1
|
Ren H, Hong H, Zha B, Lamlom SF, Qiu H, Cao Y, Sun R, Wang H, Ma J, Zhang H, Sun L, Yang Q, Zhou C, Liu X, Wang X, Zhang C, Zhang F, Zhao K, Yuan R, Abdelghany AM, Zhang B, Zheng Y, Wang J, Lu W. Soybean productivity can be enhanced by understanding rhizosphere microbiota: evidence from metagenomics analysis from diverse agroecosystems. MICROBIOME 2025; 13:105. [PMID: 40287775 PMCID: PMC12034204 DOI: 10.1186/s40168-025-02104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Microbial communities associated with roots play a crucial role in the growth and health of plants and are constantly influenced by plant development and alterations in the soil environment. Despite extensive rhizosphere microbiome research, studies examining multi-kingdom microbial variation across large-scale agricultural gradients remain limited. RESULTS This study investigates the rhizosphere microbial communities associated with soybean across 13 diverse geographical locations in China. Using high-throughput shotgun metagenomic sequencing on the BGISEQ T7 platform with 10 GB per sample, we identified a total of 43,337 microbial species encompassing bacteria, archaea, fungi, and viruses. Our analysis revealed significant site-specific variations in microbial diversity and community composition, underscoring the influence of local environmental factors on microbial ecology. Principal coordinate analysis (PCoA) indicated distinct clustering patterns of microbial communities, reflecting the unique environmental conditions and agricultural practices of each location. Network analysis identified 556 hub microbial taxa significantly correlated with soybean yield traits, with bacteria showing the strongest associations. These key microorganisms were found to be involved in critical nutrient cycling pathways, particularly in carbon oxidation, nitrogen fixation, phosphorus solubilization, and sulfur metabolism. Our findings demonstrate the pivotal roles of specific microbial taxa in enhancing nutrient cycling, promoting plant health, and improving soybean yield, with significant positive correlations (r = 0.5, p = 0.039) between microbial diversity and seed yield. CONCLUSION This study provides a comprehensive understanding of the diversity and functional potential of rhizosphere microbiota in enhancing soybean productivity. The findings underscore the importance of integrating microbial community dynamics into crop management strategies to optimize nutrient cycling, plant health, and yield. While this study identifies key microbial taxa with potential functional roles, future research should focus on isolating and validating these microorganisms for their bioremediation and biofertilization activities under field conditions. This will provide actionable insights for developing microbial-based agricultural interventions to improve crop resilience and sustainability. Video Abstract.
Collapse
Affiliation(s)
- Honglei Ren
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China.
| | - Huilong Hong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bire Zha
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
- College of Modern Agriculture and Ecological Environmentofaq , Heilongjiang University, Harbin, 150006, China
| | - Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Hongmei Qiu
- Jilin Academy of Agriculture Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China
| | - Yongqiang Cao
- Crop Research Institute of Liaoning Academy of Agriculture Sciences, Shenyang, 110161, China
| | - Rujian Sun
- Hulunbuir Institute of Agriculture and Animal Husbandry, Hulunbuir, 021000, China
| | - Haorang Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Junkui Ma
- Shanxi Agricultural University/ Shanxi Academy of Agricultural Sciences, the Industrial Crop Institute, Taiyuan, 030031, China
| | - Hengbin Zhang
- Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, China
| | - Liping Sun
- Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qing Yang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050035, China
| | - Changjun Zhou
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163316, China
| | - Xiulin Liu
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Xueyang Wang
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Chunlei Zhang
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Fengyi Zhang
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Kezhen Zhao
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Rongqiang Yuan
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China
| | - Ahmed M Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhur, 22516, Egypt
| | - Bixian Zhang
- Institute of Biotechnology of Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China.
| | - Yuhong Zheng
- Jilin Academy of Agriculture Sciences (Northeast Agricultural Research Center of China), Changchun, 130033, China.
| | - Jiajun Wang
- Soybean Research Institute of Heilongjiang Academy of Agriculture Sciences, Harbin, 150086, China.
| | - Wencheng Lu
- Heihe Branch Institute of Heilongjiang Academy of Agricultural Sciences, Heihe, 164300, China.
