1
|
Abelouah MR, Idbella M, Nouj N, Ben-Haddad M, Hajji S, Ouheddou M, Ourouh J, Iacomino G, El Haouti R, Barra I, Oualid JA, Bonanomi G, Banni M, Alla AA. Marine plastic exposure triggers rapid recruitment of plastic-degrading bacteria and accelerates polymer-specific transformations. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137724. [PMID: 40037197 DOI: 10.1016/j.jhazmat.2025.137724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/15/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Plastic pollution in marine ecosystems is a growing concern, yet the degradation behavior of different plastic types and their interactions with microbial communities remain poorly understood. This study investigated the degradation kinetics and microbial colonization of four widely used plastic materials, surgical masks (most made of PP), PET bottles, PS foam, and PP cups, over 40 days of seawater exposure in the Central Atlantic of Morocco. Mass loss measurement revealed distinct degradation patterns, with PS foam showing the highest mass loss (13 %), followed by PET bottles (5 %), likely due to environmental stressors that promote mechanical fragmentation. Surgical masks and PP cups exhibited minimal degradation, retaining nearly all their original mass, as well as limited extent of biodegradation. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) analyses showed the formation of oxidative functional groups on PP cups and significant structural changes in PS foam and PET, particularly in their crystalline structures, correlating with their higher mass reduction rates. SEM/EDX biofilm imaging confirmed extensive microbial colonization, particularly on PS and PET surfaces. Using 16S rRNA metabarcoding, we identified a striking enrichment of Exiguobacterium, followed by Pseudomonas, Acinetobacter and Bacillus genera, containing reported plastic degrading strains, which were strongly correlated with the accelerated breakdown of plastics. However, its role in accelerating plastic breakdown in this study remains unclear and may warrant further investigation. Co-occurrence network analysis revealed a progressive shift in microbial community structure, evolving from highly interconnected networks at day 0 to more specialized, modular clusters by day 40, dominated by Proteobacteria and Firmicutes. Atomic Absorption Spectrometry (AAS) demonstrated significant heavy metal accumulation on plastic surfaces, potentially influencing microbial colonization and activity. While the observed fragmentation of PS foam and PET highlights the susceptibility of certain plastics to environmental stressors, this study also positions microbial colonization as a potential contributor to plastic surface changes, providing novel insights into the interplay between microbial communities and plastic degradation in marine environments.
Collapse
Affiliation(s)
- Mohamed Rida Abelouah
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco; Laboratory of Agrobio diversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia.
| | - Mohamed Idbella
- College of Agriculture and Environmental Sciences, AgroBioSciences (AgBS) program, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| | - Nisrine Nouj
- Institut National Thématique de Recherche Scientifique-Eau (INTR-Eau), Ibn Zohr University, Agadir 80000, Morocco; Laboratory of Materials and Environment (LME), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohamed Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Sara Hajji
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Maryam Ouheddou
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Jamila Ourouh
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Giuseppina Iacomino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA 80055, Italy
| | - Rachid El Haouti
- Laboratory of Materials and Environment (LME), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco
| | - Issam Barra
- Mohammed VI Polytechnic University (UM6P), Center of Excellence in Soil and Fertilizer Research in Africa (CESFRA), AgroBioSciences (AgBS), Benguerir 43150, Morocco
| | - Jaouad Abou Oualid
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, NA 80055, Italy
| | - Mohamed Banni
- Laboratory of Agrobio diversity and Ecotoxicology LR20AGR02, ISA, University of Sousse, Tunisia; Higher Institute of Biotechnology, ISBM, University of Monastir, Tunisia
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| |
Collapse
|
2
|
Bertoldi S, Mattos PDMAS, de Carvalho CCCR, Kruse L, Thies S, Heipieper HJ, Eberlein C. Evaluation of the Robustness Under Alkanol Stress and Adaptability of Members of the New Genus Halopseudomonas. Microorganisms 2024; 12:2116. [PMID: 39597506 PMCID: PMC11596728 DOI: 10.3390/microorganisms12112116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
Many species of the genus Pseudomonas are known to be highly tolerant to solvents and other environmental stressors. Based on phylogenomic and comparative genomic analyses, several Pseudomonas species were recently transferred to a new genus named Halopseudomonas. Because of their unique enzymatic machinery, these strains are being discussed as novel biocatalysts in biotechnology. In order to test their growth parameters and stress tolerance, five Halopseudomonas strains were assessed regarding their tolerance toward different n-alkanols (1-butanol, 1-hexanol, 1-octanol, 1-decanol), as well as to salt stress and elevated temperatures. The toxicity of the solvents was investigated by their effects on bacterial growth rates and presented as EC50 concentrations. Hereby, all Halopseudomonas strains showed EC50 values up to two-fold lower than those previously detected for Pseudomonas putida. In addition, the activity of the cis-trans isomerase of unsaturated fatty acids (Cti), which is an urgent stress response mechanism known to be present in all Pseudomonas species, was monitored in the five Halopseudomonas strains. Although several of the tested species were known to contain the cti gene, no significant phenotypic activity could be detected in the presence of the assayed stressors. A bioinformatic analysis of eight cti-carrying Halopseudomonas strains examining promotor binding sites, binding motifs and signal peptides showed that most of the cti genes have a lipoprotein signal peptide and promotor regions and binding motifs that do not coincide with those of Pseudomonas. These insights represent putative reasons for the absence of the expected Cti activity in Halopseudomonas, which in turn has always been observed in cti-carrying Pseudomonas. The lack of Cti activity under membrane stress conditions when the cti gene is present has never been documented, and this could represent potential negative implications on the utility of the genus Halopseudomonas for some biotechnological applications.
