1
|
Wang T, Becker D, Twizerimana AP, Luedde T, Gohlke H, Münk C. Cyclophilin A Regulates Tripartite Motif 5 Alpha Restriction of HIV-1. Int J Mol Sci 2025; 26:495. [PMID: 39859212 PMCID: PMC11764967 DOI: 10.3390/ijms26020495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The peptidyl-prolyl isomerase A (PPIA), also known as cyclophilin A (CYPA), is involved in multiple steps of the HIV-1 replication cycle. CYPA regulates the restriction of many host factors by interacting with the CYPA-binding loop on the HIV-1 capsid (CA) surface. TRIM5 (tripartite motif protein 5) in primates is a key species-specific restriction factor defining the HIV-1 pandemic. The incomplete adaptation of HIV-1 to humans is due to the different utilization of CYPA by pandemic and non-pandemic HIV-1. The enzymatic activity of CYPA on the viral core is likely an important reason for regulating the TRIM5 restriction activity. Thus, the HIV-1 capsid and its CYPA interaction may serve as new targets for future anti-AIDS therapeutic agents. This article will describe the species-specificity of the restriction factor TRIM5, understand the role of CYPA in regulating restriction factors in retroviral infection, and discuss important future research issues.
Collapse
Affiliation(s)
- Tingting Wang
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Augustin Penda Twizerimana
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (T.W.); (A.P.T.); (T.L.)
| |
Collapse
|
2
|
Cho HJ, Jung HJ. Cyclophilin A knockdown inhibits the proliferation and metastatic ability of AGS gastric cancer stem cells by downregulating CD147/STAT3/AKT/ERK and epithelial‑mesenchymal transition. Mol Med Rep 2025; 31:14. [PMID: 39513611 PMCID: PMC11551680 DOI: 10.3892/mmr.2024.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Gastric cancer stem cells (GCSCs) contribute to the challenging aspects of gastric cancer, such as progression, metastasis, treatment resistance and recurrence. Inhibitors targeting cyclophilin A (CypA) have shown potential in curtailing GCSC growth. Building upon this, the current study delved deeper into understanding the functional role of CypA in controlling the proliferation and metastatic capabilities of GCSCs, employing CypA‑specific small interfering RNA. The results revealed that knockdown of CypA led to significant suppression of the growth and tumorsphere‑forming capacity of GCSCs derived from AGS cells. This effect was mediated by arresting the cell cycle at the G0/G1 and S phases, and promoting apoptosis. Furthermore, silencing of CypA exerted inhibitory effects on the migration and invasion of AGS GCSCs by modulating the process of epithelial‑mesenchymal transition. Notably, the observed antiproliferative and antimetastatic effects of CypA knockdown were associated with the downregulation of critical regulators of gastric cancer stemness, such as CD44, CD133, aldehyde dehydrogenase 1 family member A1, NANOG, OCT4 and SOX2. This regulation occurred through inactivation of the CD147/STAT3/AKT/ERK signaling pathway. Additionally, CypA knockdown effectively curbed in vivo tumor growth of AGS GCSCs in a chorioallantoic membrane assay using chick embryos. These findings underscore the critical role of CypA in promoting the proliferation and metastasis of GCSCs, highlighting its potential as an effective therapeutic target for eradicating GCSCs and improving gastric cancer treatment outcomes.
Collapse
Affiliation(s)
- Hee Jeong Cho
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan, Chungcheongnam 31460, Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan, Chungcheongnam 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, Asan, Chungcheongnam 31460, Republic of Korea
| |
Collapse
|
3
|
Takanashi S, Yoshimura K, Endo Y, Urakawa M, Sato H, Zhuang T, Hayashi T, Kiku Y, Nagasawa Y, Kitazawa H, Rose MT, Uemoto Y, Watanabe K, Nochi T, Aso H. Elevated levels of cyclophilin A secreted in milk during bovine mastitis. J Dairy Sci 2025; 108:835-844. [PMID: 39389306 DOI: 10.3168/jds.2024-24715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/08/2024] [Indexed: 10/12/2024]
Abstract
Bovine mastitis is an inflammatory disease that primarily occurs when bacteria invade and proliferate in the mammary gland, although it can also be caused by physical trauma. Mastitis results in a decrease in milk yield and quality, causing huge economic losses. Cyclophilin A (CyPA) is a cytosolic protein known as cyclosporine binding protein. Recent studies have shown that CyPA is secreted from cells and has chemotactic activity, recruiting inflammatory cells and inducing multiple cytokines. In this study, we found that CyPA is detected in milk and is abundantly secreted at the onset of mastitis. A significant correlation was found between SCC and the concentrations of CyPA in milk. To elucidate the relationship between mastitis and CyPA, we gave an intramammary infusion of Staphylococcus aureus to cattle and investigated the attendant CyPA secretion. In S. aureus-infused quarters, we observed an increased expression of CyPA on mammary epithelia and secretion into milk. The temporal profiles of CyPA in milk were synchronous with SCC, and there was a significant correlation between the concentration of CyPA in milk and SCC. These results suggest that CyPA is involved in the migration of immune cells during the onset of mastitis and may be used as a marker for the onset of mastitis.