| |
Collapse
|
2
|
Ji Y, Zhang Y, Chen X, Guo A, Zhang W, Liu X, Wang H, Sun H, Yan D, Li Y, Fang W, Cao A, Wang Q. Sustainable reuse of plant waste through biofumigation: controlling soil-borne pathogens and enhancing soil health via microbial regulation. PEST MANAGEMENT SCIENCE 2025. [PMID: 40159814 DOI: 10.1002/ps.8806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/03/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Soil-borne pathogens severely impact soil health and crop growth. Biofumigation is an eco-friendly method and supports global efforts to reduce chemical fertilizers and pesticides. However, the application in China is limited mainly due to high cost. There is a lack of systematic research on how plant waste biofumigation can improve soil health. We were the first to systematically examine the effects of biofumigation with cabbage and cauliflower wastes on soil and plant factors, and their contributions to crop growth. RESULTS Results indicated that biofumigation achieved an inhibition rate of soil-borne pathogens between 66.98% and 92.70% at the end of the process, which persisted at 52.89-83.95% during harvest. Additionally, it enhanced soil physicochemical properties, enzyme activity, and the abundance of beneficial microorganisms by 0.41-119.12%. Crop yield also increased by 21.70-77.83%. Comparing the standard cabbage treatment with a higher dosage revealed that the latter did not significantly enhance pathogen inhibition rates but improved yield, suggesting the involvement of alternative mechanisms. A structural equation model revealed that Firmicutes and Bacteroidota increased crop yield by influencing ammonium nitrogen, organic matter, and catalase activity, with ammonium nitrogen being the most significant factor (0.74). CONCLUSION These findings suggest that biofumigation with Brassica waste provides effective control of soil-borne pathogens at a reduced cost. Additionally, it improves soil fertility and can partially replace chemical fumigants and fertilizers. By minimizing chemical inputs, biofumigation contributes to improved soil health and sustainability. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yutong Ji
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinhua Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Anmin Guo
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai Sun
- Beijing Plant Protection Station, Beijing Municipal Bureau of Agriculture and Rural Affairs, Beijing, China
| | - Dongdong Yan
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Fang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aocheng Cao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuxia Wang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Xu R, Chen W, Chen S, Wang X, Xu J, Zhang Y, Ma Y. Unraveling the Rhubarb (Rheum officinale Baill.) Root and Rhizosphere Microbial Communities in Response to Pathogen Exposure. Mol Biotechnol 2025:10.1007/s12033-025-01367-y. [PMID: 39922984 DOI: 10.1007/s12033-025-01367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/27/2024] [Indexed: 02/10/2025]
Abstract
This study investigated the microbial community composition and structure in healthy and diseased rhubarb (Rheum rhabarbarum) root systems, examining both root tissue and rhizosphere environments. Alpha diversity analysis revealed significantly higher microbial abundance in the rhizosphere compared to root tissues, with notable differences between healthy and diseased plants. Principal coordinate analysis demonstrated that bacterial community composition was primarily influenced by ecological niches (47.5% variation explained), whereas fungal communities segregated based on plant health status. Network analysis revealed increased bacterial community complexity in diseased plants rhizosphere (579 nodes, 13,016 edges) compared to healthy plants (542 nodes, 8700 edges), while fungal networks showed opposite trends with significant reduction in diseased conditions (147 nodes, 30 edges vs. 205 nodes, 418 edges). Correlation analysis identified significant associations between specific microbial taxa and soil properties, with notable positive correlations between certain bacteria (Oscillospirales) and fungi (Barnettozyma, Mortierella) with soil organic matter and nutrient availability. Pathogenic taxa, including Fusarium and members of Burkholderiales, showed negative correlations with beneficial microorganisms, suggesting potential antagonistic relationships. These findings provide crucial insights into the complex interactions within the rhubarb root microbiome and their implications for plant health, contributing to our understanding of root rot disease dynamics and potential management strategies.
