1
|
Nakakita SI, Hirabayashi J. Transforming monosaccharides: Recent advances in rare sugar production and future exploration. BBA ADVANCES 2025; 7:100143. [PMID: 39926187 PMCID: PMC11803239 DOI: 10.1016/j.bbadva.2025.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Rare sugars are defined as monosaccharides and their derivatives that do not exist in nature at all or that exist in extremely limited amounts despite being theoretically possible. At present, no comprehensive dogma has been presented regarding how and why these rare sugars have deviated from the naturally selected monosaccharides. In this minireview, we adopt a hypothesis on the origin and evolution of elementary hexoses, previously presented by one of the authors (Hirabayashi, Q Rev Biol, 1996, 71:365-380). In this scenario, monosaccharides, which constitute various kinds of glycans in nature, are assumed to have been generated by formose reactions on the prebiotic Earth (chemical evolution era). Among them, the most stable hexoses, i.e., fructose, glucose, and mannose remained accumulated. After the birth of life, the "chemical origin" saccharides thus survived were transformed into a variety of "bricolage products", which include galactose and other recognition saccharides like fucose and sialic acid through the invention of diverse metabolic pathways (biological evolution era). The remaining monosaccharides that have deviated from this scenario are considered rare sugars. If we can produce rare sugars as we wish, it is expected that various more useful biomaterials will be created by using them as raw materials. Thanks to the pioneering research of the Izumori group in the 1990's, and to a few other investigations by other groups, almost all monosaccharides including l-sugars can now be produced by combining both chemical and enzymatic approaches. After briefly giving an overview of the origin of elementary hexoses and the current state of the rare sugar production, we will look ahead to the next generation of monosaccharide research which also targets glycosides including disaccharides.
Collapse
Affiliation(s)
- Shin-ichi Nakakita
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- International Institute of Rare Sugar Research and Education, Kagawa University, Saiwai, Takamatsu, Kagawa 760-8521 Japan
| | - Jun Hirabayashi
- Department of Basic Life Science, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
- Institute for Glyco-core Research, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-0814, Japan
| |
Collapse
|
2
|
Li W, Wu Y, Long S, Chen Z, Li L, Ju X. Evaluation of cross-linkers in the design of immobilized multi isomerase cascade for the preparation of rare sugars. Int J Biol Macromol 2025; 287:138592. [PMID: 39662556 DOI: 10.1016/j.ijbiomac.2024.138592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
The cascade of sugar isomerases is one of the most practical methods for producing rare sugars, and enzyme immobilization endows it with high economic efficiency, operational convenience and reusability. However, the most employed cross-linker glutaraldehyde (GA) has the disadvantages of enzyme deactivation and limitation of substrate binding. Herein, three compounds, glyoxal, GA, and 2,5-furandicarboxaldehyde (DFF) were evaluated within a previously developed cascade comprising ribose-5-phosphate isomerase and D-tagatose-3-epimerase to prepare D-ribulose form D-xylose. Analyses of surface morphology, element and chemical bond revealed that all compounds effectively cross-linked the isomerases. High concentration of the cross-linkers was generally beneficial for binding protein and preventing enzyme leak during reusing cycles. Glyoxal performed the highest immobilization rate, though it hadn't been employed as a cross-linker for enzyme immobilization. DFF mediated cross-linking revealed the highest activity recovery, substrate conversion and residual activity after reusing cycles, suggesting better biocompatibility than glyoxal and GA. After 8 rounds of recycling, the residual activity of enzyme immobilized by DFF was 61.4 %, ∼30 % higher than that of GA. This study proved a potential alternative cross-linker DFF for the immobilization of enzyme cascade with high activity recovery and reusability, which could promote the efficient production of high value-added products from biomass monosaccharides.
