1
|
Li L, Wang N, Wang L, Yang F, Wang W, Han Y, Yu D. Characteristics, immobilization of linoleic acid isomerase from Bifidobacterium breve and its application in rice bran oil. Food Res Int 2025; 212:116518. [PMID: 40382061 DOI: 10.1016/j.foodres.2025.116518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025]
Abstract
The purpose of this paper is to reduce the acid value of rice bran crude oil and make a new rice bran oil (RBO) with conjugated linoleic acid (CLA). Linoleic acid isomerase from Bifidobacterium breve was immobilized on a magnetic nanoflower carrier of Fe3O4-SiO2-NFs. Molecular docking simulations were performed to investigate the interaction and binding mode conformation between isomerase and linoleic acid (LA) molecules by using computer software. This isomerase was used in isomerization reaction of high acid value RBO. Under the optimal enzymatic isomerization conditions, the conversion rate of LA was 62.13 %. The content of c9-CLA and t11-CLA in the product of enzymatic isomerization reaction was 23.50 ± 0.25 %. After six repeated uses, the relative activity of the immobilized enzyme remained above 70 %. Esterification reaction was performed from monoacylglycerol and RBO with CLA under the catalysis of magnetic immobilized lipase. The CLA glyceride content was 14.09 ± 0.53 % in new RBO product. The acid value of RBO decreased to 0.31 ± 0.15 mgKOH/g, and the peroxide value was 1.03 ± 0.14 mmol/kg. It may provide a sustainable pathway for RBO refining that combines deacidification with CLA-functionalization.
Collapse
Affiliation(s)
- Lin Li
- College of Food Engineering, Harbin University of Commerce, Harbin 150090, China
| | - Ning Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150090, China
| | - Liqi Wang
- College of Food Engineering, Harbin University of Commerce, Harbin 150090, China.
| | - Fuming Yang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Weining Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yike Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Elnar AG, Jang Y, Kim GB. Heterologous Expression and Polyphasic Analysis of CLA-Converting Linoleic Acid Isomerase from Bifidobacterium breve JKL2022. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1425-1440. [PMID: 39586027 DOI: 10.1021/acs.jafc.4c05746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The probiotic Bifidobacterium breve is known for its efficient conjugated linoleic acid (CLA) conversion, yet their CLA conversion pathway remains underexplored. This study investigated B. breve JKL2022 for its CLA conversion in actively growing cells, washed cell states, and in crude protein extracts. Moreover, the study aimed to confirm the CLA-converting enzyme in strain JKL2022 and optimize its purification through heterologous expression of fusion proteins (LAI_sGFP and MBP_LAI). JKL2022 exhibited superior CLA conversion compared to genetically similar B. breve strains (JCM7017, JCM7019, JCM1192, and JCM1273), particularly the observed CLA conversion in washed cells (60.14 ± 7.60%) and crude protein fractions (96.11 ± 6.63%). The multipass transmembrane linoleic acid isomerase (LAI) was cloned into the E. coli BL21(DE3) as free LAI or modified with superfolder-GFP or MBP tags and expressed with 0.01 mM IPTG at 37 °C, resulting in highly active protein fractions. LAI was characterized by predictive modeling, molecular docking, and phylogenetic analyses. Moreover, reverse transcription-quantitative PCR analysis revealed upregulation (20-140× higher expression) of lai in JKL2022 compared with that in the JCM strains. Nevertheless, upscaling the production and purification of LAI for downstream applications remains a challenge, primarily because of their membrane-spanning configuration.