Collapse
Affiliation(s)
- Satoru Takanashi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Kozue Yoshimura
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Yuma Endo
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Megumi Urakawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Hidetoshi Sato
- Miyagi Prefectural Livestock Experiment Station, Osaki, Miyagi, 989-6445, Japan
| | - Tao Zhuang
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Tomohito Hayashi
- National Agriculture and Food Research Organization, National Institute of Animal Health, Sapporo, Hokkaido, 062-0045, Japan
| | - Yoshio Kiku
- National Agriculture and Food Research Organization, National Institute of Animal Health, Sapporo, Hokkaido, 062-0045, Japan
| | - Yuya Nagasawa
- National Agriculture and Food Research Organization, National Institute of Animal Health, Sapporo, Hokkaido, 062-0045, Japan
| | - Haruki Kitazawa
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Michael T Rose
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 5005, Australia
| | - Yoshinobu Uemoto
- Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Kouichi Watanabe
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Tomonori Nochi
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Hisashi Aso
- International Education and Research Center for Food and Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; Laboratory of Animal Functional Morphology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan; The Cattle Museum, Maesawa, Oshu, Iwate, 029-4205, Japan.
| |
Collapse
|
4
|
Chen L, Zeng Z, Luo H, Xiao H, Zeng Y. The effects of CypA on apoptosis: potential target for the treatment of diseases. Appl Microbiol Biotechnol 2024; 108:28. [PMID: 38159118 DOI: 10.1007/s00253-023-12860-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
Cyclophilin A (CypA), the first member of cyclophilins, is distributed extensively in eukaryotic and prokaryotic cells, primarily localized in the cytoplasm. In addition to acting as an intracellular receptor for cyclosporin A (CSA), CypA plays a crucial role in diseases such as aging and tumorigenesis. Apoptosis, a form of programmed cell death, is able to balance the rate of cell viability and death. In this review, we focus on the effects of CypA on apoptosis and the relationship between specific mechanisms of CypA promoting or inhibiting apoptosis and diseases, including tumorigenesis, cardiovascular diseases, organ injury, and microbial infections. Notably, the process of CypA promoting or inhibiting apoptosis is closely related to disease development. Finally, future prospects for the association of CypA and apoptosis are discussed, and a comprehensive understanding of the effects of CypA on apoptosis in relation to diseases is expected to provide new insights into the design of CypA as a therapeutic target for diseases. KEY POINTS: • Understand the effect of CypA on apoptosis. • CypA affects apoptosis through specific pathways. • The effect of CypA on apoptosis is associated with a variety of disease processes.
Collapse
Affiliation(s)
- Li Chen
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Zhuo Zeng
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Haodang Luo
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Hua Xiao
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Basic Medicine School, Hengyang Medical College, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang City, Hunan Province, 421001, People's Republic of China.
| |
Collapse
|
5
|
Padron A, Dwivedi R, Chakraborty R, Prakash P, Kim K, Shi J, Ahn J, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Cyclophilin A facilitates HIV-1 integration. J Virol 2024; 98:e0094724. [PMID: 39480090 PMCID: PMC11575316 DOI: 10.1128/jvi.00947-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Cyclophilin A (CypA) binds to the HIV-1 capsid to facilitate reverse transcription and nuclear entry and counter the antiviral activity of TRIM5α. Interestingly, recent studies suggest that the capsid enters the nucleus of an infected cell and uncoats prior to integration. We have previously reported that the capsid protein regulates HIV-1 integration. Therefore, we probed whether CypA-capsid interaction also regulates this post-nuclear entry step. First, we challenged CypA-expressing (CypA+/+) and CypA-depleted (CypA-/-) cells with HIV-1 and quantified the levels of provirus. CypA-depletion significantly reduced integration, an effect that was independent of CypA's effect on reverse transcription, nuclear entry, and the presence or absence of TRIM5α. In addition, cyclosporin A, an inhibitor that disrupts CypA-capsid binding, inhibited proviral integration in CypA+/+ cells but not in CypA-/- cells. HIV-1 capsid mutants (G89V and P90A) deficient in CypA binding were also blocked at the integration step in CypA+/+ cells but not in CypA-/- cells. Then, to understand the mechanism, we assessed the integration activity of the HIV-1 preintegration complexes (PICs) extracted from acutely infected cells. PICs from CypA-/- cells retained lower integration activity in vitro compared to those from CypA+/+ cells. PICs from cells depleted of both CypA and TRIM5α also had lower activity, suggesting that CypA's effect on PIC was independent of TRIM5α. Finally, CypA protein specifically stimulated PIC activity, as this effect was significantly blocked by CsA. Collectively, these results provide strong evidence that CypA directly promotes HIV-1 integration, a previously unknown role of this host factor in the nucleus of an infected cell. IMPORTANCE Interaction between the HIV-1 capsid and host cellular factors is essential for infection. However, the molecular details and functional consequences of viral-host factor interactions during HIV-1 infection are not fully understood. Over 30 years ago, Cyclophilin A (CypA) was identified as the first host protein to bind to the HIV-1 capsid. Now it is established that CypA-capsid interaction promotes reverse transcription and nuclear entry of HIV-1. In addition, CypA blocks TRIM5α-mediated restriction of HIV-1. In this report, we show that CypA promotes the post-nuclear entry step of HIV-1 integration by binding to the viral capsid. Notably, we show that CypA stimulates the viral DNA integration activity of the HIV-1 preintegration complex. Collectively, our studies identify a novel role of CypA during the early steps of HIV-1 infection. This new knowledge is important because recent reports suggest that an operationally intact HIV-1 capsid enters the nucleus of an infected cell.
