1
|
Lotoux A, Caulat L, Martins Alves C, Alves Feliciano C, Morvan C, Folgosa F, Martin-Verstraete I. Defense arsenal of the strict anaerobe Clostridioides difficile against reactive oxygen species encountered during its infection cycle. mBio 2025; 16:e0375324. [PMID: 40111048 PMCID: PMC11980386 DOI: 10.1128/mbio.03753-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Clostridioides difficile, a strict anaerobe, is the major cause of antibiotic-associated diarrhea. This enteropathogen must adapt to oxidative stress mediated by reactive oxygen species (ROS), notably those released by the neutrophils and macrophages recruited to the site of infection or those endogenously produced upon high oxygen (O2) exposure. C. difficile uses a superoxide reductase, Sor, and several peroxidases to detoxify ROS. We showed that Sor has a superoxide reductase activity in vitro and protects the bacterium from exposure to menadione, a superoxide donor. After confirming the peroxidase activity of the rubrerythrin, Rbr, we showed that this enzyme together with the peroxiredoxin, Bcp, plays a central role in the detoxification of H2O2 and promotes the survival of C. difficile in the presence of not only H2O2 but also air or 4% O2. Under high O2 concentrations encountered in the gastrointestinal tract, the bacterium generated endogenous H2O2. The two O2 reductases, RevRbr2 and FdpF, have also a peroxidase activity and participate in H2O2 resistance. The CD0828 gene, which also contributes to H2O2 protection, forms an operon with rbr, sor, and perR encoding a H2O2-sensing repressor. The expression of the genes encoding the ROS reductases and the CD0828 protein was induced upon exposure to either H2O2 or air. We showed that the induction of the rbr operon is mediated not only by PerR but also by OseR, a recently identified O2-responsive regulator of C. difficile, and indirectly by σB, the sigma factor of the stress response, whereas the expression of bcp is only controlled by σB. IMPORTANCE ROS plays a fundamental role in intestinal homeostasis, limiting the proliferation of pathogenic bacteria. Clostridioides difficile is an important enteropathogen that induces an intense immune response, characterized by the massive recruitment of immune cells responsible for secreting ROS, mainly H2O2 and superoxide. We showed in this work that ROS exposure leads to the production of an armada of enzymes involved in ROS detoxification. This includes a superoxide reductase and four peroxidases, Rbr, Bcp, revRbr2, and FdpF. These enzymes likely contribute to the survival of vegetative cells of C. difficile in the colon during the host immune response. Distinct regulations are also observed for the genes encoding the ROS detoxification enzymes allowing a fine tuning of the adaptive response to ROS exposure. Understanding the mechanisms of ROS protection during infection could shed light on how C. difficile survives under conditions of an exacerbated inflammatory response.
Collapse
Affiliation(s)
- Aurélie Lotoux
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, Île-de-France, France
| | - Léo Caulat
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, Île-de-France, France
| | - Catarina Martins Alves
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Lisbon, Portugal
| | - Carolina Alves Feliciano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Lisbon, Portugal
| | - Claire Morvan
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, Île-de-France, France
| | - Filipe Folgosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Lisbon, Portugal
| | - Isabelle Martin-Verstraete
- Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, Paris, Île-de-France, France
- Institut Universitaire de France, Paris, Île-de-France, France
| |
Collapse
|
2
|
Barroso RA, Rodrigues T, Campos A, Almeida D, Guardiola FA, Turkina MV, Antunes A. Proteomic Diversity of the Sea Anemone Actinia fragacea: Comparative Analysis of Nematocyst Venom, Mucus, and Tissue-Specific Profiles. Mar Drugs 2025; 23:79. [PMID: 39997203 PMCID: PMC11857728 DOI: 10.3390/md23020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Sea anemones (Actiniaria, Cnidaria) are promising targets for biomedical research, as they produce unique bioactive compounds, including toxins and antimicrobial peptides (AMPs). However, the diversity and mechanisms underlying their chemical defenses remain poorly understood. In this study, we investigate the proteomic profiles of the unexplored sea anemone Actinia fragacea by analyzing its venom nematocyst extract, tissues, and mucus secretion. A total of 4011 different proteins were identified, clustered into 3383 protein groups. Among the 83 putative toxins detected, actinoporins, neurotoxins, and phospholipase A2 were uncovered, as well as two novel zinc metalloproteinases with two specific domains (ShK) associated with potassium channel inhibition. Common Gene Ontology (GO) terms were related to immune responses, cell adhesion, protease inhibition, and tissue regeneration. Furthermore, 1406 of the 13,276 distinct peptides identified were predicted as potential AMPs, including a putative Aurelin-like AMP localized within the nematocysts. This discovery highlights and strengthens the evidence for a cnidarian-exclusive Aurelin peptide family. Several other bioactive compounds with distinctive defense functions were also detected, including enzymes, pattern recognition proteins (PRPs), and neuropeptides. This study provides the first proteome map of A. fragacea, offering a critical foundation for exploring novel bioactive compounds and valuable insights into its molecular complexity.
