broad spectrum of fatty acid derivatives, lipoamino acids, lipopeptides and glycolipids. This review aims to summarise biosyntheses and structures with an emphasis on low molecular weight biosurfactants produced by marine microorganisms and describes various biotechnological applications with special emphasis on their role in the bioremediation of oil-contaminated environments. Furthermore, novel exploitation strategies are suggested in an attempt to extend the existing biosurfactant portfolio.
Collapse
|