1
|
Hoxha L, Taherzadeh MJ, Marangon M. Sustainable repurposing of grape marc: Potential for bio-based innovations. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 203:114871. [PMID: 40359698 DOI: 10.1016/j.wasman.2025.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
There is increasing interest in repurposing by-products and residues from agricultural and agri-food industries, supporting environmental, social, and economic sustainability. Wineries and distilleries, an important segment of EU agriculture, generate substantial levels of waste annually with grape marc, a significant by-product of these industries, representing both an environmental challenge and an untapped resource. To achieve the sector's 2050 zero-waste vision, innovative waste management strategies are crucial. This review aims to explore the potential of grape marc as a natural source of high-value compounds and its conversion into a portfolio of high-value added bio-based products. The review discusses grape marc generation and the associated waste management challenges within the wine and distillery industries. It highlights innovative biological, thermal, and chemical conversion strategies for turning grape marc into high-value products. Additionally, it provides an overview of the main components of grape marc and explores its wide range of alternative applications, with particular emphasis placed on nutraceuticals, functional food and feed, biofuels, biomaterials, and agricultural amendments. In addition, the study highlights the integration of grape marc into a fungal-based biorefinery system, as promising upcycling strategy to drive innovation in the development of bio-based products, enabling a transformative waste-to-resource pathway. The findings support the advancement of innovative and feasible valorization models, contributing to sustainable waste management practices within circular economy framework.
Collapse
Affiliation(s)
- Luziana Hoxha
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, PD, Italy; Swedish Centre for Resource Recovery, University of Borås 50190 Borås, Sweden
| | | | - Matteo Marangon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, PD, Italy; Interdepartmental Centre for Research in Viticulture and Enology, University of Padova, 31015 Conegliano, TV, Italy
| |
Collapse
|
2
|
Mohammed Yousuf Abdi S, Azizan KA, Syed Abdullah SS, Samsu ZA. Temperature-based investigation of rhamnolipids congeners production by the non-pathogenic Burkholderia thailandensis E264 using LC-QToF-MS metabolomics. Metabolomics 2024; 21:14. [PMID: 39738744 DOI: 10.1007/s11306-024-02205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 01/02/2025]
Abstract
INTRODUCTION Burkholderia thailandensis E264 is a non-pathogenic soil bacterium that produces rhamnolipids (RLs), which are utilised in various fields. Although studies have illustrated changes in RLs congeners in response to environmental factors, studies on the influence of temperature on the RLs congeners produced by B. thailandensis E264 are scarce. OBJECTIVE It was hypothesised that RL congeners will be distributed differently at different temperature, which caused the produced RL to have different properties. This brought about the idea of a tailored production of RL for specific application through temperature control. Thus, this study aimed to investigate the distribution of RLs congeners by B. thailandensis E264 in response to different temperatures. METHODOLOGY B. thailandensis E264 was grown at three different temperatures (25 °C, 30 °C, and 37 °C) for nine days and subjected to metabolomic analysis using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QToF-MS). RESULTS The findings indicated that temperature significantly affected the metabolomic distribution of B. thailandensis E264, with mono-rhamno-mono-lipid and mono-rhamno-di-lipid being the predominant metabolites at 37 °C and 30 °C, with relative abundances of 64.1% and 65.3%, respectively. In comparison, di-rhamno-di-lipid was detected at 25 °C with an overall relative abundance of 77.7%. CONCLUSION This investigation showed that changing the cultivation temperature of the non-pathogenic B. thailandensis E264 produces diverse rhamnolipid congeners, which could enable the targeted synthesis of specific RLs for various applications and increase the market value of biosurfactants.
Collapse
Affiliation(s)
- Sarah Mohammed Yousuf Abdi
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Sharifah Soplah Syed Abdullah
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia
| | - Zainatul Asyiqin Samsu
- Universiti Kuala Lumpur Branch Campus Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, 78000, Malaysia.
| |
Collapse
|
3
|
Kłosowska-Chomiczewska IE, Macierzanka A, Parchem K, Miłosz P, Bladowska S, Płaczkowska I, Hewelt-Belka W, Jungnickel C. Microbe cultivation guidelines to optimize rhamnolipid applications. Sci Rep 2024; 14:8362. [PMID: 38600115 PMCID: PMC11006924 DOI: 10.1038/s41598-024-59021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
In the growing landscape of interest in natural surfactants, selecting the appropriate one for specific applications remains challenging. The extensive, yet often unsystematized, knowledge of microbial surfactants, predominantly represented by rhamnolipids (RLs), typically does not translate beyond the conditions presented in scientific publications. This limitation stems from the numerous variables and their interdependencies that characterize microbial surfactant production. We hypothesized that a computational recipe for biosynthesizing RLs with targeted applicational properties could be developed from existing literature and experimental data. We amassed literature data on RL biosynthesis and micellar solubilization and augmented it with our experimental results on the solubilization of triglycerides (TGs), a topic underrepresented in current literature. Utilizing this data, we constructed mathematical models that can predict RL characteristics and solubilization efficiency, represented as logPRL = f(carbon and nitrogen source, parameters of biosynthesis) and logMSR = f(solubilizate, rhamnolipid (e.g. logPRL), parameters of solubilization), respectively. The models, characterized by robust R2 values of respectively 0.581-0.997 and 0.804, enabled the ranking of descriptors based on their significance and impact-positive or negative-on the predicted values. These models have been translated into ready-to-use calculators, tools designed to streamline the selection process for identifying a biosurfactant optimally suited for intended applications.