Collapse
Affiliation(s)
- Adrian Padron
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Richa Dwivedi
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Rajasree Chakraborty
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| | - Kyusik Kim
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jiong Shi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Program in Molecular Medicine University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology, and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Padron A, Dwivedi R, Chakraborty R, Prakash P, Kim K, Shi J, Ahn J, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Cyclophilin A Facilitates HIV-1 DNA Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599180. [PMID: 38948800 PMCID: PMC11212919 DOI: 10.1101/2024.06.15.599180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Cyclophilin A (CypA) promotes HIV-1 infection by facilitating reverse transcription, nuclear entry and by countering the antiviral activity of TRIM5α. These multifunctional roles of CypA are driven by its binding to the viral capsid. Interestingly, recent studies suggest that the HIV-1 capsid lattice enters the nucleus of an infected cell and uncoats just before integration. Therefore, we tested whether CypA-capsid interaction regulates post-nuclear entry steps of infection, particularly integration. First, we challenged CypA-expressing (CypA +/+ ) and CypA-depleted (CypA -/- ) cells with HIV-1 particles and quantified the resulting levels of provirus. Surprisingly, CypA-depletion significantly reduced integration, an effect that was independent of CypA's effect on reverse transcription, nuclear entry, and the presence or absence of TRIM5α. Additionally, cyclosporin A, an inhibitor that disrupts CypA-capsid binding, inhibited HIV-1 integration in CypA +/+ cells but not in CypA -/- cells. Accordingly, HIV-1 capsid mutants (G89V and P90A) deficient in CypA binding were also blocked at integration in CypA +/+ cells but not in CypA -/- cells. Then, to understand the mechanism, we assessed the integration activity of HIV-1 preintegration complexes (PICs) extracted from infected cells. The PICs from CypA -/- cells had lower activity in vitro compared to those from CypA +/+ cells. PICs from cells depleted for CypA and TRIM5α also had lower activity, suggesting that CypA's effect on PIC activity is independent of TRIM5α. Finally, addition of CypA protein significantly stimulated the integration activity of PICs extracted from both CypA +/+ and CypA -/- cells. Collectively, these results suggest that CypA promotes HIV-1 integration, a previously unknown role of this host factor. Importance HIV-1 capsid interaction with host cellular factors is essential for establishing a productive infection. However, the molecular details of such virus-host interactions are not fully understood. Cyclophilin A (CypA) is the first host protein identified to specifically bind to the HIV-1 capsid. Now it is established that CypA promotes reverse transcription and nuclear entry steps of HIV-1 infection. In this report, we show that CypA promotes HIV-1 integration by binding to the viral capsid. Specifically, our results demonstrate that CypA promotes HIV-1 integration by stimulating the activity of the viral preintegration complex and identifies a novel role of CypA during HIV-1 infection. This new knowledge is important because recent reports suggest that an operationally intact HIV-1 capsid enters the nucleus of an infected cell.
Collapse
|
7
|
Yin S, Li J, Chen J, Zhou Q, Duan DBP, Lai M, Zhong J, He J, Chen D, Zeng Z, Su L, Luo L, Dong C, Zheng Z. LdCyPA attenuates MAPK pathway to assist Leishmania donovani immune escape in host cells. Acta Trop 2024; 251:107114. [PMID: 38190929 DOI: 10.1016/j.actatropica.2023.107114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Visceral leishmaniasis is a neglected tropical disease affecting millions of people worldwide. Macrophages serve as the primary host cells for L. donovani, the immune response capability of these host cells is crucial for parasites' intracellular survival. L. donovani peptidyl-prolyl cis/trans isomerase Cyclophilin A (LdCypA) is a key protein for L. donovani intracellular proliferation, while the molecular mechanism conducive to intracellular survival of parasites remains elusive. METHODS In this study, we generated a macrophage cell line overexpressing LdCyPA to investigate its role in controlling host immunity and promoting intracellular immune escape of L. donovani. RESULTS It was discovered that the overexpression of the LdCyPA cell line regulated the host immune response following infection by downregulating the proportion of M1-type macrophages, promoting the secretion of the anti-inflammatory factor IL-4, and inhibiting the secretion of pro-inflammatory factors like IL-12, IFN-γ, TNF-α, and INOS. Transcriptome sequencing and mechanistic validation, meanwhile, demonstrated that cells overexpressing LdCyPA controlled the immune responses that followed infection by blocking the phosphorylation of P38 and JNK1/2 proteins in the MAPK signaling pathway and simultaneously increasing the phosphorylation of ERK proteins, which helped the L. donovani escape immune recognition. CONCLUSION Our findings thus pave the way for the development of host-directed antiparasitic drugs by illuminating the pro-Leishmania survival mechanism of L. donovani cyclophilin A and exposing a novel immune escape strategy for L. donovani that targets host cellular immune regulation.
