1
|
Seo HW, Bok JW, Keller NP. Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in Aspergillus fumigatus. mBio 2025; 16:e0387424. [PMID: 39964163 PMCID: PMC11898546 DOI: 10.1128/mbio.03874-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
The field of secondary metabolism has greatly benefitted from computational advances in recent years. This has been particularly true for fungal natural product studies. Strides in genome mining have led to the identification of an extraordinary number of secondary metabolite biosynthetic gene clusters (BGCs) across the fungal Kingdom and metabologenomic platforms can group BGCs into gene cluster families and link them to initial chemical structures. Missing are computational applications focused on identifying BGC regulatory networks. Here, we applied the new online gene regulatory network resource, GRAsp (Gene Regulation of Aspergillus fumigatus), to identify unknown and unpredictable BGC trans-acting transcriptional/metabolite production modules. GRAsp correctly predicted a two-component regulatory module composed of the transcription factors (TFs), RogA (regulation of gliotoxin) and HsfA, which negatively regulate the gliotoxin BGC and are also involved in gliotoxin self-protection. RogA functions through the repression of gliZ, the pathway-specific gliotoxin TF, and HsfA functions by activating rogA expression. Furthermore, GRAsp identified TFs that regulate the production of two BGCs lacking pathway-specific TFs, the helvolic acid and fumitremorgin BGCs, respectively. Finally, the known TF, NsdD, was predicted and found to regulate the hexadehydroastechrome BGC. These advances highlight the power of inference algorithms to uncover unpredictable networks in specialized metabolite synthesis.IMPORTANCEToxic secondary metabolites are virulence factors of the opportunistic fungal pathogen Aspergillus fumigatus, yet the transcriptional networks regulating secondary metabolite production remain elusive. Uncovering novel regulators without any prior information is challenging. Computational programs have gained prominence in the field of secondary metabolite research due to their accuracy and ability to handle vast amounts of data, including DNA, RNA, and protein data. In this study, a newly developed online computer platform, Gene Regulation of A. fumigatus, was used to identify five regulators involved in the production of several A. fumigatus toxins, including gliotoxin, helvolic acid, fumitremorgin, and hexadehydroastechrome. This work illustrates the potential for discovering new trans-acting regulators and mechanisms of secondary metabolite regulation through the examination of computational gene regulatory networks.
Collapse
Affiliation(s)
- Hye-won Seo
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jin Woo Bok
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Wang H, Yang Y, Abe I. Modifications of Prenyl Side Chains in Natural Product Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202415279. [PMID: 39363683 DOI: 10.1002/anie.202415279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
In recent years, there has been a growing interest in understanding the enzymatic machinery responsible for the modifications of prenyl side chains and elucidating their roles in natural product biosynthesis. This interest stems from the pivotal role such modifications play in shaping the structural and functional diversity of natural products, as well as from their potential applications to synthetic biology and drug discovery. In addition to contributing to the diversity and complexity of natural products, unique modifications of prenyl side chains are represented by several novel biosynthetic mechanisms. Representative unique examples of epoxidation, dehydrogenation, oxidation of methyl groups to carboxyl groups, unusual C-C bond cleavage and oxidative cyclization are summarized and discussed. By revealing the intriguing chemistry and enzymology behind these transformations, this comprehensive and comparative review will guide future efforts in the discovery, characterization and application of modifications of prenyl side chains in natural product biosynthesis.
Collapse
Affiliation(s)
- Huibin Wang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yi Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
3
|
Li G, Li Z, Wang Y. The genus Litsea: A comprehensive review of traditional uses, phytochemistry, pharmacological activities and other studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118494. [PMID: 38944358 DOI: 10.1016/j.jep.2024.118494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus L. has high medicinal value and has traditional been used to treat a variety of gastrointestinal disorders, as well as diabetes, edema, colds, arthritis, asthma, and traumatic injuries. AIM OF THE REVIEW This work addresses the missing information by conducting a comprehensive analysis of the traditional uses, chemical components, and pharmacological applications of the more reported species of the genus L. The origin of the genus, its toxicology, and the use of classical therapies in modern medicine were also discussed. It provides references for historical evidence, resource development, and medical research on the genus. METHOD ology: Data about the genus L. were gathered via Web of Science, PubMed, Science Direct, Google Scholar, Connected Papers, China National Knowledge Infrastructure (CNKI), electronic ancient books and local chronicles. The WFO Plant List (wfoplantlist.org) and Flora of China (www.iplant.cn) confirmed L.'s Latin name, and the species information. The program ChemBioDraw Ultra 14.0 was used to create the molecular structures of the compounds that were displayed in the text. RESULT Currently, at least 740 constituents have been isolated and identified from L. These include 9 groups of chemicals, such as flavonoids, alkaloids, and terpenoids. They have been shown to have over 20 biological properties in vivo and in vitro, such as antibacterial, anti-inflammatory, and anti-oxidant effects. CONCLUSION Based on pharmacological investigations, chemical components, and traditional folk applications, L. is considered a medicinal plant having a variety of pharmacological actions. However, although the pharmacological activity of the L. genus has been preliminary demonstrated, most have only been assessed using simple in vitro cell lines or animal disease models. In order to fully elucidate the pharmacological activity and mechanisms of L., future studies should be conducted in a more comprehensive clinical manner.