Collapse
Affiliation(s)
- Ruiting Xu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenxi Chen
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Sihui Chen
- Department of Ecological Environmental Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Xueshi Wang
- Zhenba County Lijian Traditional Chinese Medicine Professional Cooperative, Hanzhong, Shaanxi, China
| | - Jin Xu
- Zhenba County Science and Technology Progress Promotion Center, Hanzhong, Shaanxi, China
| | - Yuejin Zhang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yatuan Ma
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Meng WJ, Wen ZL, Kasanen R, Sun H, Asiegbu FO. Microbial communities in the phyllosphere and endosphere of Norway spruce under attack by Heterobasidion. Front Microbiol 2025; 15:1489900. [PMID: 39845034 PMCID: PMC11750781 DOI: 10.3389/fmicb.2024.1489900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Heterobasidion annosum species complex has been regarded as the most destructive disease agent of conifer trees in boreal forests. Tree microbiome can regulate the plant-pathogen interactions by influencing both host resistance and pathogen virulence. Such information would help to improve the future health of forests and explore strategies to enhance ecosystem stability. In this study, using next-generation sequencing technology, we investigated the microbial community in different tree regions (needles, upper stem, and lower stem) of Norway spruce with and without wood decay symptoms. The primary purpose was to uncover signature characteristic microbiome harbored by asymptomatic trees compared to diseased trees. Additionally, the study was to explore the inter-kingdom and intra-kingdom interactions in microbiome (bacteria and fungi) of symptomatic versus asymptomatic trees. The results showed that in upper stem, species richness (Chao1) of fungi and bacteria were both higher in asymptomatic trees than symptomatic trees (P < 0.05). Compared to symptomatic trees, asymptomatic trees harbored a higher abundance of Actinobacteriota, bacterial genera of Methylocella, Conexibacter, Jatrophihabitans, and fungal genera of Mollisia. Fungal communities from the same anatomic region differed between the symptomatic and asymptomatic trees. Bacterial communities from the two stem regions were also distinct between the symptomatic and asymptomatic trees. The symptomatic trees possessed a less stable microbial network with more positive correlations compared to the asymptomatic trees. In the lower stem, at intra-kingdom level, the distribution of correlation numbers was more even in the bacterial network compared to the fungal network. In conclusion, the Heterobasidion attack decreased the microbial community species richness and shifted the community structure and functional structure to varying degrees. The microbial network was enlarged and became more unstable at both inter-kingdom and intra-kingdom level due to the Heterobasidion infection.
Collapse
Affiliation(s)
- Wen-jing Meng
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Zi-lan Wen
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Risto Kasanen
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Hui Sun
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Fred O. Asiegbu
- Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Zeng Z, Huang R, Li W. Elevation Determines Fungal Diversity, and Land Use Governs Community Composition: A Dual Perspective from Gaoligong Mountains. Microorganisms 2024; 12:2378. [PMID: 39597766 PMCID: PMC11596228 DOI: 10.3390/microorganisms12112378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Soil fungi are closely tied to their surrounding environment. While numerous studies have reported the effects of land-use practices or elevations on soil fungi, our understanding of how their community structure and diversity vary with elevation across different land-use practices remains limited. In the present study, by collecting soil samples from four different land uses in the Gaoligong Mountain area, namely shrublands (SLs), coffee plantations (CPs), cornfields (CFs), and citrus orchards (COs), and combining them with the changes in altitude gradients (low: 900 m, medium: 1200 m, high: 1500 m), high-throughput sequencing technology was used to analyze the composition and diversity of soil fungal communities based on the collected soil samples. The results showed that the interaction between land-use types and elevation significantly influenced the structure and diversity of fungal communities, although their relative importance in shaping fungal diversity or community structure varied. Specifically, elevation posed a stronger effect on fungal community alpha-diversity and functional guilds, whereas land-use types had a greater influence over fungal community composition. Our study reveals the individual and combined effects of land-use practices and elevation on the structure and diversity of soil fungal communities in the Gaoligong Mountain region, enhancing our understanding of the distribution patterns and driving mechanisms of soil fungal communities in this biodiversity-rich region.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China; (Z.Z.); (R.H.)
| |
Collapse
|
6
|
Li L, Zheng R, Wang Z, Li H, Shi Y, Pan Z, Liu M. Leaf Health Status Regulates Endophytic Microbial Community Structure, Network Complexity, and Assembly Processes in the Leaves of the Rare and Endangered Plant Species Abies fanjingshanensis. Microorganisms 2024; 12:1254. [PMID: 39065023 PMCID: PMC11279022 DOI: 10.3390/microorganisms12071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The rare and endangered plant species Abies fanjingshanensis, which has a limited habitat, a limited distribution area, and a small population, is under severe threat, particularly due to poor leaf health. The plant endophytic microbiome is an integral part of the host, and increasing evidence indicates that the interplay between plants and endophytic microbes is a key determinant for sustaining plant fitness. However, little attention has been given to the differences in the endophytic microbial community structure, network complexity, and assembly processes in leaves with different leaf health statuses. Here, we investigated the endophytic bacterial and fungal communities in healthy leaves (HLs) and non-healthy leaves (NLs) of A. fanjingshanensis using 16S rRNA gene and internal transcribed spacer sequencing and evaluated how leaf health status affects the co-occurrence patterns and assembly processes of leaf endophytic microbial communities based on the co-occurrence networks, the niche breadth index, a neutral community model, and C-score metrics. HLs had significantly greater endophytic bacterial and fungal abundance and diversity than NLs, and there were significant differences in the endophytic microbial communities between HLs and NLs. Leaf-health-sensitive endophytic microbes were taxonomically diverse and were mainly grouped into four ecological clusters according to leaf health status. Poor leaf health reduced the complexity of the endophytic bacterial and fungal community networks, as reflected by a decrease in network nodes and edges and an increase in degrees of betweenness and assortativity. The stochastic processes of endophytic bacterial and fungal community assembly were weakened, and the deterministic processes became more important with declining leaf health. These results have important implications for understanding the ecological patterns and interactions of endophytic microbial communities in response to changing leaf health status and provide opportunities for further studies on exploiting plant endophytic microbes to conserve this endangered Abies species.