Collapse
Affiliation(s)
- Simone Bertoldi
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany (P.D.M.A.S.M.)
| | - Pedro D. M. A. S. Mattos
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany (P.D.M.A.S.M.)
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal;
| | - Luzie Kruse
- Institute of Molecular Enzyme Technology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Stephan Thies
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hermann J. Heipieper
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany (P.D.M.A.S.M.)
| | - Christian Eberlein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany (P.D.M.A.S.M.)
| |
Collapse
|
3
|
Liang X, Ye J, Xue Y, Aili T, Han S, Zhang J, Meng S, Aimaiti R, Zhang M, Jia Z, Gomiero A, Wang W, Yang J. Microplastics and their interaction with microorganisms in Bosten Lake sediment. WATER RESEARCH 2024; 261:122060. [PMID: 39018903 DOI: 10.1016/j.watres.2024.122060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/19/2024]
Abstract
Microplastics (MPs), discovered in oceans, lakes, and rivers, can infiltrate the food chain through ingestion by organisms, potentially posing health risks. Our research is the first to study the composition and distribution of MPs in Bosten Lake's sediment. In May, the average abundance of MPs was 0.95±0.72 particles per 10 gs, and in October, it was 0.90±0.61 particles per 10 gs. Bohu Town had the highest MP abundance, with 1.75±0.35 particles per 10 gs in spring and 2 ± 0 particles per 10 gs in autumn. In May, 53 % of the MPs were transparent, while in October, black MPs constituted 58 %. The predominant morphology was fibrous, accounting for 61 % of the total. MPs in the size range of 0.2-1 mm made up 91 % and 66 % of the total in May and October, respectively. The most common types of MPs in May were polyethylene terephthalate (PET) at 40 % and polyethylene (PE) at 26 %. In October, PET was the most prevalent at 71 %, followed by poly(ether-ether-ketone)(PEEK) at 11 %. Certain microbial taxa, such as Actinobacteriota, Pseudomonas, and Vicinamibacteraceae, associated with MP degradation or complex carbon chain breakdown, were notably enriched in sediment areas with high MP concentrations. A significant positive correlation was observed between the abundance of MPs in sediments and Actinobacteriota. Additionally, the abundance of Thiobacillus, Ca.competibacter, and other bacteria involved in soil element cycling showed a significant positive correlation with the organic matter content in the sediments. Anaerobic bacteria like Thermoanaerobacterium displayed a significant positive correlation with water depth. Our study reveals the presence, composition, and distribution of MPs in Bosten Lake's sediments, shedding light on their potential ecological impact.
Collapse
Affiliation(s)
- Xiaorui Liang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 831500, China
| | - Jing Ye
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 831500, China
| | - Yu Xue
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 831500, China
| | - Tuerxunnayi Aili
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 831500, China
| | - Shibin Han
- College of Computer Science and Technology, Xinjiang University, Urumqi, Xinjiang 831500, China
| | - Jianpin Zhang
- Bayingoleng Ecological Environment Monitoring Station, Bayingol League Mongolian Autonomous Prefecture, Xinjiang 841000, China
| | - Shanshan Meng
- Bayingoleng Ecological Environment Monitoring Station, Bayingol League Mongolian Autonomous Prefecture, Xinjiang 841000, China
| | - Reheman Aimaiti
- Bayingoleng Ecological Environment Monitoring Station, Bayingol League Mongolian Autonomous Prefecture, Xinjiang 841000, China
| | - Minwei Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 831500, China
| | - Zhenhong Jia
- College of Computer Science and Technology, Xinjiang University, Urumqi, Xinjiang 831500, China
| | | | - Wei Wang
- Department of Chemistry and Centre for Pharmacy, University of Bergen, Bergen 5007, Norway.