Collapse
Affiliation(s)
- Arxel G Elnar
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| | - Yujin Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| | - Geun-Bae Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 06974, Republic of Korea
| |
Collapse
|
3
|
Wu C, Chen H, Mei Y, Yang B, Zhao J, Stanton C, Chen W. Advances in research on microbial conjugated linoleic acid bioconversion. Prog Lipid Res 2024; 93:101257. [PMID: 37898352 DOI: 10.1016/j.plipres.2023.101257] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Conjugated linoleic acid (CLA) is a functional food ingredient with prebiotic properties that provides health benefits for various human pathologies and disorders. However, limited natural CLA sources in animals and plants have led microorganisms like Lactobacillus and Bifidobacterium to emerge as new CLA sources. Microbial conversion of linoleic acid to CLA is mediated by linoleic acid isomerase and multicomponent enzymatic systems, with CLA production efficiency dependent on microbial species and strains. Additionally, complex factors like LA concentration, growth status, culture substrates, precursor type, prebiotic additives, and co-cultured microbe identity strongly influence CLA production and isomer composition. This review summarizes advances in the past decade regarding microbial CLA production, including bacteria and fungi. We highlight CLA production and potential regulatory mechanisms and discuss using microorganisms to enhance CLA content and nutritional value of fermented products. We also identify primary microbial CLA production bottlenecks and provide strategies to address these challenges and enhance production through functional gene and enzyme mining and downstream processing. This review aims to provide a reference for microbial CLA production and broaden the understanding of the potential probiotic role of microbial CLA producers.
Collapse
Affiliation(s)
- Chen Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| | - Yongchao Mei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bo Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Catherine Stanton
- International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China; Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China; International Joint Research Centre for Probiotics & Gut Health, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
4
|
Wang K, Xin Z, Chen Z, Li H, Wang D, Yuan Y. Progress of Conjugated Linoleic Acid on Milk Fat Metabolism in Ruminants and Humans. Animals (Basel) 2023; 13:3429. [PMID: 37958184 PMCID: PMC10647460 DOI: 10.3390/ani13213429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
As a valuable nutrient in milk, fat accounts for a significant proportion of the energy requirements of ruminants and is largely responsible for determining milk quality. Fatty acids (FAs) are a pivotal component of milk fat. Conjugated linoleic acid (CLA) is one of the naturally occurring FAs prevalent in ruminant dairy products and meat. Increasing attention has been given to CLA because of its anti-cancer, anti-inflammatory, immune regulation, and lipid metabolism regulation properties, and these benefits potentially contribute to the growth and health of infants. In breast milk, CLA is present in trace amounts, mainly in the form of cis-9, trans-11 CLA. Notably, cis-9, trans-11 CLA improves the milk fat rate while trans-10, cis-12 CLA inhibits it. Apart from having multiple physiological functions, CLA is also a pivotal factor in determining the milk quality of ruminants, especially milk fat rate. In response to growing interest in green and healthy functional foods, more and more researchers are exploring the potential of CLA to improve the production performance of animals and the nutritional value of livestock products. Taken together, it is novel and worthwhile to investigate how CLA regulates milk fat synthesis. It is the purpose of this review to clarify the necessity for studying CLA in ruminant milk fat and breast milk fat.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Zimeng Xin
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Huanan Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China;
| | - Diming Wang
- Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Ministry of Education, Hangzhou 310058, China; (K.W.); (Z.X.)
| | - Yuan Yuan
- School of Nursing, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Mei Y, Li X, Yang B, Zhao J, Zhang H, Chen H, Chen W. Heterologous expression of a novel linoleic acid isomerase BBI, and effect of fusion tags on its performance. Curr Res Food Sci 2022; 5:2053-2060. [DOI: 10.1016/j.crfs.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 10/14/2022] Open
|
6
|
Research progress on conjugated linoleic acid bio-conversion in Bifidobacterium. Int J Food Microbiol 2022; 369:109593. [DOI: 10.1016/j.ijfoodmicro.2022.109593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/13/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
|
7
|
Chen Y, Chen H, Ding J, Stanton C, Ross RP, Zhao J, Zhang H, Yang B, Chen W. Bifidobacterium longum Ameliorates Dextran Sulfate Sodium-Induced Colitis by Producing Conjugated Linoleic Acid, Protecting Intestinal Mechanical Barrier, Restoring Unbalanced Gut Microbiota, and Regulating the Toll-Like Receptor-4/Nuclear Factor-κB Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14593-14608. [PMID: 34843239 DOI: 10.1021/acs.jafc.1c06176] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aimed to explore the effects and differences of conjugated linoleic acid (CLA)-producing Bifidobacterium longum on the alleviation of dextran sulfate sodium (DSS)-induced colitis and to explore its patterns. Different B. longum strains were administered at 109 cfu/day 7 days before DSS treatment. B. longum CCFM681 significantly increased goblet cells, mucin2 (MUC2), claudin-3, α-catenin1, and ZO-1, but neither B. longum CCFM760 nor B. longum CCFM642 had those protective effects. Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were downregulated, while IL-10 was upregulated by B. longum CCFM681 but neither by B. longum CCFM760 nor by B. longum CCFM642. Moreover, B. longum CCFM681 treatment inhibited the toll-like receptor-4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway. Furthermore, B. longum CCFM681 treatment rebalanced gut microbiota via regulating the diversity and key microorganisms. Colonic CLA concentrations in mice fed with B. longum CCFM681 were significantly higher than that of DSS-exposed mice, while those in B. longum CCFM760 and B. longum CCFM642 groups showed insignificant difference compared with the DSS group. Moreover, CLA showed a significantly positive correlation with the effectiveness of relieving colitis. B. longum CCFM681 alleviated colitis by protecting the intestinal mechanical barrier, modulating the gut microbiota, and inhibiting the TLR4/NF-κB pathway and associated pro-inflammatory cytokines. These results will help the clinical trials of probiotics and the development of functional products for colitis.