Collapse
Affiliation(s)
- Shuangshuang Yin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jiao Li
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Deng Bin Pei Duan
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Meng Lai
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Junchao Zhong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China
| | - Zheng Zeng
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Liang Su
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Lu Luo
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Chunxia Dong
- Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China; Chong Qing Animal Disease Prevention and Control Center, Chongqing, PR China
| | - Zhiwan Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China; Sichuan-Chongqing jointly-established Research Platform of Zoonosis, Chengdu, PR China.
| |
Collapse
|
8
|
Tucker MS, O’Brien CN, Johnson AN, Dubey JP, Rosenthal BM, Jenkins MC. RNA-Seq of Phenotypically Distinct Eimeria maxima Strains Reveals Coordinated and Contrasting Maturation and Shared Sporogonic Biomarkers with Eimeria acervulina. Pathogens 2023; 13:2. [PMID: 38276148 PMCID: PMC10818985 DOI: 10.3390/pathogens13010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Strains of Eimeria maxima, an enteric parasite of poultry, vary in virulence. Here, we performed microscopy and RNA sequencing on oocysts of strains APU-1 (which exhibits more virulence) and APU-2. Although each underwent parallel development, APU-1 initially approached maturation more slowly. Each strain sporulated by hour 36; their gene expression diverged somewhat thereafter. Candidate biomarkers of viability included 58 genes contributing at least 1000 Transcripts Per Million throughout sporulation, such as cation-transporting ATPases and zinc finger domain-containing proteins. Many genes resemble constitutively expressed genes also important to Eimeria acervulina. Throughout sporulation, the expression of only a few genes differed between strains; these included cyclophilin A, EF-1α, and surface antigens (SAGs). Mature and immature oocysts uniquely differentially express certain genes, such as an X-Pro dipeptidyl-peptidase domain-containing protein in immature oocysts and a profilin in mature oocysts. The immature oocysts of each strain expressed more phosphoserine aminotransferase and the mature oocysts expressed more SAGs and microneme proteins. These data illuminate processes influencing sporulation in Eimeria and related genera, such as Cyclospora, and identify biological processes which may differentiate them. Drivers of development and senescence may provide tools to assess the viability of oocysts, which would greatly benefit the poultry industry and food safety applications.
Collapse
Affiliation(s)
- Matthew S. Tucker
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Celia N. O’Brien
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Alexis N. Johnson
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
- Department of State, Bureau of Consular Affairs, Washington, DC 20006, USA
| | - Jitender P. Dubey
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Benjamin M. Rosenthal
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| | - Mark C. Jenkins
- Animal Parasitic Disease Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA (J.P.D.); (B.M.R.); (M.C.J.)
| |
Collapse
|
9
|
Padron A, Prakash P, Pandhare J, Luban J, Aiken C, Balasubramaniam M, Dash C. Emerging role of cyclophilin A in HIV-1 infection: from producer cell to the target cell nucleus. J Virol 2023; 97:e0073223. [PMID: 37843371 PMCID: PMC10688351 DOI: 10.1128/jvi.00732-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023] Open
Abstract
The HIV-1 genome encodes a small number of proteins with structural, enzymatic, regulatory, and accessory functions. These viral proteins interact with a number of host factors to promote the early and late stages of HIV-1 infection. During the early stages of infection, interactions between the viral proteins and host factors enable HIV-1 to enter the target cell, traverse the cytosol, dock at the nuclear pore, gain access to the nucleus, and integrate into the host genome. Similarly, the viral proteins recruit another set of host factors during the late stages of infection to orchestrate HIV-1 transcription, translation, assembly, and release of progeny virions. Among the host factors implicated in HIV-1 infection, Cyclophilin A (CypA) was identified as the first host factor to be packaged within HIV-1 particles. It is now well established that CypA promotes HIV-1 infection by directly binding to the viral capsid. Mechanistic models to pinpoint CypA's role have spanned from an effect in the producer cell to the early steps of infection in the target cell. In this review, we will describe our understanding of the role(s) of CypA in HIV-1 infection, highlight the current knowledge gaps, and discuss the potential role of this host factor in the post-nuclear entry steps of HIV-1 infection.
Collapse
Affiliation(s)
- Adrian Padron
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Prem Prakash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Jeremy Luban
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chris Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Muthukumar Balasubramaniam
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, Tennessee, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Yang S, Shen W, Hu J, Cai S, Zhang C, Jin S, Guan X, Wu J, Wu Y, Cui J. Molecular mechanisms and cellular functions of liquid-liquid phase separation during antiviral immune responses. Front Immunol 2023; 14:1162211. [PMID: 37251408 PMCID: PMC10210139 DOI: 10.3389/fimmu.2023.1162211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Spatiotemporal separation of cellular components is vital to ensure biochemical processes. Membrane-bound organelles such as mitochondria and nuclei play a major role in isolating intracellular components, while membraneless organelles (MLOs) are accumulatively uncovered via liquid-liquid phase separation (LLPS) to mediate cellular spatiotemporal organization. MLOs orchestrate various key cellular processes, including protein localization, supramolecular assembly, gene expression, and signal transduction. During viral infection, LLPS not only participates in viral replication but also contributes to host antiviral immune responses. Therefore, a more comprehensive understanding of the roles of LLPS in virus infection may open up new avenues for treating viral infectious diseases. In this review, we focus on the antiviral defense mechanisms of LLPS in innate immunity and discuss the involvement of LLPS during viral replication and immune evasion escape, as well as the strategy of targeting LLPS to treat viral infectious diseases.