Collapse
Affiliation(s)
- Long Li
- School of Data Science, Tongren University, Tongren 554300, China;
| | - Rong Zheng
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Zuhua Wang
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Haibo Li
- National Nature Reserve Administration of Fanjing Mountain, Tongren 554400, China;
| | - Yongjia Shi
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Zhongjie Pan
- College of A&F Engineering and Planning, Tongren University, Tongren 554300, China; (Z.W.); (Y.S.); (Z.P.)
| | - Min Liu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| |
Collapse
|
7
|
Zhan Y, Wang E, Zhou Y, He G, Lv P, Wang L, Zhou T, Miao X, Chen C, Li Q. Facilitating Effects of Reductive Soil Disinfestation on Soil Health and Physiological Properties of Panax ginseng. MICROBIAL ECOLOGY 2024; 87:54. [PMID: 38512483 PMCID: PMC10957680 DOI: 10.1007/s00248-024-02349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024]
Abstract
Chemical soil fumigation (CSF) and reductive soil disinfestation (RSD) have been proven to be effective agricultural strategies to improve soil quality, restructure microbial communities, and promote plant growth in soil degradation remediation. However, it is still unclear how RSD and CSF ensure soil and plant health by altering fungal communities. Field experiments were conducted to investigate the effects of CSF with chloropicrin, and RSD with animal feces on soil properties, fungal communities and functional composition, and plant physiological characteristics were evaluated. Results showed that RSD and CSF treatment improved soil properties, restructured fungal community composition and structure, enhanced fungal interactions and functions, and facilitated plant growth. There was a significant increase in OM, AN, and AP contents in the soil with both CSF and RSD treatments compared to CK. Meanwhile, compared with CK and CSF, RSD treatment significantly increased biocontrol Chaetomium relative abundance while reducing pathogenic Neonectria relative abundance, indicating that RSD has strong inhibition potential. Furthermore, the microbial network of RSD treatment was more complex and interconnected, and the functions of plant pathogens, and animal pathogen were decreased. Importantly, RSD treatment significantly increased plant SOD, CAT, POD activity, SP, Ca, Zn content, and decreased MDA, ABA, Mg, K, and Fe content. In summary, RSD treatment is more effective than CSF treatment, by stimulating the proliferation of probiotic communities to further enhance soil health and plant disease resistance.
Collapse
Affiliation(s)
- Yu Zhan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ergang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Guixiang He
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengyuan Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Lixiang Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Tingting Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinyue Miao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Qiong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
8
|
Wang B, Geng Y, Lin Y, Xia Q, Wei F, Yang S, Huang X, Zhang J, Cai Z, Zhao J. Root rot destabilizes the Sanqi rhizosphere core fungal microbiome by reducing the negative connectivity of beneficial microbes. Appl Environ Microbiol 2024; 90:e0223723. [PMID: 38315008 PMCID: PMC10952445 DOI: 10.1128/aem.02237-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
The stability of microbial communities, especially among core taxa, is essential for supporting plant health. However, the impacts of disease infection on the stability of rhizosphere fungal core microbiome remain largely unexplored. In this study, we delved into the effects of root rot infestation on the community structure, function, network complexity, and stability of Sanqi fungal core microbiomes, employing amplicon sequencing combined with co-occurrence network and cohesion analyses. Our investigation revealed that root rot disease led to a decrease in the α-diversity but an increase in the β-diversity of the Sanqi fungal core microbiomes in the rhizosphere. Notably, Ilyonectria, Plectosphaerella, and Fusarium emerged as indicator species in the rhizosphere core microbiome of root rot-infected Sanqi plants, while Mortierella predominated as the dominant biomarker taxa in healthy soils. Additionally, root rot diminished the complexity and modularity of the rhizosphere networks by reducing the metrics associated with nodes, edges, degrees, and modularity. Furthermore, root rot resulted in a reduction in the proportion of negative connections in the network and the negative/positive cohesion of the entire core fungal microbiome. Particularly noteworthy was the observation that root rot infection destabilized the rhizosphere core fungal microbiome by weakening the negative connectivity associated with beneficial agents. Collectively, these results highlight the significance of the negative connectivity of beneficial agents in ensuring the stability of core microbial community.IMPORTANCERoot rot disease has been reported as the most devastating disease in the production process of artificial cultivated Sanqi ginseng, which seriously threatens the Sanqi industry. This study provides valuable insights into how root rot influences microbial relationships within the community. These findings open up opportunities for disease prevention and the promotion of plant health by regulating microbial interactions. In summary, the research sheds light on the ecological consequences of root rot on rhizosphere fungal microbiomes and offers potential strategies for managing soil-borne diseases and enhancing plant health.