Collapse
Affiliation(s)
- Ilona E Kłosowska-Chomiczewska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland.
| | - Adam Macierzanka
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Karol Parchem
- Department of Chemistry, Technology and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Pamela Miłosz
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Sonia Bladowska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Iga Płaczkowska
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| | - Christian Jungnickel
- Department of Colloid and Lipid Science, Faculty of Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza St., 80-233, Gdańsk, Poland
| |
Collapse
|
4
|
Blunt W, Blanchard C, Doyle C, Vasquez V, Ye M, Adewale P, Liu Y, Morley K, Monteil-Rivera F. The potential of Burkholderia thailandensis E264 for co-valorization of C 5 and C 6 sugars into multiple value-added bio-products. BIORESOURCE TECHNOLOGY 2023; 387:129595. [PMID: 37541546 DOI: 10.1016/j.biortech.2023.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Despite known metabolic versatility of Burkholderia spp., sugar metabolism and end-product synthesis patterns in Burkholderia thailandensis have been poorly characterized. This work has demonstrated that B. thailandensis is capable of simultaneously uptaking glucose and xylose and accumulating up to 64% of its dry mass as poly(3-hydroxyalkanoate) (PHA) biopolymers, resulting in a PHA titer of up to 3.8 g L-1 in shake flasks. Rhamnolipids - mainly (68-75%) in the form of Rha-Rha-C14-C14 - were produced concomitantly with a titer typically in the range of 0.2-0.4 g L-1. Gluconic and xylonic acids were also detected in titers of up to 5.3 g L-1, and while gluconic acid appeared to be back consumed, xylonic acid formed as a major end product. This first example of co-production of three products from mixed sugars using B. thailandensis paves the way for improving biorefinery economics.
Collapse
Affiliation(s)
- Warren Blunt
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Catherine Blanchard
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Christopher Doyle
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Vinicio Vasquez
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Mengwei Ye
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Peter Adewale
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yali Liu
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Krista Morley
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada
| | - Fanny Monteil-Rivera
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec H4P 2R2, Canada.
| |
Collapse
|
5
|
Mohy Eldin A, Hossam N. Microbial surfactants: characteristics, production and broader application prospects in environment and industry. Prep Biochem Biotechnol 2023; 53:1013-1042. [PMID: 37651735 DOI: 10.1080/10826068.2023.2175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Microbial surfactants are green molecules with high surface activities having the most promising advantages over chemical surfactants including their ability to efficiently reducing surface and interfacial tension, nontoxic emulsion-based formulations, biocompatibility, biodegradability, simplicity of preparation from low cost materials such as residual by-products and renewable resources at large scales, effectiveness and stabilization under extreme conditions and broad spectrum antagonism of pathogens to be part of the biocontrol strategy. Thus, biosurfactants are universal tools of great current interest. The present work describes the major types and microbial origin of surfactants and their production optimization from agro-industrial wastes in the batch shake-flasks and bioreactor systems through solid-state and submerged fermentation industries. Various downstream strategies that had been developed to extract and purify biosurfactants are discussed. Further, the physicochemical properties and functional characteristics of biosurfactants open new future prospects for the development of efficient and eco-friendly commercially successful biotechnological product compounds with diverse potential applications in environment, industry, biomedicine, nanotechnology and energy-saving technology as well.