Collapse
Affiliation(s)
- Wenhui Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuqiu Wu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Si Long
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
3
|
Li M, Ni Z, Li Z, Yin Y, Liu J, Wu D, Sun Z, Wang L. Research progress on biosynthesis of erythritol and multi-dimensional optimization of production strategies. World J Microbiol Biotechnol 2024; 40:240. [PMID: 38867081 DOI: 10.1007/s11274-024-04043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Erythritol, as a new type of natural sweetener, has been widely used in food, medical, cosmetics, pharmaceutical and other fields due to its unique physical and chemical properties and physiological functions. In recent years, with the continuous development of strategies such as synthetic biology, metabolic engineering, omics-based systems biology and high-throughput screening technology, people's understanding of the erythritol biosynthesis pathway has gradually deepened, and microbial cell factories with independent modification capabilities have been successfully constructed. In this review, the cheap feedstocks for erythritol synthesis are introduced in detail, the environmental factors affecting the synthesis of erythritol and its regulatory mechanism are described, and the tools and strategies of metabolic engineering involved in erythritol synthesis are summarized. In addition, the study of erythritol derivatives is helpful in expanding its application field. Finally, the challenges that hinder the effective production of erythritol are discussed, which lay a foundation for the green, efficient and sustainable production of erythritol in the future and breaking through the bottleneck of production.
Collapse
Affiliation(s)
- Meng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Zifu Ni
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| | - Zhongzeng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanli Yin
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianguang Liu
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang, 453001, China
| | - Zhongke Sun
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Le Wang
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
4
|
Zheng Q, Long S, Chen Z, Fu J, Ju X, Li L. Characterization of a novel ribose-5-phosphate isomerase B from Curtobacterium flaccumfaciens ZXL1 for D-allose production. Food Sci Biotechnol 2024; 33:1641-1649. [PMID: 38623425 PMCID: PMC11016020 DOI: 10.1007/s10068-023-01457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
Enzymatic preparation of rare sugars as an alternative to traditional sweeteners is an effective strategy to achieve a low-calorie healthy diet. Ribose-5-phosphate isomerase B (RpiB) is a key enzyme in the non-oxidative branch of the catalytic pentose phosphate pathway. Here, we investigated the potential of Curtobacterium flaccumfaciens ZXL1 (C. flaccumfaciens ZXL1) derived RpiB (CfRpiB) in D-allose preparation. The optimal reaction conditions for recombinant CfRpiB were found experimentally to be pH 7.0, 55 °C, and no metal ions. The kinetic parameters Km, kcat, and catalytic efficiency kcat/Km were 320 mM, 4769 s-1, and 14.9 mM-1 s-1 respectively. The conversion of D-allulose by purified enzyme (1 g L-1 ) to D-allose was 13% within 1 h. In addition, homology modeling and molecular docking were used to predict the active site residues: Asp13, Asp14, Cys72, Gly73, Thr74, Gly77, Asn106, and Lys144.
Collapse
Affiliation(s)
- Qian Zheng
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Si Long
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Jiaolong Fu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, 215009 Suzhou, People’s Republic of China
| |
Collapse
|
5
|
Tang X, Ravikumar Y, Zhang G, Yun J, Zhao M, Qi X. D-allose, a typical rare sugar: properties, applications, and biosynthetic advances and challenges. Crit Rev Food Sci Nutr 2024; 65:2785-2812. [PMID: 38764407 DOI: 10.1080/10408398.2024.2350617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
D-allose, a C-3 epimer of D-glucose and an aldose-ketose isomer of D-allulose, exhibits 80% of sucrose's sweetness while being remarkably low in calories and nontoxic, making it an appealing sucrose substitute. Its diverse physiological functions, particularly potent anticancer and antitumor effects, render it a promising candidate for clinical treatment, garnering sustained attention. However, its limited availability in natural sources and the challenges associated with chemical synthesis necessitate exploring biosynthetic strategies to enhance production. This overview encapsulates recent advancements in D-allose's physicochemical properties, physiological functions, applications, and biosynthesis. It also briefly discusses the crucial role of understanding aldoketose isomerase structure and optimizing its performance in D-allose synthesis. Furthermore, it delves into the challenges and future perspectives in D-allose bioproduction. Early efforts focused on identifying and characterizing enzymes responsible for D-allose production, followed by detailed crystal structure analysis to improve performance through molecular modification. Strategies such as enzyme immobilization and implementing multi-enzyme cascade reactions, utilizing more cost-effective feedstocks, were explored. Despite progress, challenges remain, including the lack of efficient high-throughput screening methods for enzyme modification, the need for food-grade expression systems, the establishment of ordered substrate channels in multi-enzyme cascade reactions, and the development of downstream separation and purification processes.