Collapse
Affiliation(s)
- Baoying Wang
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yuhang Geng
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Yulan Lin
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Qing Xia
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Fugang Wei
- Miaoxiang Sanqi Technology Co., Ltd., Wenshan, China
| | - Shaozhou Yang
- Miaoxiang Sanqi Technology Co., Ltd., Wenshan, China
| | - Xinqi Huang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Key Laboratory of Virtual Geographical Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
- Key Laboratory of Virtual Geographical Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| |
Collapse
|
9
|
Zhan Y, Zhou Y, Wang E, Miao X, Zhou T, Yan N, Chen C, Li Q. Effects of reductive soil disinfestation combined with different types of organic materials on the microbial community and functions. Microbiol Spectr 2024; 12:e0080223. [PMID: 38230941 PMCID: PMC10846035 DOI: 10.1128/spectrum.00802-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 11/23/2023] [Indexed: 01/18/2024] Open
Abstract
Reductive soil disinfestation (RSD) is an effective method to inhibit soilborne pathogens. However, it remains unclear how RSD combined with different types of organic materials affects the soil ecosystems of perennial plants. Pot experiments were conducted to investigate the effects of RSD incorporated with perilla (PF), alfalfa (MS), ethanol, and acetic acid on soil properties, enzyme activities, microbial communities and functions, and seedling growth. Results showed that RSD-related treatments improved soil properties and enzyme activities, changed microbial community composition and structure, enhanced microbial interactions and functions, and facilitated seedling growth. Compared with CK, RSD-related treatments increased soil pH, available nitrogen, and available potassium contents, sucrase and catalase activities, and decreased soil electric conductivity values. Meanwhile, RSD-related treatment also significantly reduced the relative abundance of Fusarium while increasing the relative abundance of Arthrobacter, Terrabacter, and Gemmatimonas. The reduction was more evident in PF and MS treatment, suggesting the potential for RSD combined with solid agricultural wastes to suppress pathogens. Furthermore, the microbial network of RSD-related treatment was more complex and interconnected, and the functions related to carbon, nitrogen, sulfur, and hydrogen cycling were significantly increased, while the functions of bacterial and fungal plant pathogens were decreased. Importantly, RSD-related treatments also significantly promoted seed germination and seedling growth. In summary, RSD combined with solid agricultural wastes is better than liquid easily degradable compounds by regulating the composition and function of microbial communities to improve soil quality and promote plant growth.IMPORTANCEReductive soil disinfestation (RSD) is an effective agricultural practice. We found that RSD combined with solid agricultural wastes is better than that of liquid easily degradable compounds, may improve soil quality and microbial community structure, inhibit the proliferation of pathogenic bacteria, and contribute to the growth of replanted crops. Thus, RSD combined with solid agricultural wastes is more effective than liquid easily degradable compounds.