Collapse
Affiliation(s)
- Shuai Yang
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weishan Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sihui Cai
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chenqiu Zhang
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- The First Affiliated Hospital of Sun Yat-sen University, Ministry of Education MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Ministry of Education Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Silva AVBDA, Campanati JDEAG, Barcelos IDES, Santos ACL, Deus UPDE, Soares TDEJ, Amaral LSDEB. COVID-19 and Acute Kidney Injury - Direct and Indirect Pathophysiological Mechanisms Underlying Lesion Development. AN ACAD BRAS CIENC 2022; 94:e20211501. [PMID: 36477239 DOI: 10.1590/0001-3765202220211501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) responsible for millions of deaths worldwide. Although the respiratory system is the main target of COVID-19, the disease can affect other organs, including the kidneys. Acute Kidney Injury (AKI), commonly seen in patients infected with COVID-19, has a multifactorial cause. Several studies associate this injury with the direct involvement of the virus in renal cells and the indirect damage stimulated by the infection. The direct cytopathic effects of SARS-CoV-2 are due to the entry and replication of the virus in renal cells, changing several regulatory pathways, especially the renin-angiotensin-aldosterone system (RAAS), with repercussions on the kallikrein-kinin system (KKS). Furthermore, the virus can deregulate the immune system, leading to an exaggerated response of inflammatory cells, characterizing the state of hypercytokinemia. The such exaggerated inflammatory response is commonly associated with hemodynamic changes, reduced renal perfusion, tissue hypoxia, generation of reactive oxygen species (ROS), endothelial damage, and coagulopathies, which can result in severe damage to the renal parenchyma. Thereby, understanding the molecular mechanisms and pathophysiology of kidney injuries induced by SARS-COV-2 is of fundamental importance to obtaining new therapeutic insights for the prevention and management of AKI.
Collapse
Affiliation(s)
- Antônio V B DA Silva
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - João DE A G Campanati
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Isadora DE S Barcelos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Alberto C L Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Uildson P DE Deus
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Telma DE J Soares
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| | - Liliany S DE B Amaral
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, 45029-094 Vitória da Conquista, BA, Brazil
| |
Collapse
|
12
|
Huang H, Jin K, Ouyang K, Jiang Z, Yang Z, Hu N, Dai Y, Zhang Y, Zhang Q, Han Y, Zhao J, Lin H, Wang C, Wang C, Sun X, Lu D, Zhu J, Li J. Cyclophilin A causes severe fever with thrombocytopenia syndrome virus-induced cytokine storm by regulating mitogen-activated protein kinase pathway. Front Microbiol 2022; 13:1046176. [PMID: 36569095 PMCID: PMC9768865 DOI: 10.3389/fmicb.2022.1046176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/04/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Severe fever with thrombocytopenia syndrome (SFTS) has become a global threat to public health since its first report in China in 2009. However, the pathogenesis of SFTS virus (SFTSV) in humans remains unclear. Also, there are no effective therapeutics for SFTS. Cyclophilin A (CyPA) regulates protein folding and trafficking involved in various viral infectious diseases, but its role in SFTSV infection has not been elucidated. Methods We detected plasma CyPA levels in 29 healthy subjects and 30 SFTS patients by ELISA. In THP-1 cells and normal human peripheral blood mononuclear cells (PBMCs), SFTSV-induced extracellular CyPA (eCyPA) was also detected by ELISA. In THP-1, the effects of CyPA on Mitogen-activated protein kinase (MAPK) pathway and NF-κB were determined by Western blot. We validated the interaction between CypA and CD147 by human recombinant CyPA (hrCyPA) and the CD147 inhibitor. Effects of CyPA inhibitor Cyclosporine A (CsA) on cytokines and SFTSV replication in THP-1 cells was also detected. 8-week-old Interferon-α/β Receptor (IFNAR) knockout (IFNAR-/-) C57BL/6 mice were divided into mock group, 106TCID50 SFTSV (Untreated) group and 106TCID50 SFTSV+CsA (CsA-treated) group. The changes of body weight, animal behavior and survival time of each group were recorded. Blood samples were collected from tail vein regularly. After death, the liver, spleen, lung, kidney and brain were collected for pathological HE staining and SFTSV-NP immunohistochemical staining. Results Compared to healthy subjects and SFTS patients in the febrile phase of the disease, plasma CyPA levels in SFTS patients at the multi-organ dysfunction (MOD) phase showed significantly elevated (P < 0.01). Extracellular CyPA activates the MAPK pathway by binding to CD147 in THP-1 infected with SFTSV. CsA inhibits the pro-inflammatory and promoting replication effects of CyPA after SFTSV infection in vitro. In vivo, CsA can prolong the survival time and delay the weight loss of SFTSV mice. CsA reduces multi-organ dysfunction in IFNAR-/- mice infected with SFTSV. Discussion Our results indicate that CyPA is associated with SFTSV-induced cytokine storm, which can be a potential target for SFTS therapy.