Collapse
Affiliation(s)
- Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jiuhong Ding
- Department of Anesthesiology, Wuxi Second People's Hospital, Wuxi 214122, Jiangsu, China
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland
- APC Microbiome Ireland, University College Cork, Cork T12ND89, Ireland
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12ND89, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi 214122, Jiangsu, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
8
|
Oleate Hydratase in Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230 Catalyzes the Reversible Conversion between Linoleic Acid and Ricinoleic Acid. Microbiol Spectr 2021; 9:e0117921. [PMID: 34643412 PMCID: PMC8515934 DOI: 10.1128/spectrum.01179-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Conjugated linoleic acid (CLA) has been the subject of numerous studies in recent decades because of its associated health benefits. CLA is an intermediate product of the biohydrogenation pathway of linoleic acid (LA) in bacteria. Several bacterial species capable of efficiently converting LA into CLA have been widely reported in the literature, among them Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230. Over the last few years, a multicomponent enzymatic system consisting of three enzymes involved in the biohydrogenation process of LA has been proposed. Sequencing the genome of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 revealed only one gene capable of encoding an oleate hydratase (OleH), unlike the presence of multiple genes typically found in similar strains. This study investigated the biological effect of the OleH enzyme of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 on the hydration of LA and dehydration of ricinoleic acid (RA) and its possible role in the production of CLA. The OleH was cloned, expressed, purified, and characterized. Fatty acid measurements were made by an internal standard method using a gas chromatography-coupled flame ionization detector (GC-FID) system. It was found that the enzyme is a hydratase/dehydratase, leading to a reversible transformation between LA and RA. In addition, the results showed that L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH protein plays a role in stress tolerance in Escherichia coli. In conclusion, the OleH of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 catalyzes the initial stage of saturation metabolism of LA, although it has not converted the substrates directly into CLA. IMPORTANCE This study provides insight into the enzymatic mechanism of CLA synthesis in L. delbrueckii subsp. bulgaricus and broadens our understanding of the bioconversion of LA and RA by OleH. The impact of OleH on the production of the c9, t11 CLA isomer and stress tolerance by E. coli has been assisted. The results provide an understanding of the factors which influence OleH activity. L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH presented two putative fatty acid-binding sites. Recombinant OleH catalyzed both LA hydration and RA dehydration. OleH was shown to play a role in bacterial growth performance in the presence of LA.