Collapse
Affiliation(s)
- Yu Zhan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yi Zhou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ergang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xinyue Miao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Tingting Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Ning Yan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Changbao Chen
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Qiong Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
10
|
Kang H, Chai A, Lin Z, Shi Y, Xie X, Li L, Fan T, Xiang S, Xie J, Li B. Deciphering Differences in Microbial Community Diversity between Clubroot-Diseased and Healthy Soils. Microorganisms 2024; 12:251. [PMID: 38399655 PMCID: PMC10893227 DOI: 10.3390/microorganisms12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Clubroot (Plasmodiophora brassicae) is an important soilborne disease that causes severe damage to cruciferous crops in China. This study aims to compare the differences in chemical properties and microbiomes between healthy and clubroot-diseased soils. To reveal the difference, we measured soil chemical properties and microbial communities by sequencing 18S and 16S rRNA amplicons. The available potassium in the diseased soils was higher than in the healthy soils. The fungal diversity in the healthy soils was significantly higher than in the diseased soils. Ascomycota and Proteobacteria were the most dominant fungal phylum and bacteria phylum in all soil samples, respectively. Plant-beneficial microorganisms, such as Chaetomium and Sphingomonas, were more abundant in the healthy soils than in the diseased soils. Co-occurrence network analysis found that the healthy soil networks were more complex and stable than the diseased soils. The link number, network density, and clustering coefficient of the healthy soil networks were higher than those of the diseased soil networks. Our results indicate that the microbial community diversity and network structure of the clubroot-diseased soils were different from those of the healthy soils. This study is of great significance in exploring the biological control strategies of clubroot disease.
Collapse
Affiliation(s)
- Huajun Kang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Zihan Lin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Sheng Xiang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (A.C.); (Z.L.); (Y.S.); (X.X.); (L.L.); (T.F.); (S.X.)
| |
Collapse
|
11
|
Kang H, Lin Z, Yuan X, Shi Y, Xie X, Li L, Fan T, Li B, Chai A. The occurrence of clubroot in cruciferous crops correlates with the chemical and microbial characteristics of soils. Front Microbiol 2024; 14:1293360. [PMID: 38260873 PMCID: PMC10800485 DOI: 10.3389/fmicb.2023.1293360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, is a serious soil-borne disease in Brassica crops worldwide. It seriously occurs in conducive soils of southern China, while never happens in some areas of northern China with suppressive soils. To understanding the differences, we measured the soil suppressiveness, chemical properties, and microbial communities in suppressive and conducive soils by bioassay and sequencing of 16S and 18S rRNA amplicons. The biological basis of clubroot suppressiveness was supported by the ability to remove it by pasteurization. The pH value and calcium content in the suppressive soils were higher than those in the conducive soils. Suppressive soils were associated with higher fungal diversity and bacterial abundance. The fungal phyla Chytridiomycota, Olpidiomycota, and Mucoromycota and the bacterial phyla Acidobacteriota and Gemmatimonadota were enriched in suppressive soils. More abundant beneficial microbes, including Chaetomium and Lysobacter, were found in the suppressive soils than in the conducive soils. Molecular ecological network analysis revealed that the fungal network of suppressive soils was more complex than that of conducive soils. Our results indicate that plant health is closely related to soil physicochemical and biological properties. This study is of great significance for developing strategies for clubtroot disease prevention and control.
Collapse
Affiliation(s)
- Huajun Kang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zihan Lin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tengfei Fan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
12
|
Li L, Wang Y, Yu C, Li S, Lin T, Han S, Zhu T, Li S. Seasonal changes in the abundance Fusarium proliferatium, microbial endophytes and nutrient levels in the roots of hybrid bamboo Bambusa pervariabilis × Dendrocalamopsis grandis. FRONTIERS IN PLANT SCIENCE 2023; 14:1185449. [PMID: 37538062 PMCID: PMC10394707 DOI: 10.3389/fpls.2023.1185449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Plant root pathogens invade the soil around plant roots, disturbing the systemic balance, reducing plant defenses, and causing severe disease. At present, there are few studies on the severity of plant diseases caused by pathogen invasion in different seasons and how pathogens affect root microecology. In this study, we compared the levels of nutrients in the root tissues of the two groups of plants. We used 16S and ITS amplicon sequencing with Illumina NovaSeq 6000 to compare seasonal changes in the composition and structure of microbial communities from healthy roots of bamboo Bambusa pervariabilis × Dendrocalamopsis grandis and roots infected by the soilborne pathogen Fusarium proliferatum. We have found that the invasion of the pathogen led to a substantial decrease in nutrient elements in bamboo roots, except for nitrogen. The pathogen presence correlated with seasonal changes in the bamboo root microbiome and decreased bacterial richness in diseased plants. The root microbial community structure of healthy plants was more stable than that of their diseased counterparts. Furthermore, we identified the lesion area and relative abundance of F. proliferatum were significant predictors of disease progression. The potassium tissue content and the disease lesion area were identified as factors linked with the observed changes in the bamboo root microbiome. This study provides a theoretical foundation for understanding the seasonal dynamics F. proliferatum, an economically important soilborne pathogen of hybrid bamboo grown in Sichuan Province, China.