Collapse
Affiliation(s)
- Huaying Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Department of Respiratory Diseases, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ke Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Ouyang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengyi Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Nannan Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqin Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Han
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Jie Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hong Lin
- Jiangsu Province Blood Center, Nanjing, China
| | - Chunhui Wang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Chunyan Wang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Xuewei Sun
- Basic Medical College, Binzhou Medical University, Yantai, China
| | - Dafeng Lu
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China,*Correspondence: Jin Zhu, ; Jun Li,
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Jin Zhu, ; Jun Li,
| |
Collapse
|
13
|
Naruishi K. Biological Roles of Fibroblasts in Periodontal Diseases. Cells 2022; 11:3345. [PMID: 36359741 PMCID: PMC9654228 DOI: 10.3390/cells11213345] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 08/08/2023] Open
Abstract
Periodontal diseases include periodontitis and gingival overgrowth. Periodontitis is a bacterial infectious disease, and its pathological cascade is regulated by many inflammatory cytokines secreted by immune or tissue cells, such as interleukin-6. In contrast, gingival overgrowth develops as a side effect of specific drugs, such as immunosuppressants, anticonvulsants, and calcium channel blockers. Human gingival fibroblasts (HGFs) are the most abundant cells in gingival connective tissue, and human periodontal ligament fibroblasts (HPLFs) are located between the teeth and alveolar bone. HGFs and HPLFs are both crucial for the remodeling and homeostasis of periodontal tissue, and their roles in the pathogenesis of periodontal diseases have been examined for 25 years. Various responses by HGFs or HPLFs contribute to the progression of periodontal diseases. This review summarizes the biological effects of HGFs and HPLFs on the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- Koji Naruishi
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| |
Collapse
|
14
|
Liao Y, Peng K, Li X, Ye Y, Liu P, Zeng Y. The adhesion protein of Mycoplasma genitalium inhibits urethral epithelial cell apoptosis through CypA-CD147 activating PI3K/ Akt/NF-κB pathway. Appl Microbiol Biotechnol 2022; 106:6657-6669. [PMID: 36066653 DOI: 10.1007/s00253-022-12146-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
Abstract
By interacting with the receptor on the host cells membrane, Mycoplasma genitalium, a prokaryotic bacterium primarily transmitted through sexual contact, can adhere to and even enter cells. The adhesion protein of M. genitalium (MgPa) plays a critical function in the adhering and subsequent invasion into host cells. Our prior studies verified that cyclophilin A (CypA) was the receptor of MgPa on human urethral epithelial cells (SV-HUC-1) membrane and could induce pro-inflammatory cytokines production through the CypA-CD147-ERK-NF-κB pathway. This research aims to understand how MgPa interacts with its membrane receptor CypA to cause apoptosis in host cells. We employed flow cytometry to see if MgPa prevents or enhances apoptosis of SV-HUC-1 cells. The apoptosis-related proteins such as Bax, caspase-3, and cleaved caspase-3 were assayed using Western blot. Results suggested that MgPa could inhibit the apoptosis of SV-HUC-1 cells. And we demonstrated that interference with the expression of CypA or CD147 significantly reversed the inhibitory effect of MgPa on SV-HUC-1 cells apoptosis, indicating that MgPa inhibited urothelial cells apoptosis through CypA/CD147. Furthermore, we discovered that MgPa regulates the PI3K/Akt/NF-κB pathway through CypA/CD147 to inhibit SV-HUC-1 cells apoptosis. Ultimately, the inhibitory effect of MgPa on the apoptosis of the urothelial epithelial cells extracted from CypA-knockout mice was validated by Annexin V/PI assay. The results corroborated that MgPa could also inhibit mouse urothelial epithelial cells apoptosis. In summary, we demonstrated that MgPa could inhibit SV-HUC-1 cells apoptosis via regulating the PI3K/Akt/NF-κB pathway through CypA/CD147, providing experimental evidence for elucidating the survival strategies of M. genitalium in host cells. KEY POINTS: • M. genitalium protein of adhesion inhibited human urethral epithelial cells apoptosis through CypA-CD147 activating the signal pathway of PI3K/Akt/NF-κB • The knockdown of CypA and CD147 could downregulate the M. genitalium -activated PI3K/Akt/NF-κB pathway in SV-HUC-1 cells • MgPa could inhibit the apoptosis of normal C57BL mouse primary urethral epithelial cells, but not for CypA-knockout C57BL mouse primary urethral epithelial cells.
Collapse
Affiliation(s)
- Yating Liao
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
- Center of Medical Laboratory, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, 423000, China
| | - Kailan Peng
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Xia Li
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Youyuan Ye
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Peng Liu
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China
| | - Yanhua Zeng
- Institute of Pathogenic Biology, Hengyang Medical School, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang City, Hunan Province, 421001, People's Republic of China.
| |
Collapse
|
15
|
Han J, Kyu Lee M, Jang Y, Cho WJ, Kim M. Repurposing of cyclophilin A inhibitors as broad-spectrum antiviral agents. Drug Discov Today 2022; 27:1895-1912. [PMID: 35609743 PMCID: PMC9123807 DOI: 10.1016/j.drudis.2022.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/30/2022] [Accepted: 05/18/2022] [Indexed: 12/28/2022]
Abstract
Cyclophilin A (CypA) is linked to diverse human diseases including viral infections. With the worldwide emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2), drug repurposing has been highlighted as a strategy with the potential to speed up antiviral development. Because CypA acts as a proviral component in hepatitis C virus, coronavirus and HIV, its inhibitors have been suggested as potential treatments for these infections. Here, we review the structure of cyclosporin A and sanglifehrin A analogs as well as synthetic micromolecules inhibiting CypA; and we discuss their broad-spectrum antiviral efficacy in the context of the virus lifecycle.