Collapse
|
9
|
Yang B, Gao H, Qi H, Chen Y, Ross RP, Stanton C, Zhao J, Zhang H, Chen H, Chen W. Linoleate Isomerase Complex Contributes to Metabolism and Remission of DSS-Induced Colitis in Mice of Lactobacillus plantarum ZS2058. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8160-8171. [PMID: 34281339 DOI: 10.1021/acs.jafc.1c02944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A linoleate isomerase complex including myosin-cross-reactive antigen, short-chain dehydrogenase/oxidoreductase, and acetoacetate decarboxylase has been confirmed as the pivotal factor for conjugated linoleic acid (CLA) production in Lactobacillus plantarum. However, its role in the metabolism and health-associated benefits of Lactobacillus remain unclear. In the current study, the mild type, knockout, and complemented mutants of the linoleate isomerase complex of L. plantarum ZS2058 were used to investigate those putative effects. The metabonomic results showed that a linoleate isomerase complex could significantly influence the glycol-metabolism, lipid metabolism, and antioxidant compounds. Especially, with the stress of linoleic acid, linoleate isomerase complex knockout mutants induced the increase of several antioxidant compounds, such as glutamic acid, glycine, l-cysteine, glycerol, and l-sorbosone. Moreover, the linoleate isomerase complex played a pivotal role in ameliorating DSS-induced colitis. The knockout mutants showed effects similar to those in the DSS group, whereas complementation of the corresponding gene in the knockout mutants could restore the anti-inflammatory activity, wherein the integrity of a mucus layer was repaired, the level of pro-inflammatory cytokines decreased, and the amount of anti-inflammatory cytokines increased significantly. All the results indicated that the linoleate isomerase complex plays a key role in CLA production and metabolism as well as the health-associated benefits of L. plantarum ZS2058. These results are conducive to promote clinical trials and product development of probiotics for colitis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - He Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hui Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - R Paul Ross
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
| | - Catherine Stanton
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi 214122, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork T12 K8AF, Ireland
- Teagasc Food Research Centre, Moorepark, Co. Cork P61 C996, Ireland
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Gao H, Yang B, Stanton C, Ross RP, Zhang H, Chen H, Chen W. Linoleic acid induces different metabolic modes in two Bifidobacterium breve strains with different conjugated linoleic acid-producing abilities. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Characteristics of bifidobacterial conjugated fatty acid and hydroxy fatty acid production and its potential application in fermented milk. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Senizza A, Callegari ML, Senizza B, Minuti A, Rocchetti G, Morelli L, Patrone V. Effects of Linoleic Acid on Gut-Derived Bifidobacterium breve DSM 20213: A Transcriptomic Approach. Microorganisms 2019; 7:microorganisms7120710. [PMID: 31861103 PMCID: PMC6955684 DOI: 10.3390/microorganisms7120710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 12/16/2019] [Indexed: 02/08/2023] Open
Abstract
Bacterial production of conjugated linoleic acid (CLA) has recently received great attention because of the potential health benefits of this fatty acid. Linoleic acid (LA) can be converted to CLA by several microorganisms, including bifidobacteria, possibly as a detoxification mechanism to avoid the growth inhibition effect of LA. In the present in vitro study, we investigated the gene expression landscape of the intestinal strain Bifidobacterium breve DSM 20213 when exposed to LA. Transcriptomic analysis using RNA-seq revealed that LA induced a multifactorial stress response in the test strain, including upregulation of genes involved in iron uptake and downregulation of genes involved in sugar and oligopeptide transport. We also observed reduced transcription of genes involved in membrane and pili biosynthesis. The upregulation of iron uptake was not related to any putative ability of LA to chelate Fe2+, but was somewhat linked to stress response. Furthermore, we demonstrated that LA increased reactive oxygen species (ROS) production in bacterial cells, activating an oxidative stress response. This response was proved by thioredoxin reductase transcription, and was primarily evident among bacteria cultured in the absence of cysteine. This is the first report of the potential mechanisms involved in bacterial LA transport and stress response in B. breve.
Collapse
Affiliation(s)
- Alice Senizza
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Maria Luisa Callegari
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Biotechnology Research Centre (CRB), via Milano 24, 26100 Cremona, Italy
| | - Biancamaria Senizza
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition (DiANA), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy;
- Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
| | - Lorenzo Morelli
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Biotechnology Research Centre (CRB), via Milano 24, 26100 Cremona, Italy
| | - Vania Patrone
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy; (A.S.); (M.L.C.); (B.S.); (G.R.); (L.M.)
- Nutrigenomics and Proteomics Research Center (PRONUTRIGEN), Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence: ; Tel.: +39-0523-599247
| |
Collapse
|