Collapse
Affiliation(s)
- Ricardo Alexandre Barroso
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Tomás Rodrigues
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Alexandre Campos
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
| | - Daniela Almeida
- Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Campus of International Excellence, Campus Mare Nostrum, 30100 Murcia, Spain;
| | - Francisco A. Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain;
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Agostinho Antunes
- CIIMAR/CIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (T.R.); (A.C.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| |
Collapse
|
3
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. eLife 2025; 13:RP98409. [PMID: 39819645 PMCID: PMC11741522 DOI: 10.7554/elife.98409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: the elementary body (EB) and the reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. Therefore, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Scot P Ouellette
- Department of Pathology, Microbiology, and Immunology, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
4
|
Wu TK, Fu Q, Liotta JL, Bowman DD. Proteomic analysis of extracellular vesicles and extracellular vesicle-depleted excretory-secretory products of Toxocara canis and Toxocara cati larval cultures. Vet Parasitol 2024; 332:110331. [PMID: 39426022 DOI: 10.1016/j.vetpar.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Toxocara canis and Toxocara cati are parasitic nematodes in the order Ascaridida, which inhabit the small intestines of dogs and cats, respectively, as adults. Although often nonpathogenic as adults, nematodes within this genus are capable of causing widespread disease throughout the host while in a larval stage, during which time larvae migrate throughout the body in a process termed larva migrans. Larvae are also capable of surviving within host tissues in an encysted arrested stage, without immune clearance by the host. The ability of larvae to survive within host tissues during migration and encystment may be attributed to immunomodulatory molecules released by the excretory cells of larvae in excretory-secretory (ES) products. ES products of parasites contain a variety of molecules, including proteins, lipids, and extracellular vesicles (EVs). Toxocara excretory-secretory (TES) products have been studied to some degree, with proteomic analysis of TES proteins described previously; however, investigation of the EVs within TES is lacking, despite the suggested role for these molecules in host interaction and potential immunomodulation. To further characterize the protein cargo within EVs in TES, EVs were isolated from larval cultures of T. canis and T. cati via ultrafiltration, with concurrent collection of EV-depleted TES filtrate for additional study. Isolated EVs and EV-depleted TES from both T. canis and T. cati were submitted for proteomic analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteomic identification results revealed 140 proteins across all samples, with 16 shared by all samples, and 76 total proteins shared between T. canis and T. cati, present within EVs and EV-depleted TES. There were 17 proteins shared exclusively by EV samples, and 15 were shared exclusively between EV-depleted TES samples. Many shared proteins were associated with the host immune response. Several proteins were specific to either T. canis or T. cati, highlighting the potential use of these proteins as diagnostic tools in the differentiation of etiologic agents in cases of toxocariasis. The results of this study build upon previously reported proteomic evaluations of TES, contributing new information in regards to newly identified proteins, EV protein cargo within TES, and potential immunomodulatory functions of these proteins.