Collapse
Affiliation(s)
- Lin Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yaxuan Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Cailin Yu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Chengdu, China
| |
Collapse
|
13
|
Ding W, Li J, Hu B, Chu G, Tao R. Response of abundance, diversity, and network of rhizosphere fungal community to monoculture of cut chrysanthemum. Appl Microbiol Biotechnol 2023; 107:3673-3685. [PMID: 37115253 DOI: 10.1007/s00253-023-12542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The effects of different monoculture years on rhizosphere fungal communities (abundance, diversity, structure, and cooccurrence network) of cut chrysanthemum were determined. Three different monoculture years were (i) planting for only 1 year (Y1), (ii) continuous monoculture for 6 years (Y6), and (iii) continuous monoculture for 12 years (Y12). Compared to the Y1 treatment, the Y12 treatment significantly decreased the rhizosphere fungal gene copy numbers but increased the potential pathogen Fusarium oxysporum (P < 0.05). Both the Y6 and Y12 treatments significantly increased fungal diversity (Shannon and Simpson indices), but Y6 had great potential to enhance fungal richness (Chao1 index) relative to the Y12 treatment. Monoculture treatments decreased the relative abundance of Ascomycota but increased that of Mortierellomycota. Four ecological clusters (Modules 0, 3, 4, and 9) were observed in the fungal cooccurrence network across the Y1, Y6, and Y12 treatments, and only Module 0 was significantly enriched in the Y12 treatment and associated with soil properties (P < 0.05). RDA (redundancy analysis) and Mantel analysis showed that soil pH and soil nutrients (organic carbon, total nitrogen, and available phosphorus) were the key factors affecting fungal communities during monoculture of cut chrysanthemum. Overall, the changes in soil properties were responsible for shaping rhizospheric soil fungal communities in long-term rather than short-term monoculture systems. KEY POINTS: • Both short- and long-term monocultures reshaped the soil fungal community structure. • Long-term monoculture enhanced the network complexity of the fungal community. • Soil pH, C and N levels mainly drove modularization in the fungal community network.
Collapse
Affiliation(s)
- Wangying Ding
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Jun Li
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Baowei Hu
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Guixin Chu
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Rui Tao
- Department of Environmental Science and Engineering, School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
14
|
Guo W, Zhang J, Li MH, Qi L. Soil fungal community characteristics vary with bamboo varieties and soil compartments. Front Microbiol 2023; 14:1120679. [PMID: 36814565 PMCID: PMC9939831 DOI: 10.3389/fmicb.2023.1120679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Soil fungi play an important role in nutrient cycling, mycorrhizal symbiosis, antagonism against pathogens, and organic matter decomposition. However, our knowledge about the community characteristics of soil fungi in relation to bamboo varieties is still limited. Here, we compared the fungal communities in different soil compartments (rhizosphere vs. bulk soil) of moso bamboo (Phyllostachys edulis) and its four varieties using ITS high-throughput sequencing technology. The fungal α diversity (Shannon index) in bulk soil was significantly higher than that in rhizosphere soil, but it was not affected by bamboo variety or interactions between the soil compartment and bamboo variety. Soil compartment and bamboo variety together explained 31.74% of the variation in fungal community diversity. Soil compartment and bamboo variety were the key factors affecting the relative abundance of the major fungal taxa at the phylum and genus levels. Soil compartment mainly affected the relative abundance of the dominant fungal phylum, while bamboo variety primarily influenced the dominant fungal genus. Network analysis showed that the fungal network in rhizosphere soil was more complex, stable, and connected than that in bulk soil. A FUNGuild database analysis indicated that both soil compartment and bamboo variety affect fungal functions. Our findings provide new insights into the roles of both soil compartments and plant species (including variety) in shaping soil fungal communities.