Collapse
Affiliation(s)
- Guangyao Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Zhimin Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650200, China.
| |
Collapse
|
4
|
Koga N, Saito Y, Miyake K, Amuti S, Fukuyoshi S, Yoshida S, Sato S, Yamada Y, Ikeda A, Adachi N, Kawasaki M, Takasu A, Aramaki S, Senda T, Rahim A, Najib A, Alam G, Tanaka N, Nakagawa-Goto K. Cyclic Sesquiterpene-Flavanone [4+2] Hybrids, Syzygioblanes A-C, Found in an Indonesian Traditional Medicine, "Jampu Salo" ( Syzygium oblanceolatum). Org Lett 2024; 26:4302-4307. [PMID: 38728049 DOI: 10.1021/acs.orglett.4c01248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
A plant used in an Indonesian traditional herbal medicine as a diabetes treatment and known locally as "Jampu Salo" was collected on Sulawesi Island, Indonesia. It was identified as Syzygium oblanceolatum (C. B. Rob.) Merr. (Myrtaceae) and found for the first time in Sulawesi; it was previously reported only in the eastern Philippines and Borneo. A phytochemical study of S. oblanceolatum led to the isolation of three unprecedented meroterpenoids, syzygioblanes A-C (1-3, respectively). These compounds might be biosynthesized through [4+2] cycloaddition of various germacrane-based cyclic sesquiterpenoids with the flavone desmethoxymatteucinol to form a spiro skeleton. The unique and complex structures were elucidated by microcrystal electron diffraction analysis in addition to general analytical techniques such as high-resolution mass spectrometry, various nuclear magnetic resonance methods, and infrared spectroscopy. Synchrotron X-ray diffraction and calculations of electronic circular dichroism spectra helped to determine the absolute configurations. The newly isolated compounds exhibited collateral sensitivity to more strongly inhibit the growth of a multidrug resistant tumor cell line compared to a chemosensitive tumor cell line.
Collapse
Affiliation(s)
- Nona Koga
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yohei Saito
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Katsunori Miyake
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Saidanxia Amuti
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Shuichi Fukuyoshi
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Satoshi Yoshida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
| | - Sota Sato
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Kashiwa, Chiba 277-0882, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yusuke Yamada
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Akihito Ikeda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Akira Takasu
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Shinji Aramaki
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Tietz Video and Image Processing Systems Japan G.K., Level 14, Hibiya Central Building, 1-2-9 Nishi Shimbashi, Minato-ku, Tokyo 105-1003, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Abdul Rahim
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Pharmaceutical Sciences and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ahmad Najib
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Gemini Alam
- Department of Pharmaceutical Sciences and Technology, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Nobuyuki Tanaka
- Department of Botany, National Museum of Nature and Science, Amakubo 4-1-1, Tsukuba, Ibaraki 305-0005, Japan
| | - Kyoko Nakagawa-Goto
- School of Pharmaceutical Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, The University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
5
|
Kratena N, Weil M, Gärtner P. A biomimetic approach for the concise total synthesis of greenwaylactams A-C. Org Biomol Chem 2023; 21:6317-6319. [PMID: 37496493 PMCID: PMC10410498 DOI: 10.1039/d3ob01001e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023]
Abstract
A concise, racemic total synthesis of three sesquiterpenoid alkaloids (greenwaylactams A-C) exhibiting an unprecedented 8-membered benzolactam is disclosed. Key transformations of this work include the ring expansion through cleavage of an indole via Witkop oxidation, as well as an HFIP mediated cationic cyclisation to build up the pentacyclic carbon skeleton.