Collapse
Affiliation(s)
- Ahmed Mohy Eldin
- Department of Microbiology, Soils, Water and Environmental Research Institute (SWERI), Agricultural Research Center (ARC), Giza, Egypt
| | | |
Collapse
|
6
|
Kumar R, Barbhuiya RI, Bohra V, Wong JWC, Singh A, Kaur G. Sustainable rhamnolipids production in the next decade - Advancing with Burkholderia thailandensis as a potent biocatalytic strain. Microbiol Res 2023; 272:127386. [PMID: 37094547 DOI: 10.1016/j.micres.2023.127386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/26/2023]
Abstract
Rhamnolipids are one of the most promising eco-friendly green glycolipids for bio-replacements of commercially available fossil fuel-based surfactants. However, the current industrial biotechnology practices cannot meet the required standards due to the low production yields, expensive biomass feedstocks, complicated processing, and opportunistic pathogenic nature of the conventional rhamnolipid producer strains. To overcome these problems, it has become important to realize non-pathogenic producer substitutes and high-yielding strategies supporting biomass-based production. We hereby review the inherent characteristics of Burkholderia thailandensis E264 which favor its competence towards such sustainable rhamnolipid biosynthesis. The underlying biosynthetic networks of this species have unveiled unique substrate specificity, carbon flux control and rhamnolipid congener profile. Acknowledging such desirable traits, the present review provides critical insights towards metabolism, regulation, upscaling, and applications of B. thailandensis rhamnolipids. Identification of their unique and naturally inducible physiology has proved to be beneficial for achieving previously unmet redox balance and metabolic flux requirements in rhamnolipids production. These developments in part are targeted by the strategic optimization of B. thailandensis valorizing low-cost substrates ranging from agro-industrial byproducts to next generation (waste) fractions. Accordingly, safer bioconversions can propel the industrial rhamnolipids in advanced biorefinery domains to promote circular economy, reduce carbon footprint and increased applicability as both social and environment friendly bioproducts.
Collapse
Affiliation(s)
- Rajat Kumar
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | - Varsha Bohra
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jonathan W C Wong
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Institute of Bioresources and Agriculture and Sino-Forest Applied Research Centre for Pearl River Delta Environment, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Ashutosh Singh
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Guneet Kaur
- School of Engineering, University of Guelph, Guelph, ON N1G2W1, Canada.
| |
Collapse
|
7
|
Ambaye TG, Formicola F, Sbaffoni S, Prasad S, Milanese C, Robustelli Della Cuna FS, Franzetti A, Vaccari M. Treatment of petroleum hydrocarbon contaminated soil by combination of electro-Fenton and biosurfactant-assisted bioslurry process. CHEMOSPHERE 2023; 319:138013. [PMID: 36731662 DOI: 10.1016/j.chemosphere.2023.138013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Removing petroleum hydrocarbons (PHCs) from polluted soil is challenging due to their low bioavailability and degradability. In this study, an experiment was carried out to treat soil polluted with petroleum hydrocarbon using a hybrid electro-Fenton (with BDD anode electrode) and biological processes stimulated with long-chain rhamnolipids (biosurfactants). Electro-Fenton treatment was applied as a pretreatment before the biological process to enhance PHC biodegradability, which would benefit the subsequent biological process. The effects of initial pH, hydroxide concentration, soil organic matter composition, PHCs intermediates during the electro-Fenton process, and total numbers of bacteria in the biological process were analyzed to determine the optimum conditions. The results showed that the optimized electrolysis time for the electro-Fenton was 12 h. The change induced during pretreatment at a specified time was found suitable for the biological process stage and led to 93.6% PHC degradation in combination with the electro-Fenton-and-biological process after 72 h. The combined system's performance was almost 40% higher than individual electro-Fenton and biological treatments. GC-MS analysis confirms the formation of 9-octadecen-1-ol (Z), 2-heptadecene, 1-nonadecene, 1-heneicosene, and pentacosane as fragmentation during the PHCs degradation process. Thus, the electro-Fenton process as pretreatment combined with a biological process stimulated with rhamnolipids (biosurfactants) could be effectively applied to remediate soil polluted with PHCs. However, the system needs further research and investigation to optimize electrolysis time and biosurfactant dose to advance this approach in the soil remediation process.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- University of Brescia, Department of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy.
| | - Francesca Formicola
- University of Milano-Bicocca, Department. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Silvia Sbaffoni
- ENEA, Sustainability Department, Resource Valorisation Lab, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Shiv Prasad
- Division of Environment Science ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Chiara Milanese
- H(2) Lab, Chemistry Department & CSGI, University of Pavia, Viale Taramelli 16, 27100, Pavia, Italy
| | - Francesco Saverio Robustelli Della Cuna
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy; Environmental Research Center, ICS Maugeri SPA SB, Institute of Pavia, IRCCS, Via Maugeri 2, 27100, Pavia, Italy
| | - Andrea Franzetti
- University of Milano-Bicocca, Department. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Mentore Vaccari
- University of Brescia, Department of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy.