Collapse
Affiliation(s)
- Jinhe Han
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Meeheyin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
16
|
Li Y, Yang L. Cyclophilin A represses reactive oxygen species generation and death of hypoxic non-small-cell lung cancer cells by degrading thioredoxin-interacting protein. Cell Cycle 2022; 21:1996-2007. [PMID: 35579671 DOI: 10.1080/15384101.2022.2078615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cyclophilin A (cypA) is overexpressed in many types of carcinomas, including non-small-cell lung cancer (NSCLC). However, the effect of anoxia, a critical feature of the carcinoma cell microenvironment, on cypA expression in NSCLC is unknown. Here, formaldehyde-fixed and paraffin-embedded samples were collected from 60 subjects with NSCLC. The protein expression levels of cypA and hypoxia-inducible factor-1α (HIF-1α) were evaluated using immunohistochemistry. Kaplan-Meier analysis showed that subjects with high cypA expression had remarkably shorter progression-free survival than those with low cypA expression. Furthermore, cypA expression levels were significantly related to HIF-1α expression levels (Spearman's correlation=0.34, P<0.0001). To further assess the effect of cypA, an anoxic carcinoma cell model was established. CypA expression was remarkably upregulated in H1299 and A549 cell lines under hypoxic conditions. Overexpression of cypA restored hypoxia-impaired cell growth and prevented reactive oxygen species (ROS) production and cell death in hypoxic A549 and H1299 cells. However, these phenotypes were not altered by the inactive R55A mutant of cypA. Mechanistic studies demonstrated that cypA can bind to and degrade the tumor suppressor protein TXNIP in H1299 and A549 cells. Restored TXNIP expression in cypA-overexpressed and hypoxic NSCLC cells led to increased ROS levels and apoptotic cell numbers and decreased cell growth compared with cypA-overexpressed and hypoxic NSCLC cells. These findings indicate that anoxia results in an increase in cypA expression in NSCLC. Additionally, cypA served as an oncogene during hypoxia by interacting with TXNIP.
Collapse
Affiliation(s)
- Yang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| | - Lan Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
17
|
Bianchi L, Casini S, Vantaggiato L, Di Noi A, Carleo A, Shaba E, Armini A, Bellucci F, Furii G, Bini L, Caliani I. A Novel Ex Vivo Approach Based on Proteomics and Biomarkers to Evaluate the Effects of Chrysene, MEHP, and PBDE-47 on Loggerhead Sea Turtles ( Caretta caretta). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074369. [PMID: 35410049 PMCID: PMC8998652 DOI: 10.3390/ijerph19074369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023]
Abstract
The principal aim of the present study was to develop and apply novel ex vivo tests as an alternative to cell cultures able to evaluate the possible effects of emerging and legacy contaminants in Caretta caretta. To this end, we performed ex vivo experiments on non-invasively collected whole-blood and skin-biopsy slices treated with chrysene, MEHP, or PBDE-47. Blood samples were tested by oxidative stress (TAS), immune system (respiratory burst, lysozyme, and complement system), and genotoxicity (ENA assay) biomarkers, and genotoxic and immune system effects were observed. Skin slices were analyzed by applying a 2D-PAGE/MS proteomic approach, and specific contaminant signatures were delineated on the skin proteomic profile. These reflect biochemical effects induced by each treatment and allowed to identify glutathione S-transferase P, peptidyl-prolyl cis-trans isomerase A, mimecan, and protein S100-A6 as potential biomarkers of the health-threatening impact the texted toxicants have on C. caretta. Obtained results confirm the suitability of the ex vivo system and indicate the potential risk the loggerhead sea turtle is undergoing in the natural environment. In conclusion, this work proved the relevance that the applied ex vivo models may have in testing the toxicity of other compounds and mixtures and in biomarker discovery.
Collapse
Affiliation(s)
- Laura Bianchi
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Silvia Casini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Agata Di Noi
- Department of Life Sciences, University of Siena, Via P. Mattioli, 4, 53100 Siena, Italy;
| | - Alfonso Carleo
- Department of Pulmonology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Enxhi Shaba
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Alessandro Armini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro, 2, 53100 Siena, Italy;
| | - Francesco Bellucci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| | - Giovanni Furii
- Centro Recupero Tartarughe Marine Legambiente, Molo di Ponente, 71043 Manfredonia, Italy;
| | - Luca Bini
- Functional Proteomics Laboratory, Department of Life Sciences, University of Siena, Via A. Moro, 2, 53100 Siena, Italy; (L.B.); (L.V.); (E.S.); (L.B.)
| | - Ilaria Caliani
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli, 4, 53100 Siena, Italy; (F.B.); (I.C.)