Collapse
Affiliation(s)
- Timothy K Wu
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States.
| | - Qin Fu
- Cornell University, Proteomics and Metabolomics Facility, Institute of Biotechnology, Ithaca, NY 14850, United States
| | - Janice L Liotta
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| | - Dwight D Bowman
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| |
Collapse
|
5
|
Singh V, Ouellette SP. Altering the redox status of Chlamydia trachomatis directly impacts its developmental cycle progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591247. [PMID: 39464112 PMCID: PMC11507673 DOI: 10.1101/2024.04.26.591247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen with a unique developmental cycle. It differentiates between two functional and morphological forms: elementary body (EB) and reticulate body (RB). The signals that trigger differentiation from one form to the other are unknown. EBs and RBs have distinctive characteristics that distinguish them, including their size, infectivity, proteome, and transcriptome. Intriguingly, they also differ in their overall redox status as EBs are oxidized and RBs are reduced. We hypothesize that alterations in redox may serve as a trigger for secondary differentiation. To test this, we examined the function of the primary antioxidant enzyme alkyl hydroperoxide reductase subunit C (AhpC), a well-known member of the peroxiredoxins family, in chlamydial growth and development. Based on our hypothesis, we predicted that altering the expression of ahpC would modulate chlamydial redox status and trigger earlier or delayed secondary differentiation. To test this, we created ahpC overexpression and knockdown strains. During ahpC knockdown, ROS levels were elevated, and the bacteria were sensitive to a broad set of peroxide stresses. Interestingly, we observed increased expression of EB-associated genes and concurrent higher production of EBs at an earlier time in the developmental cycle, indicating earlier secondary differentiation occurs under elevated oxidation conditions. In contrast, overexpression of AhpC created a resistant phenotype against oxidizing agents and delayed secondary differentiation. Together, these results indicate that redox potential is a critical factor in developmental cycle progression. For the first time, our study provides a mechanism of chlamydial secondary differentiation dependent on redox status.
Collapse
|
6
|
Corrêa APN, da Silva NG, Ratko J, da Silva DO, Schleger IC, Pereira DMC, Neundorf AKA, de Souza MRDP, Herrerias T, Donatti L. Influence of acute heat shock on antioxidant defense of tropical fish, Psalidodon bifasciatus. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111006. [PMID: 38977177 DOI: 10.1016/j.cbpb.2024.111006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Psalidodon bifasciatus is a fish species sensitive to physical and chemical changes in water. It serves as a good bioindicator of temperature variations and is utilized in environmental monitoring studies in Brazilian rivers. The objective of this study was to evaluate antioxidant defense biomarkers in the heart, brain, and muscle of P. bifasciatus exposed to a 10 °C thermal increase. P. bifasciatus were collected and divided into a control group (21 °C) and groups subjected to thermal shock (31 °C) for periods of 2, 6, 12, 24, and 48h. Two-way ANOVA indicated that a 10 °C temperature increase caused oxidative stress in P. bifasciatus. This was evidenced by altered levels of lipid peroxidation (LPO), carbonylated proteins (PCO), and glutathione peroxidase (GPx) in the heart, catalase (CAT) and LPO in the brain, and LPO in the muscle. Principal component analysis (PCA) and integrated biomarker response (IBR) analysis indicated that, compared to the heart and muscle, the brain exhibited a greater activation of the antioxidant response. Sensitivity analysis indicated that the muscle was the most sensitive organ, followed by the brain and heart. Our results indicate that the stress response is tissue-specific through the activation of distinct mechanisms. These responses may be associated with the tissue's function as well as its energy demand. As expected, P. bifasciatus showed changes in response to thermal stress, with the brain showing the greatest alteration in antioxidant defenses and the muscle being the most sensitive tissue.
Collapse
Affiliation(s)
- Ana Paula Nascimento Corrêa
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Federal University of Paraná - Postgraduate Program on Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Niumaique Gonçalves da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Federal University of Paraná - Postgraduate Program on Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Jonathan Ratko
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Federal University of Paraná - Postgraduate Program on Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Diego Ortiz da Silva
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Federal University of Paraná - Postgraduate Program on Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Ieda Cristina Schleger
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Federal University of Paraná - Postgraduate Program on Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | - Diego Mauro Carneiro Pereira
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Ananda Karla Alves Neundorf
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Federal University of Paraná - Postgraduate Program on Ecology and Conservation, Curitiba, Paraná, Brazil
| | - Maria Rosa Dmengeon Pedreiro de Souza
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil; Federal University of Paraná - Postgraduate Program on Cellular and Molecular Biology, Curitiba, Paraná, Brazil
| | | | - Lucélia Donatti
- Laboratory of Adaptive Biology, Department of Cell Biology, Federal University of Paraná, Curitiba, Paraná, Brazil.