| | - Jie Yang
- College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 831500, China.
| |
Collapse
|
4
|
Rodríguez-Mejía JL, Hidalgo-Manzano IA, Muriel-Millán LF, Rivera-Gomez N, Sahonero-Canavesi DX, Castillo E, Pardo-López L. A Novel Thermo-Alkaline Stable GDSL/SGNH Esterase with Broad Substrate Specificity from a Deep-Sea Pseudomonas sp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:447-459. [PMID: 38691271 PMCID: PMC11178605 DOI: 10.1007/s10126-024-10308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/03/2024] [Indexed: 05/03/2024]
Abstract
Marine environments harbor a plethora of microorganisms that represent a valuable source of new biomolecules of biotechnological interest. In particular, enzymes from marine bacteria exhibit unique properties due to their high catalytic activity under various stressful and fluctuating conditions, such as temperature, pH, and salinity, fluctuations which are common during several industrial processes. In this study, we report a new esterase (EstGoM) from a marine Pseudomonas sp. isolated at a depth of 1000 m in the Gulf of Mexico. Bioinformatic analyses revealed that EstGoM is an autotransporter esterase (type Va) and belongs to the lipolytic family II, forming a new subgroup. The purified recombinant EstGoM, with a molecular mass of 67.4 kDa, showed the highest hydrolytic activity with p-nitrophenyl octanoate (p-NP C8), although it was also active against p-NP C4, C5, C10, and C12. The optimum pH and temperature for EstGoM were 9 and 60 °C, respectively, but it retained more than 50% of its activity over the pH range of 7-11 and temperature range of 10-75 °C. In addition, EstGoM was tolerant of up to 1 M NaCl and resistant to the presence of several metal ions, detergents, and chemical reagents, such as EDTA and β-mercaptoethanol. The enzymatic properties of EstGoM make it a potential candidate for several industrial applications.
Collapse
Affiliation(s)
- José Luis Rodríguez-Mejía
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
- Edificio Dr. Carlos Méndez, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Campus Central Colima; Avenida 25 de Julio #965, Col. V. Sn. Sebastián, C.P. 28045, Colima, Colima, México
| | - Itzel Anahí Hidalgo-Manzano
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Luis Felipe Muriel-Millán
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
| | - Nancy Rivera-Gomez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
- IPN: CICATA Unidad Morelos del Instituto Politécnico Nacional, Blvd. de La Tecnologia 1036-P 2/2, 62790, Atlacholoaya, Morelos, México
| | - Diana X Sahonero-Canavesi
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, Netherlands
| | - Edmundo Castillo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México.
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, México.
| |
Collapse
|
5
|
Chen J, Wu H, Wang N. KEGG orthology prediction of bacterial proteins using natural language processing. BMC Bioinformatics 2024; 25:146. [PMID: 38600441 PMCID: PMC11007918 DOI: 10.1186/s12859-024-05766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND The advent of high-throughput technologies has led to an exponential increase in uncharacterized bacterial protein sequences, surpassing the capacity of manual curation. A large number of bacterial protein sequences remain unannotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology, making it necessary to use auto annotation tools. These tools are now indispensable in the biological research landscape, bridging the gap between the vastness of unannotated sequences and meaningful biological insights. RESULTS In this work, we propose a novel pipeline for KEGG orthology annotation of bacterial protein sequences that uses natural language processing and deep learning. To assess the effectiveness of our pipeline, we conducted evaluations using the genomes of two randomly selected species from the KEGG database. In our evaluation, we obtain competitive results on precision, recall, and F1 score, with values of 0.948, 0.947, and 0.947, respectively. CONCLUSIONS Our experimental results suggest that our pipeline demonstrates performance comparable to traditional methods and excels in identifying distant relatives with low sequence identity. This demonstrates the potential of our pipeline to significantly improve the accuracy and comprehensiveness of KEGG orthology annotation, thereby advancing our understanding of functional relationships within biological systems.