| |
Collapse
|
18
|
Mamatis JE, Pellizzari-Delano IE, Gallardo-Flores CE, Colpitts CC. Emerging Roles of Cyclophilin A in Regulating Viral Cloaking. Front Microbiol 2022; 13:828078. [PMID: 35242122 PMCID: PMC8886124 DOI: 10.3389/fmicb.2022.828078] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Cellular cyclophilins (Cyps) such as cyclophilin A (CypA) have emerged as key players at the virus-host interface. As host factors required for the replication of many unrelated viruses, including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and coronaviruses (CoVs), Cyps are attractive targets for antiviral therapy. However, a clear understanding of how these viruses exploit Cyps to promote their replication has yet to be elucidated. Recent findings suggest that CypA contributes to cloaking of viral replication intermediates, an evasion strategy that prevents detection of viral nucleic acid by innate immune sensors. Furthermore, Cyps are emerging to have roles in regulation of cellular antiviral signaling pathways. Recruitment of Cyps by viral proteins may interfere with their ability to regulate these signaling factors. Consistent with disruption of viral cloaking and innate immune evasion, treatment with Cyp inhibitors such as cyclosporine A (CsA) restores antiviral innate immunity and induces expression of a subset of antiviral genes that restrict viral infection, which may help to explain the broad antiviral spectrum of CsA. In this review, we provide an overview of the roles of CypA in viral cloaking and evasion of innate immunity, focusing on the underlying mechanisms and new perspectives for antiviral therapies.
Collapse
Affiliation(s)
- John E Mamatis
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Isabella E Pellizzari-Delano
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Carla E Gallardo-Flores
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Che C Colpitts
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
19
|
Mycoplasma genitalium Protein of Adhesion Promotes the Early Proliferation of Human Urothelial Cells by Interacting with RPL35. Pathogens 2021; 10:pathogens10111449. [PMID: 34832605 PMCID: PMC8621731 DOI: 10.3390/pathogens10111449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/29/2022] Open
Abstract
Mycoplasma genitalium is a newly recognized pathogen associated with sexually transmitted diseases (STDs). MgPa, the adhesion protein of Mycoplasma genitalium, is the main adhesin and the key factor for M. genitalium interacting with host cells. Currently, the long-term survival mechanism of M. genitalium in the host is not clear. In this study, a T7 phage-displayed human urothelial cell (SV-HUC-1) cDNA library was constructed, and the interaction of MgPa was screened from this library using the recombinant MgPa (rMgPa) as a target molecule. We verified that 60S ribosomal protein L35 (RPL35) can interact with MgPa using far-Western blot and co-localization analysis. According to the results of tandem mass tag (TMT) labeling and proteome quantitative analysis, there were altogether 407 differentially expressed proteins between the pcDNA3.1(+)/MgPa-transfected cells and non-transfected cells, of which there were 6 downregulated proteins and 401 upregulated proteins. The results of qRT-PCR demonstrated that interaction between rMgPa and RPL35 could promote the expressions of EIF2, SRP68, SERBP1, RPL35A, EGF, and TGF-β. 3-(4,5)-Dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide bromide (MTT) assays corroborated that the interaction between rMgPa and RPL35 could promote SV-HUC-1 cell proliferation. Therefore, our findings indicated that the interaction between rMgPa and RPL35 can enhance the expressions of transcription-initiation and translation-related proteins and thus promote cell proliferation. This study elucidates a new biological function of MgPa and can explain this new mechanism of M. genitalium in the host.
Collapse
|
20
|
Tur J, Farrera C, Sánchez-Tilló E, Vico T, Guerrero-Gonzalez P, Fernandez-Elorduy A, Lloberas J, Celada A. Induction of CIITA by IFN-γ in macrophages involves STAT1 activation by JAK and JNK. Immunobiology 2021; 226:152114. [PMID: 34303919 DOI: 10.1016/j.imbio.2021.152114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 01/05/2023]
Abstract
The induction of major histocompatibility complex (MHC) class II proteins by interferon gamma (IFN-γ) in macrophages play an important role during immune responses. Here we explore the signaling pathways involved in the induction by IFN-γ of the MHC II transactivator (CIIta) required for MHC II transcriptional activation. Cyclophilin A (CypA) is required for IFN-γ-dependent induction of MHC II in macrophages, but not when it is mediated by GM-CSF. The effect of CypA appears to be specific because it does not affect the expression of other molecules or genes triggered by IFN-γ, such as FcγR, NOS2, Lmp2, and Tap1. We found that CypA inhibition blocked the IFN-γ-induced expression of CIIta at the transcriptional level in two phases. In an early phase, during the first 2 h of IFN-γ treatment, STAT1 is phosphorylated at Tyrosine 701 and Serine 727, residues required for the induction of the transcription factor IRF1. In a later phase, STAT1 phosphorylation and JNK activation are required to trigger CIIta expression. CypA is needed for STAT1 phosphorylation in this last phase and to bind the CIIta promoter. Our findings demonstrate that STAT1 is required in a two-step induction of CIIta, once again highlighting the significance of cross talk between signaling pathways in macrophages.
Collapse
Affiliation(s)
- Juan Tur
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Consol Farrera
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Ester Sánchez-Tilló
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Tania Vico
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Paula Guerrero-Gonzalez
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Ainhoa Fernandez-Elorduy
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Jorge Lloberas
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
| | - Antonio Celada
- Macrophage Biology Group, Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|