| |
Collapse
|
7
|
Xu X, Xiong F, Sun K, Xiao Q, Tan Y, Cheng X, Li X, Jin D, Fan Y. An Oxidoreductase-like Protein is Required for Verticillium dahliae Infection and Participates in the Metabolism of Host Plant Defensive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4669-4678. [PMID: 38383289 DOI: 10.1021/acs.jafc.3c08582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Verticillium dahliae, a notorious phytopathogenic fungus, is responsible for vascular wilt diseases in numerous crops. Uncovering the molecular mechanisms underlying pathogenicity is crucial for controlling V. dahliae. Herein, we characterized a putative oxidoreductase-like protein (VdOrlp) from V. dahliae that contains a functional signal peptide. While the expression of VdOrlp was low in artificial media, it significantly increased during host infection. Deletion of VdOrlp had minimal effects on the growth and development of V. dahliae but severely impaired its pathogenicity. Metabolomic analysis revealed significant changes in organic heterocyclic compounds and phenylpropane compounds in cotton plants infected with ΔVdOrlp and V991. Furthermore, VdOrlp expression was induced by lignin, and its deletion affected the metabolism of host lignin and phenolic acids. In conclusion, our results demonstrated that VdOrlp plays an important role in the metabolism of plant phenylpropyl lignin and organic heterocyclic compounds and is required for fungal pathogenicity in V. dahliae.
Collapse
Affiliation(s)
- Xueping Xu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Fangjie Xiong
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Kang Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Qi Xiao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yingqing Tan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xi Cheng
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Xianbi Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Pawłowska M, Mila-Kierzenkowska C, Szczegielniak J, Woźniak A. Oxidative Stress in Parasitic Diseases-Reactive Oxygen Species as Mediators of Interactions between the Host and the Parasites. Antioxidants (Basel) 2023; 13:38. [PMID: 38247462 PMCID: PMC10812656 DOI: 10.3390/antiox13010038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Oxidative stress plays a significant role in the development and course of parasitic infections, both in the attacked host organism and the parasite organism struggling to survive. The host uses large amounts of reactive oxygen species (ROS), mainly superoxide anion (O2•-) and hydrogen peroxide (H2O2), to fight the developing parasitic disease. On the other hand, the parasite develops the most effective defense mechanisms and resistance to the effects of ROS and strives to survive in the host organism it has colonized, using the resources and living environment available for its development and causing the host's weakening. The paper reviews the literature on the role of oxidative stress in parasitic diseases, which are the most critical epidemiological problem worldwide. The most common parasitosis in the world is malaria, with 300-500 million new cases and about 1 million deaths reported annually. In Europe and Poland, the essential problem is intestinal parasites. Due to a parasitic infection, the concentration of antioxidants in the host decreases, and the concentration of products of cellular components oxidation increases. In response to the increased number of reactive oxygen species attacking it, the parasites have developed effective defense mechanisms, including primarily the action of antioxidant enzymes, especially superoxide dismutase and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH)-dependent complexes glutathione and thioredoxin.
Collapse
Affiliation(s)
- Marta Pawłowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| | - Jan Szczegielniak
- Physiotherapy Department, Faculty of Physical Education and Physiotherapy, Opole University of Technology, 45-758 Opole, Poland;
- Ministry of Internal Affairs and Administration’s Specialist Hospital of St. John Paul II, 48-340 Glucholazy, Poland
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland; (C.M.-K.); (A.W.)