Collapse
Affiliation(s)
- Jing Chen
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computing Intelligence, Jiangnan University, Wuxi, China
| | - Haoyu Wu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China
| | - Ning Wang
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Sababadichetty L, Miltgen G, Vincent B, Guilhaumon F, Lenoble V, Thibault M, Bureau S, Tortosa P, Bouvier T, Jourand P. Microplastics in the insular marine environment of the Southwest Indian Ocean carry a microbiome including antimicrobial resistant (AMR) bacteria: A case study from Reunion Island. MARINE POLLUTION BULLETIN 2024; 198:115911. [PMID: 38103498 DOI: 10.1016/j.marpolbul.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
The increasing threats to ecosystems and humans from marine plastic pollution require a comprehensive assessment. We present a plastisphere case study from Reunion Island, a remote oceanic island located in the Southwest Indian Ocean, polluted by plastics. We characterized the plastic pollution on the island's coastal waters, described the associated microbiome, explored viable bacterial flora and the presence of antimicrobial resistant (AMR) bacteria. Reunion Island faces plastic pollution with up to 10,000 items/km2 in coastal water. These plastics host microbiomes dominated by Proteobacteria (80 %), including dominant genera such as Psychrobacter, Photobacterium, Pseudoalteromonas and Vibrio. Culturable microbiomes reach 107 CFU/g of microplastics, with dominance of Exiguobacterium and Pseudomonas. Plastics also carry AMR bacteria including β-lactam resistance. Thus, Southwest Indian Ocean islands are facing serious plastic pollution. This pollution requires vigilant monitoring as it harbors a plastisphere including AMR, that threatens pristine ecosystems and potentially human health through the marine food chain.
Collapse
Affiliation(s)
- Loik Sababadichetty
- Université de La Réunion, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, La Réunion, France; CHU, Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400 Saint-Denis, La Réunion, France
| | - Guillaume Miltgen
- CHU, Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; Université de La Réunion, UMR PIMIT Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM 1187, IRD 249, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France
| | - Bryan Vincent
- CIRAD, UMR040 LSTM, Campus Agro Environnemental Caraïbe, BP 214-97285, Cedex 2 le Lamentin, Martinique, Antilles Françaises, France
| | - François Guilhaumon
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, La Réunion, France
| | - Veronique Lenoble
- Université de Toulon, Aix Marseille Université, CNRS, IRD, UMR MIO, 83 Toulon, France
| | - Margot Thibault
- Université de La Réunion, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, La Réunion, France; The Ocean Cleanup, Rotterdam, the Netherlands; CNRS, Université Toulouse III, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), UMR 5623, Toulouse, France
| | - Sophie Bureau
- Université de La Réunion, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, La Réunion, France
| | - Pablo Tortosa
- Université de La Réunion, UMR PIMIT Processus Infectieux en Milieu Insulaire Tropical, CNRS 9192, INSERM 1187, IRD 249, Plateforme de recherche CYROI, 2 rue Maxime Rivière, 97490 Ste Clotilde, La Réunion, France
| | - Thierry Bouvier
- UMR MARBEC, Université Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Philippe Jourand
- IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744 Saint Denis Cedex 9, La Réunion, France.
| |
Collapse
|
7
|
Rojas-Vargas J, Castelán-Sánchez HG, Pardo-López L. HADEG: A curated hydrocarbon aerobic degradation enzymes and genes database. Comput Biol Chem 2023; 107:107966. [PMID: 37778093 DOI: 10.1016/j.compbiolchem.2023.107966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Databases of genes and enzymes involved in hydrocarbon degradation have been previously reported. However, these databases specialize on only a specific group of hydrocarbons and/or are constructed partly based on enzyme sequences with putative functions indicated by in silico research, with no experimental evidence. Here, we present a curated database of Hydrocarbon Aerobic Degradation Enzymes and Genes (HADEG) containing proteins and genes involved in alkane, alkene, aromatic, and plastic aerobic degradation and biosurfactant production based solely on experimental evidence, which are present in bacteria, and fungi. HADEG includes 259 proteins for petroleum hydrocarbon degradation, 160 for plastic degradation, and 32 for biosurfactant production. This database will help identify and predict hydrocarbon degradation genes/pathways and biosurfactant production in genomes.