Collapse
Affiliation(s)
- Nicolas Kratena
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria.
| | - Matthias Weil
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164, 1060 Vienna, Austria
| | - Peter Gärtner
- Institute for Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria.
| |
Collapse
|
6
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
7
|
French SA, Sumby CJ, Huang DM, George JH. Total Synthesis of Atrachinenins A and B. J Am Chem Soc 2022; 144:22844-22849. [DOI: 10.1021/jacs.2c09978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sarah A. French
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Christopher J. Sumby
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - David M. Huang
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jonathan H. George
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Tao H, Abe I. Harnessing Fe(II)/α-ketoglutarate-dependent oxygenases for structural diversification of fungal meroterpenoids. Curr Opin Biotechnol 2022; 77:102763. [PMID: 35878474 DOI: 10.1016/j.copbio.2022.102763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022]
Abstract
Fungal meroterpenoids are structurally diverse natural products with important biological activities. During their biosynthesis, α-ketoglutarate-dependent oxygenases (αKG-DOs) catalyze a wide range of chemically challenging transformation reactions, including desaturation, epoxidation, oxidative rearrangement, and endoperoxide formation, by selective C-H bond activation, to produce molecules with more complex and divergent structures. Investigations on the structure-function relationships of αKG-DO enzymes have revealed the intimate molecular bases of their catalytic versatility and reaction mechanisms. Notably, the catalytic repertoire of αKG-DOs is further expanded by only subtle changes in their active site and lid-like loop-region architectures. Owing to their remarkable biocatalytic potential, αKG-DOs are ideal candidates for future chemoenzymatic synthesis and enzyme engineering for the generation of terpenoids with diverse structures and biological activities.
Collapse
Affiliation(s)
- Hui Tao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
9
|
Scopariusicides D-M, ent-clerodane-based isomeric meroditerpenoids with a cyclobutane-fused γ/δ-lactone core from Isodon scoparius. Bioorg Chem 2022; 127:105973. [PMID: 35749856 DOI: 10.1016/j.bioorg.2022.105973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
Scopariusicides D-M (1-10), ten new ent-clerodane-based meroditerpenoids with a cyclobutane-fused γ/δ-lactone core, were isolated from Isodon scoparius. Their structures were determined by comprehensive analysis of spectroscopic data, single-crystal X-ray diffraction, chemical transformation, and TDDFT ECD calculation. A plausible biosynthetic pathway of 1-10 was proposed in which the asymmetrical cyclobutane ring was formed via a crossed "head-to-tail" intermolecular [2 + 2] cycloaddition in anti/syn facial approaches between an ent-clerodane lactone and a cis-4-hydroxycinnamic acid. Bioactivity evaluation manifested that 5 exhibited significant neuroprotective effect against corticosterone-induced injury in PC12 cells, while 6 and 7 exhibited moderate immunosuppressive activity against human T cell proliferation stimulated by anti-CD3/anti-CD28 mAb.
Collapse
|
10
|
Heterologous biosynthesis of prenylated resveratrol and evaluation of antioxidant activity. Food Chem 2022; 378:132118. [PMID: 35038627 DOI: 10.1016/j.foodchem.2022.132118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022]
Abstract
Prenylated stilbenoids are good candidates of nutraceuticals presented in food resources. The levels of natural prenylated stilbenoids are usually low. Biotransformation is a promising synthesis strategy to produce novel bioactive compounds. However, information regarding biosynthesis of prenylated stilbenoids is rare. In this work, prenyltransferase and geranyl diphosphate biosynthesispathway were overexpressed in E. coli. Multiple prenyltransferase genes were tested and Ambp1 was found to be effective on resveratrol geranylation. The products were identified by mass spectrometry and nuclear magnetic resonance spectroscopy as 4-C-geranyl resveratrol (1) and 3-O-geranyl resveratrol (2, novel chemical). By optimization of culture conditions, a yield of 36.9% was achieved for the conversion to geranylated resveratrol from resveratrol. These two compounds demonstrated good antioxidant activities with IC50 values of 28.09 μM for 4-C-geranyl resveratrol and 403.88 μM for 3-O-geranyl resveratrol. The results were helpful for developing novel technique to produce prenylated phenolics.
Collapse
|
11
|
Zhang K, Zhang G, Hou X, Ma C, Liu J, Che Q, Zhu T, Li D. A Fungal Promiscuous UbiA Prenyltransferase Expands the Structural Diversity of Chrodrimanin-Type Meroterpenoids. Org Lett 2022; 24:2025-2029. [PMID: 35261248 DOI: 10.1021/acs.orglett.2c00495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prenyltransferases play important roles in the diversification of natural products and the improvement of biological activities. A UbiA-type prenyltransferase CdnC with substrate promiscuity was identified as the pivotal builder of the noncanonical chrodrimanin skeletons, which carry a benzo-cyclohexanone structure as the nonterpene part. In vitro and heterologous expression studies with CdnC led to the production of a series of novel chrodrimanin-like structures. The discovery of CdnC offers a referable strategy for the biosynthesis and structural diversification of farnesyl-derived meroterpenoids.
Collapse
Affiliation(s)
- Kaijin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.,Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| | - Xuewen Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chuanteng Ma
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junyu Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Dehai Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|