| |
Collapse
|
9
|
Hernandez-Morfa M, Olivero NB, Zappia VE, Piñas GE, Reinoso-Vizcaino NM, Cian MB, Nuñez-Fernandez M, Cortes PR, Echenique J. The oxidative stress response of Streptococcus pneumoniae: its contribution to both extracellular and intracellular survival. Front Microbiol 2023; 14:1269843. [PMID: 37789846 PMCID: PMC10543277 DOI: 10.3389/fmicb.2023.1269843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a gram-positive, aerotolerant bacterium that naturally colonizes the human nasopharynx, but also causes invasive infections and is a major cause of morbidity and mortality worldwide. This pathogen produces high levels of H2O2 to eliminate other microorganisms that belong to the microbiota of the respiratory tract. However, it also induces an oxidative stress response to survive under this stressful condition. Furthermore, this self-defense mechanism is advantageous in tolerating oxidative stress imposed by the host's immune response. This review provides a comprehensive overview of the strategies employed by the pneumococcus to survive oxidative stress. These strategies encompass the utilization of H2O2 scavengers and thioredoxins, the adaptive response to antimicrobial host oxidants, the regulation of manganese and iron homeostasis, and the intricate regulatory networks that control the stress response. Here, we have also summarized less explored aspects such as the involvement of reparation systems and polyamine metabolism. A particular emphasis is put on the role of the oxidative stress response during the transient intracellular life of Streptococcus pneumoniae, including coinfection with influenza A and the induction of antibiotic persistence in host cells.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - German E. Piñas
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Melina B. Cian
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Mariana Nuñez-Fernandez
- Centro de Química Aplicada, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
10
|
Popa I, Touboul D, Andersson T, Fuentes-Lemus E, Santerre C, Davies MJ, Lood R. Oxygen Exposure and Tolerance Shapes the Cell Wall-Associated Lipids of the Skin Commensal Cutibacterium acnes. Microorganisms 2023; 11:2260. [PMID: 37764104 PMCID: PMC10534455 DOI: 10.3390/microorganisms11092260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Cutibacterium acnes is one of the most abundant bacteria on the skin. Being exposed to oxygen and oxic stress, the secretion of the bacterial antioxidant protein RoxP ensures an endogenous antioxidant system for the preservation of skin health. To investigate the impact of the antioxidant RoxP on oxidation of the bacteria, wildtype and an isogenic roxp mutant were cultured in anaerobic and oxic conditions. The carbonylated status of proteins were recorded, as were the most significant modifications in a relative intensity of free fatty acids (FFA) and lipids containing fatty acids (FA), such as di- (DG) and triglycerides (TG), di- (DGDG) and sulfoquinozyldiacylglycerol (SQDG) and ceramides. Concerning the fatty acid types, it was observed that the free fatty acids contained mainly C12:0-C26:0 in hydroxy and acylated forms, the DG contained mainly C29:0-C37:0, the TG contained mainly C19:0-C33:0, and the DGDG/SQDGs contained very long fatty acids (C29:0-C37:0) demonstrating the interdependence of de novo synthesis of lipids and RoxP. The area of DGDG peaks (924.52, 929.56 and 930.58) were affected by bacterial growth conditions, with the exception of m/z 910.61. Moreover, the FFA unsaturation is wider in the SQDG species (C30:0 to C36:6) than in DG, TG or free FFA species. It could be concluded that both environmental oxidative statuses, as well as the prevalence of bacterial antioxidant systems, significantly shape the lipidome of C. acnes.
Collapse
Affiliation(s)
- Iuliana Popa
- Analytic and Biological Lipid Systems (Lip(Sys)2), Pharmacy Department, University Paris-Saclay, Bâtiment Henri Moissan, 91400 Orsay, France
| | - David Touboul
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, University Paris-Saclay, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
- CNRS, Laboratoire de Chimie Moléculaire (LCM), Institut Polytechnique de Paris, University Paris-Saclay, Route de Saclay, 91120 Palaiseau, France
| | - Tilde Andersson
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, SE-221 00 Lund, Sweden;
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; (E.F.-L.); (M.J.D.)
| | - Cyrille Santerre
- Institut Supérieur International de la Parfumerie, de la Cosmétique et de l’Arôme Alimentaire (ISIPCA), 34-36 rue du Parc de Clagny, 78000 Versailles, France;
| | - Michael J. Davies
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark; (E.F.-L.); (M.J.D.)