| |
Collapse
|
8
|
Alkaline tea tree oil nanoemulsion nebulizers for the treatment of pneumonia induced by drug-resistant Acinetobacter baumannii. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Ambaye TG, Formicola F, Sbaffoni S, Franzetti A, Vaccari M. Insights into rhamnolipid amendment towards enhancing microbial electrochemical treatment of petroleum hydrocarbon contaminated soil. CHEMOSPHERE 2022; 307:136126. [PMID: 36028128 DOI: 10.1016/j.chemosphere.2022.136126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Environmental pollution by hydrophobic hydrocarbons is increasing, notably nowadays due to a large amount of industrial activity. Microbial electrochemical technologies (MET) are promising bio-based systems which can oxidize hydrophobic hydrocarbon pollutants and produce bioelectricity simultaneously. However, MET faces some issues in terms of soil remediation, including low mass transfer, limited electro-activity of anodes as electron acceptors, low bioavailability of hydrocarbons, and the limited activity of beneficial bacteria and inefficient electron transport. This study aims to investigate the role of the addition of rhamnolipid as an analyte solution to the MET to enhance the efficacy and concurrently solve the abovementioned issues. In this regard, a novel long chain of RL was produced by using low-cost carbon winery waste through non-pathogenic Burkholderia thailandensis E264 strains. Different doses of RL were tested, including 10, 50, and 100 mg/L. A maximum enhancement in the oxidation of hydrophobic hydrocarbons was found to be up to 72.5%, while the current density reached 9.5 Am-2 for the MET reactor having a dose of 100 mg/L. The biosurfactants induced a unique microbial enrichment associated with Geobacter, Desulfovibrio, Klebsiella, and Comamona on the anode surface, as well as Pseudomonas, Acinetobacter, and Franconibacter in soil MET, indicating the occurrence of a metabolic pathway in microbes working with the anode and soil bioelectrochemical remediation system. According to cyclic voltammetry analysis, redox peaks appeared, showing a minor shift in redox MET-biosurfactant compared to the bare MET system. Furthermore, the phytotoxicity of polluted soil to L. sativum seeds after and before MET remediation shows a decrease in phytotoxicity of 77.5% and 5% for MET-biosurfactant system and MET only, respectively. With MET as a tool, this study confirmed for the first time that novel long-chain RL produced from non-Pseudomonas bacteria could remarkably facilitate the degradation of petroleum hydrocarbon via extracellular electron transfer, which provides novel insights to understand the mechanisms of RL regulating petroleum hydrocarbon degradation.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- University of Brescia, Dep. of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy.
| | - Francesca Formicola
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Silvia Sbaffoni
- ENEA, Sustainability Department, Resource Valorisation Lab, Casaccia Research Center, Via Anguillarese 301, 00123, Rome, Italy
| | - Andrea Franzetti
- University of Milano-Bicocca, Dept. of Earth and Environmental Sciences -DISAT, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Mentore Vaccari
- University of Brescia, Dep. of Civil, Environmental, Architectural Engineering, and Mathematics, Via Branze 43, 25123, Brescia, Italy
| |
Collapse
|
10
|
Correia J, Gudiña EJ, Lazar Z, Janek T, Teixeira JA. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Appl Microbiol Biotechnol 2022; 106:7477-7489. [PMID: 36222896 DOI: 10.1007/s00253-022-12225-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
Abstract
The agro-industrial by-products corn steep liquor (CSL) and olive mill wastewater (OMW) were evaluated as low-cost substrates for rhamnolipid production by Burkholderia thailandensis E264. In a culture medium containing CSL (7.5% (v/v)) as sole substrate, B. thailandensis E264 produced 175 mg rhamnolipid/L, which is about 1.3 times the amount produced in the standard medium, which contains glycerol, peptone, and meat extract. When the CSL medium was supplemented with OMW (10% (v/v)), rhamnolipid production further increased up to 253 mg/L in flasks and 269 mg/L in a bioreactor. Rhamnolipids produced in CSL + OMW medium reduced the surface tension up to 27.1 mN/m, with a critical micelle concentration of 51 mg/L, better than the values obtained with the standard medium (28.9 mN/m and 58 mg/L, respectively). However, rhamnolipids produced in CSL + OMW medium displayed a weak emulsifying activity when compared to those produced in the other media. Whereas di-rhamnolipid congeners represented between 90 and 95% of rhamnolipids produced by B. thailandensis E264 in CSL and the standard medium, the relative abundance of mono-rhamnolipids increased up to 55% in the culture medium containing OMW. The difference in the rhamnolipid congeners produced in each medium explains their different surface-active properties. To the best of our knowledge, this is the first report of rhamnolipid production by B. thailandensis using a culture medium containing agro-industrial by-products as sole ingredients. Furthermore, rhamnolipids produced in the different media recovered around 60% of crude oil from contaminated sand, demonstrating its potential application in the petroleum industry and bioremediation. KEY POINTS: • B. thailandensis produced RL using agro-industrial by-products as sole substrates • Purified RL displayed excellent surface activity (minimum surface tension 27mN/m) • Crude RL (cell-free supernatant) recovered 60% of crude oil from contaminated sand.
Collapse
Affiliation(s)
- Jéssica Correia
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal. .,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|