Collapse
Affiliation(s)
- Wen Guo
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China,Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jian Zhang
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China
| | - Mai-He Li
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland,Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, China,School of Life Science, Hebei University, Baoding, China,*Correspondence: Mai-He Li,
| | - Lianghua Qi
- Key Laboratory of National Forestry and Grassland Administration/Beijing Bamboo and Rattan Science and Technology, International Centre for Bamboo and Rattan, Beijing, China,Sanya Research Base, International Centre for Bamboo and Rattan, Sanya, China,Lianghua Qi,
| |
Collapse
|
15
|
Fujiwara F, Miyazawa K, Nihei N, Ichihashi Y. Agroecosystem engineering extended from plant-microbe interactions revealed by multi-omics data. Biosci Biotechnol Biochem 2022; 87:21-27. [PMID: 36416843 DOI: 10.1093/bbb/zbac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/05/2022] [Indexed: 11/24/2022]
Abstract
In an agroecosystem, plants and microbes coexist and interact with environmental factors such as climate, soil, and pests. However, agricultural practices that depend on chemical fertilizers, pesticides, and frequent tillage often disrupt the beneficial interactions in the agroecosystem. To reconcile the improvement of crop performance and reduction in environmental impacts in agriculture, we need to understand the functions of the complex interactions and develop an agricultural system that can maximize the potential benefits of the agroecosystem. Therefore, we are developing a system called the agroecosystem engineering system, which aims to optimize the interactions between crops, microbes, and environmental factors, using multi-omics analysis. This review first summarizes the progress and examples of omics approaches, including multi-omics analysis, to reveal complex interactions in the agroecosystem. The latter half of this review discusses the prospects of data analysis approaches in the agroecosystem engineering system, including causal network analysis and predictive modeling.
Collapse
Affiliation(s)
- Fuki Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,BioResource Research Center, RIKEN, Tsukuba, Ibaraki, Japan
| | - Kae Miyazawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Naoto Nihei
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Fukushima, Japan
| | | |
Collapse
|
16
|
Reductive Soil Disinfestation Enhances Microbial Network Complexity and Function in Intensively Cropped Greenhouse Soil. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060476] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reductive soil disinfestation (RSD) is an effective practice to eliminate plant pathogens and improve the soil microbial community. However, little is known about how RSD treatment affects microbial interactions and functions. Previous study has shown that RSD-regulated microbiomes may degenerate after re-planting with former crops, while the effect of planting with different crops is still unclear. Here, the effects of both RSD treatment and succession planting with different crops on microbial community composition, interactions, and functions were investigated. Results showed that RSD treatment improves the soil microbial community, decreases the relative abundance of plant pathogens, and effectively enhances microbial interactions and functions. The microbial network associated with RSD treatment was more complex and connected. The functions of hydrocarbon (C, H), nitrogen (N), and sulfur (S) cycling were significantly increased in RSD-treated soil, while the functions of bacterial and fungal plant pathogens were decreased. Furthermore, the bacterial and fungal communities present in the RSD-treated soil, and soil succession planted with different crops, were found to be significantly different compared to untreated soil. In summary, we report that RSD treatment can improve soil quality by regulating the interactions of microbial communities and multifunctionality.
Collapse
|
17
|
Effects of Plastic Shed Cultivation System on the Properties of Red Paddy Soil and Its Management by Reductive Soil Disinfestation. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Red paddy soil is widely distributed in the south of China and has become an important production system for food and cash crops. However, the key factors limiting the quality of this soil type under the plastic shed cultivation system and the effective management strategies are still unclear. In the present study, the physicochemical and microbial properties of red paddy soil in a plastic shed (PS-Soil) and open-air (OA-Soil) cultivation systems were compared. Subsequently, reductive soil disinfestation (RSD) and organic fertilizer treatment (OF) were used to improve the soil properties in a representative PS-Soil. Results showed that the physicochemical and microbial properties in PS-Soil were significantly altered compared with those in the nearby OA-Soil, and those differences were primarily dominated by the cultivation system rather than the sampling site. Specifically, the electrical conductivity (EC) and available nutrients (NO3−-N, NH4+-N, available K, and available P) contents, as well as the abundances of fungi, potential fungal soil-borne pathogens (F. oxysporum and F. solani), and fungi/bacteria were significantly increased in PS-Soil. In addition, the OF treatment could not effectively improve the above-mentioned soil properties, which was mainly reflected by that soil EC and the abundances of potential fungal soil-borne pathogens were considerably increased in the OF-treated soil. In contrast, soil EC and NO3−-N content, the abundances of fungi, F. oxysporum, F. solani, and fungi/bacteria were remarkably decreased by 76%, 99%, 98%, 92%, 73%, and 85%, respectively. Moreover, soil pH, the abundance of bacteria, total microbial activity, metabolic activity, and carbon source utilization were significantly increased in the RSD-treated soil. Collectively, red paddy soil is significantly degraded under the plastic shed cultivation system, and RSD rather than OF can effectively improve the quality of this soil type.
Collapse
|