| | - Rolf Lood
- Department of Clinical Sciences Lund, Division of Infection Medicine, Lund University, SE-221 00 Lund, Sweden;
| |
Collapse
|
11
|
Mo W, Li Q, He X, Lu Z, Xu H, Zheng X, Guo J, Lu Y, Wang S. Identification and characterization of Prx5 and Prx6 in Chilo suppressalis in response to environmental stress. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22030. [PMID: 37282754 DOI: 10.1002/arch.22030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/08/2023]
Abstract
The antioxidant proteins, peroxiredoxins (Prxs), function to protect insects from reactive oxygen species-induced toxicity. In this study, two Prx genes, CsPrx5, and CsPrx6, were cloned and characterized from the paddy field pest, Chilo suppressalis, containing open reading frames of 570 and 672 bp encoding 189 and 223 amino acid polypeptides, respectively. Then, we investigated the influence of various stresses on their expression levels using quantitative real-time PCR (qRT-PCR). The results showed expression of CsPrx5 and CsPrx6 in all developmental stages, with eggs having the highest level. CsPrx5 and CsPrx6 showed higher expression in the epidermis and fat body, and CsPrx6 also showed higher expression in midgut, fat body, and epidermis. Increasing concentrations of insecticides (chlorantraniliprole and spinetoram) and hydrogen peroxide (H2 O2 ) increased the expression levels of CsPrx5 and CsPrx6. In addition, the expression levels of CsPrx5 and CsPrx6 were almost markedly upregulated in larvae under temperature stress or fed by vetiver. Thus, CsPrx5 and CsPrx6 upregulation might increase the C. suppressalis defense response by reducing the impact of environmental stress, providing a better understanding of the relationship between environmental stresses and insect defense systems.
Collapse
Affiliation(s)
- Wujia Mo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaochan He
- Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xusong Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanhui Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuping Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- Technical Centre for Animal, Plant, and Food Inspection and Quarantine, Shanghai Customs, Shanghai, China
| |
Collapse
|
12
|
Margolis A, Liu L, Porwollik S, Till JKA, Chu W, McClelland M, Vázquez-Torres A. Arginine Metabolism Powers Salmonella Resistance to Oxidative Stress. Infect Immun 2023; 91:e0012023. [PMID: 37191509 PMCID: PMC10269097 DOI: 10.1128/iai.00120-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
Salmonella invades host cells and replicates inside acidified, remodeled vacuoles that are exposed to reactive oxygen species (ROS) generated by the innate immune response. Oxidative products of the phagocyte NADPH oxidase mediate antimicrobial activity, in part, by collapsing the ΔpH of intracellular Salmonella. Given the role of arginine in bacterial resistance to acidic pH, we screened a library of 54 single-gene mutants in Salmonella that are each involved in, but do not entirely block, arginine metabolism. We identified several mutants that affected Salmonella virulence in mice. The triple mutant ΔargCBH, which is deficient in arginine biosynthesis, was attenuated in immunocompetent mice, but recovered virulence in phagocyte NADPH oxidase deficient Cybb-/- mice. Furthermore, ΔargCBH Salmonella was profoundly susceptible to the bacteriostatic and bactericidal effects of hydrogen peroxide. Peroxide stress led to a larger collapse of the ΔpH in ΔargCBH mutants than occurred in wild-type Salmonella. The addition of exogenous arginine rescued ΔargCBH Salmonella from peroxide-induced ΔpH collapse and killing. Combined, these observations suggest that arginine metabolism is a hitherto unknown determinant of virulence that contributes to the antioxidant defenses of Salmonella by preserving pH homeostasis. In the absence of phagocyte NADPH oxidase-produced ROS, host cell-derived l-arginine appears to satisfy the needs of intracellular Salmonella. However, under oxidative stress, Salmonella must additionally rely on de novo biosynthesis to maintain full virulence.