Collapse
Affiliation(s)
- Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Junhua Yun
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
6
|
Deng Z, Mu Y, Chen Z, Yan L, Ju X, Li L. Construction of a xylose metabolic pathway in Trichosporonoides oedocephalis ATCC 16958 for the production of erythritol and xylitol. Biotechnol Lett 2023; 45:1529-1539. [PMID: 37831286 DOI: 10.1007/s10529-023-03428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 07/15/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Erythritol is a valuable compound as sweetener and chemical material however cannot be fermented from the abundant substrate xylose. METHODS The strain Trichosporonoides oedocephalis ATCC 16958 was employed to produce polyols including xylitol and erythritol by metabolic engineering approaches. RESULTS The introduction of a substrate-specific ribose-5-phosphate isomerase endowed T. oedocephalis with xylose-assimilation activity to produce xylitol, and eliminated glycerol production simultaneously. A more value-added product, erythritol was produced by further introducing a homologous xylulose kinase. The carbon flux was redirected from xylitol to erythritol by adding high osmotic pressure. The production of erythritol was improved to 46.5 g/L in flasks by fermentation adjustment, and the process was scaled up in a 5-L fermentor, with a 40 g/L erythritol production after 120 h, and a time-space yield of 0.56 g/L/h. CONCLUSION This study demonstrated the potential of T. oedocephalis in the synthesis of multiple useful products from xylose.
Collapse
Affiliation(s)
- Zhou Deng
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Yinghui Mu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Lishi Yan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China.
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, No. 99 Xuefu Rd., Huqiu District, Suzhou, 215009, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Sun YW, Wang XY, Liu L, Zhang Q, Xi YJ, Wang PW. Cloning and functional study of GmRPI2, which is the critical gene of photosynthesis in soybean. BREEDING SCIENCE 2023; 73:290-299. [PMID: 37840982 PMCID: PMC10570876 DOI: 10.1270/jsbbs.23002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/18/2023] [Indexed: 10/17/2023]
Abstract
Light provides energy for photosynthesis and is also an important environmental signal that regulates plant growth and development. Ribose-5-phosphate isomerase plays a crucial role in photosynthesis. However, ribose-5-phosphate isomerase has yet to be studied in soybean photosynthesis. To understand the biological function of GmRPI2, in this study, GmRPI2 was cloned, plant overexpression vectors and gene editing vectors were successfully constructed, and transformed into recipient soybean JN74 using the Agrobacterium-mediated method. Using qRT-PCR, we analyzed that GmRPI2 gene expression was highest in leaves, second highest in roots, and lowest in stems. Promoter analysis revealed the presence of multiple cis-acting elements related to light response in the promoter region of GmRPI2. Compared with the control soybean plants, the net photosynthetic rate and transpiration rate of the overexpression lines were higher than those of the control and gene editing lines, while the intercellular CO2 concentration was significantly lower than that of the control and gene editing lines; the total chlorophyll, chlorophyll a, chlorophyll b contents and soluble sugar contents of the overexpression plants were significantly higher than those of the recipient and editing plants, indicating that the GmRPI2 gene can increase The GmRPI2 gene can increase the photosynthetic capacity of soybean plants, providing a theoretical basis and genetic resources for improving soybean yield by regulating photosynthetic efficiency.