Collapse
Affiliation(s)
- Alyssa Margolis
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lin Liu
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Steffen Porwollik
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - James Karl A. Till
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Weiping Chu
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, California, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
13
|
Hewitt OH, Degnan SM. Antioxidant enzymes that target hydrogen peroxide are conserved across the animal kingdom, from sponges to mammals. Sci Rep 2023; 13:2510. [PMID: 36781921 PMCID: PMC9925728 DOI: 10.1038/s41598-023-29304-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
Oxygen is the sustenance of aerobic life and yet is highly toxic. In early life, antioxidants functioned solely to defend against toxic effects of reactive oxygen species (ROS). Later, as aerobic metabolisms evolved, ROS became essential for signalling. Thus, antioxidants are multifunctional and must detoxify, but also permit ROS signalling for vital cellular processes. Here we conduct metazoan-wide genomic assessments of three enzymatic antioxidant families that target the predominant ROS signaller, hydrogen peroxide: namely, monofunctional catalases (CAT), peroxiredoxins (PRX), and glutathione peroxidases (GPX). We reveal that the two most evolutionary ancient families, CAT and PRX, exhibit metazoan-wide conservation. In the basal animal lineage, sponges (phylum Porifera), we find all three antioxidant families, but with GPX least abundant. Poriferan CATs are distinct from bilaterian CATs, but the evolutionary divergence is small. Amongst PRXs, subfamily PRX6 is the most conserved, whilst subfamily AhpC-PRX1 is the largest; PRX4 is the only core member conserved from sponges to mammals and may represent the ancestral animal AhpC-PRX1. Conversely, for GPX, the most recent family to arise, only the cysteine-dependent subfamily GPX7 is conserved across metazoans, and common across Porifera. Our analyses illustrate that the fundamental functions of antioxidants have resulted in gene conservation throughout the animal kingdom.
Collapse
Affiliation(s)
- Olivia H Hewitt
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Sandie M Degnan
- School of Biological Sciences and Centre for Marine Science, University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
14
|
West JD. Experimental Approaches for Investigating Disulfide-Based Redox Relays in Cells. Chem Res Toxicol 2022; 35:1676-1689. [PMID: 35771680 DOI: 10.1021/acs.chemrestox.2c00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reversible oxidation of cysteine residues within proteins occurs naturally during normal cellular homeostasis and can increase during oxidative stress. Cysteine oxidation often leads to the formation of disulfide bonds, which can impact protein folding, stability, and function. Work in both prokaryotic and eukaryotic models over the past five decades has revealed several multiprotein systems that use thiol-dependent oxidoreductases to mediate disulfide bond reduction, formation, and/or rearrangement. Here, I provide an overview of how these systems operate to carry out disulfide exchange reactions in different cellular compartments, with a focus on their roles in maintaining redox homeostasis, transducing redox signals, and facilitating protein folding. Additionally, I review thiol-independent and thiol-dependent approaches for interrogating what proteins partner together in such disulfide-based redox relays. While the thiol-independent approaches rely either on predictive measures or standard procedures for monitoring protein-protein interactions, the thiol-dependent approaches include direct disulfide trapping methods as well as thiol-dependent chemical cross-linking. These strategies may prove useful in the systematic characterization of known and newly discovered disulfide relay mechanisms and redox switches involved in oxidant defense, protein folding, and cell signaling.
Collapse
Affiliation(s)
- James D West
- Biochemistry & Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, United States
| |
Collapse
|
15
|
Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022; 79:333. [PMID: 35648225 PMCID: PMC11071803 DOI: 10.1007/s00018-022-04353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Fungal response to any stress is intricate, specific, and multilayered, though it employs only a few evolutionarily conserved regulators. This comes with the assumption that one regulator operates more than one stress-specific response. Although the assumption holds true, the current understanding of molecular mechanisms that drive response specificity and adequacy remains rudimentary. Deciphering the response of fungi to oxidative stress may help fill those knowledge gaps since it is one of the most encountered stress types in any kind of fungal niche. Data have been accumulating on the roles of the HOG pathway and Yap1- and Skn7-related pathways in mounting distinct and robust responses in fungi upon exposure to oxidative stress. Herein, we review recent and most relevant studies reporting the contribution of each of these pathways in response to oxidative stress in pathogenic and opportunistic fungi after giving a paralleled overview in two divergent models, the budding and fission yeasts. With the concept of stress-specific response and the importance of reactive oxygen species in fungal development, we first present a preface on the expanding domain of redox biology and oxidative stress.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | | | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France.