Collapse
Affiliation(s)
- Yu Wei Sun
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Xin Yu Wang
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Lu Liu
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Qi Zhang
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Yong Jing Xi
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| | - Pi Wu Wang
- JiLin Agricultural University, The Center of Plant Biotechnology, Chang Chun 130118, China
| |
Collapse
|
8
|
Han Y, Liao C, Meng X, Zhao Q, Yan X, Tian L, Liu Y, Li N, Wang X. Switchover of electrotrophic and heterotrophic respirations enables the biomonitoring of low concentration of BOD in oxygen-rich environment. WATER RESEARCH 2023; 235:119897. [PMID: 36963309 DOI: 10.1016/j.watres.2023.119897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Biochemical oxygen demand (BOD) is a key indicator of water quality. However, there is still no technique to directly measure BOD at low concentrations in oxygen-rich environments. Here, we propose a new scheme using facultative electrotrophs as the sensing element, and confirmed aerobic Acinetobacter venetianus RAG-1 immobilized on electrode was able to measure BOD via the switchover between electrotrophic and heterotrophic respirations. The hybrid binder of Nafion and polytetrafluoroethylene (PTFE) maximized the baseline current (127 ± 2 A/m2) and sensitivity (2.5 ± 0.1 (mA/m2)/(mg/L)). The current decrease and the BOD5 concentration fitted well with a linear model in the case of known contaminants, verified with both lab samples of acetate and glucose (R2>0.96) and in standard curves of real environmental samples collected from the lake and the effluent of wastewater treatment plant (R2>0.98). Importantly, the biosensor tested actual contaminated water samples with an error of 0.4∼10% compared to BOD5 in the case of unknown contaminants. Transcriptomics revealed that reverse oxidative TCA may involve in the electrotrophic respiration of RAG-1 since citrate synthase (gltA) was highly expressed, which was partly downregulated when heterotrophic metabolism was triggered by BOD. This can be returned to electrotroph when BOD was depleted. Our results showed a new way to rapidly measure BOD in oxygen-rich environment, demonstrating the possibility to employ bacteria with two competitive respiration pathways for pollution detection.
Collapse
Affiliation(s)
- Yilian Han
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Chengmei Liao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Xinyi Meng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xuejun Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Lili Tian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Ying Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 35 Yaguan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
9
|
Tang H, Chen Z, Shao Y, Ju X, Li L. Development of an enzymatic cascade to systematically utilize lignocellulosic monosaccharide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1974-1980. [PMID: 36448581 DOI: 10.1002/jsfa.12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The fermentation valorization of two main lignocellulosic monosaccharides, glucose and xylose, is extensively developed; however, it is restricted by limited yield and process complexity. An in vitro enzymatic cascade reaction can be an alternative approach. RESULTS In this study, a three-stage, five-enzyme cascade was developed to convert pretreated biomass to valuable chemicals. First, a ribose-5-phosphate isomerase B mutant isomerized xylose to d-xylulose with high substrate specificity, and a d-arabinose dehydrogenase continued to reduce d-xylulose to d-arabitol. Simultaneously, glucose was utilized for the coenzyme regeneration catalyzed by a glucose dehydrogenase, generating useful gluconic acid and achieving 73% of total conversion rate after 36 h. Then, six kinds of pretreated biomass lignocellulose were hydrolyzed by cellulase and hemicellulase, and corn cob was identified as the initial substrate for providing the highest monosaccharide content. A 65% conversion rate of the lignocellulosic xylose was obtained after 24 h. CONCLUSIONS This study presents a proof of concept to convert main lignocellulosic monosaccharides systematically by an enzymatic cascade at stoichiometric ratio. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hengtao Tang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Zhi Chen
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Yu Shao
- Engineering and Technology Centers of Transdermal Drug Delivery System of Jiangsu Province, Yunnan Baiyao Group Wuxi Pharmaceutical Co., Ltd, Wuxi, P. R. China
| | - Xin Ju
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| | - Liangzhi Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, P. R. China
| |
Collapse
|
10
|
Tang H, Zhou Z, Chen Z, Ju X, Li L. Development of a sugar isomerase cascade to convert D-xylose to rare sugars. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|