| |
Collapse
|
16
|
Dos Santos MC, Tairum CA, Cabrera VIM, Guimarães Cauz AC, Ribeiro LF, Toledo Junior JC, Toyama MH, Lago JHG, Brocchi M, Netto LES, de Oliveira MA. Adenanthin Is an Efficient Inhibitor of Peroxiredoxins from Pathogens, Inhibits Bacterial Growth, and Potentiates Antibiotic Activities. Chem Res Toxicol 2022; 36:570-582. [PMID: 35537067 DOI: 10.1021/acs.chemrestox.2c00049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The emergence and re-emergence of bacterial strains resistant to multiple drugs represent a global health threat, and the search for novel biological targets is a worldwide concern. AhpC are enzymes involved in bacterial redox homeostasis by metabolizing diverse kinds of hydroperoxides. In pathogenic bacteria, AhpC are related to several functions, as some isoforms are characterized as virulence factors. However, no inhibitor has been systematically evaluated to date. Here we show that the natural ent-kaurane Adenanthin (Adn) efficiently inhibits AhpC and molecular interactions were explored by computer assisted simulations. Additionally, Adn interferes with growth and potentializes the effect of antibiotics (kanamycin and PMBN), positioning Adn as a promising compound to treat infections caused by multiresistant bacterial strains.
Collapse
Affiliation(s)
- Melina Cardoso Dos Santos
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - Carlos Abrunhosa Tairum
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | | | - Ana Carolina Guimarães Cauz
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-862, Brazil
| | - Luiz Fernando Ribeiro
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - José Carlos Toledo Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Marcos Hikari Toyama
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| | - João Henrique Ghilardi Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo 09210-580, Brazil
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, UNICAMP, Campinas, São Paulo 13083-862, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo 05508-090, Brazil
| | - Marcos Antonio de Oliveira
- Instituto de Biociências, Universidade Estadual Paulista, UNESP, São Vicente, São Paulo 11330-900, Brazil
| |
Collapse
|
17
|
Köhsler M, Leitsch D, Loufouma Mbouaka A, Wekerle M, Walochnik J. Transcriptional changes of proteins of the thioredoxin and glutathione systems in Acanthamoeba spp. under oxidative stress - an RNA approach. Parasite 2022; 29:24. [PMID: 35532265 PMCID: PMC9083255 DOI: 10.1051/parasite/2022025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
The thioredoxin (Trx) and the glutathione (GSH) systems represent important antioxidant systems in cells and in particular thioredoxin reductase (TrxR) has been shown to constitute a promising drug target in parasites. For the facultative protozoal pathogen Acanthamoeba, it was demonstrated that a bacterial TrxR as well as a TrxR, characteristic of higher eukaryotes, mammals and humans is expressed on the protein level. However, only bacterial TrxR is strongly induced by oxidative stress in Acanthamoeba castellanii. In this study, the impact of oxidative stress on key enzymes involved in the thioredoxin and the glutathione system of A. castellanii under different culture conditions and of clinical Acanthamoeba isolates was evaluated on the RNA level employing RT-qPCR. Additionally, the effect of auranofin, a thioredoxin reductase inhibitor, already established as a potential drug in other parasites, on target enzymes in A. castellanii was investigated. Oxidative stress induced by hydrogen peroxide led to significant stimulation of bacterial TrxR and thioredoxin, while diamide had a strong impact on all investigated enzymes. Different strains displayed distinct transcriptional responses, rather correlating to sensitivity against the respective stressor than to respective pathogenic potential. Culture conditions appear to have a major effect on transcriptional changes in A. castellanii. Treatment with auranofin led to transcriptional activation of the GSH system, indicating its role as a potential backup for the Trx system. Altogether, our data provide more profound insights into the complex redox system of Acanthamoeba, preparing the ground for further investigations on this topic.
Collapse
Affiliation(s)
- Martina Köhsler
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - David Leitsch
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Alvie Loufouma Mbouaka
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Maximilian Wekerle
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| | - Julia Walochnik
-
Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna 1090 Vienna Austria
| |
Collapse
|
18
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|