Collapse
Affiliation(s)
- Jorge Rojas-Vargas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| | - Hugo G Castelán-Sánchez
- Programa de Investigadoras e Investigadores por México, Grupo de Genómica y Dinámica Evolutiva de Microorganismos Emergentes, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, CP 03940 Ciudad de México, Mexico
| | - Liliana Pardo-López
- Departamento de Microbiología Molecular, Instituto de Biotecnología, UNAM, Av. Universidad #2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
8
|
Parsaeimehr A, Miller CM, Ozbay G. Microplastics and their interactions with microbiota. Heliyon 2023; 9:e15104. [PMID: 37089279 PMCID: PMC10113872 DOI: 10.1016/j.heliyon.2023.e15104] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
As a new pollutant, Microplastics (MPs) are globally known for their negative impacts on different ecosystems and living organisms. MPs are easily taken up by the ecosystem in a variety of organisms due to their small size, and cause immunological, neurological, and respiratory diseases in the impacted organism. Moreover, in the impacted environments, MPs can release toxic additives and act as a vector and scaffold for colonization and transportation of specific microbes and lead to imbalances in microbiota and the biogeochemical and nutrients dynamic. To address the concerns on controlling the MPs pollution on the microbiota and ecosystem, the microbial biodegradation of MPs can be potentially considered as an effective environment friendly approach. The objectives of the presented paper are to provide information on the toxicological effects of MPs on microbiota, to discuss the negative impacts of microbial colonization of MPs, and to introduce the microbes with biodegradation ability of MPs.
Collapse
|
9
|
Cao Y, Zhang B, Cai Q, Zhu Z, Liu B, Dong G, Greer CW, Lee K, Chen B. Responses of Alcanivorax species to marine alkanes and polyhydroxybutyrate plastic pollution: Importance of the ocean hydrocarbon cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120177. [PMID: 36116568 DOI: 10.1016/j.envpol.2022.120177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qinhong Cai
- Gaia Refinery, Saint John, NB E2J 2E7, Canada
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
10
|
Crisafi F, Smedile F, Yakimov MM, Aulenta F, Fazi S, La Cono V, Martinelli A, Di Lisio V, Denaro R. Bacterial biofilms on medical masks disposed in the marine environment: a hotspot of biological and functional diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155731. [PMID: 35533867 DOI: 10.1016/j.scitotenv.2022.155731] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 05/06/2023]
Abstract
The present paper was aimed at investigating the role of disposable medical masks as a substrate for microbial biofilm growth and for the selection of specific microbial traits in highly impacted marine environments. In this view, we have immerged masks in a coastal area affected by a continuous input of artisanal fishery wastes and hydrocarbons pollution caused by intense maritime traffic. Masks maintained one month in the field were colonized by a bacterial community significantly different from that detected in the natural matrices from the same areas (seawater and sediments). The masks served as a viable substrate for the growth and enrichment of phototrophic microorganisms (Oxyphotobacteria), as well as Ruminococcaceae, Gracilibacteria, and Holophageae. In a follow-up investigation, masks previously colonized in the field were transferred in lab-scale microcosms which were supplemented with hydrocarbons and which contained also a piece of a virgin mask. After one month, a shift in the community composition, likely triggered by hydrocarbons addition, was observed in the previously colonized mask, with signatures characteristic of hydrocarbon-degrading microbial groups. Such hydrocarbon-degrading bacteria were also found to colonize the virgin mask. Remarkably, SEM micrographs provided indications of the occurrence of morphological modifications of the surface components of the virgin masks colonized by hydrocarbonoclastic bacteria. Overall, for the first time, we have demonstrated the potential risk for human and animal health determined by the uncorrected disposal of masks which are suitable substrates for pathogens colonization, permanence and spreading. Moreover, we have herein strengthened the knowledge on the role of hydrocarbon-degrading bacteria in the colonization and modification of fossil-based plastics in marine environment.
Collapse
Affiliation(s)
- F Crisafi
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Smedile
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - M M Yakimov
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - F Aulenta
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - S Fazi
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy
| | - V La Cono
- Institute of Polar Sciences, National Research Council (ISP-CNR), Spianata San Raineri, 86, 98121 Messina, Italy
| | - A Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - V Di Lisio
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastian, Spain
| | - R Denaro
- Water Research Institute, National Research Council (IRSA-CNR), Via Salaria km 29, 300, 00015 Monterotondo, Rome, Italy.
| |
Collapse
|
11
|
Eras-Muñoz E, Farré A, Sánchez A, Font X, Gea T. Microbial biosurfactants: a review of recent environmental applications. Bioengineered 2022; 13:12365-12391. [PMID: 35674010 PMCID: PMC9275870 DOI: 10.1080/21655979.2022.2074621] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Microbial biosurfactants are low-molecular-weight surface-active compounds of high industrial interest owing to their chemical properties and stability under several environmental conditions. The chemistry of a biosurfactant and its production cost are defined by the selection of the producer microorganism, type of substrate, and purification strategy. Recently, biosurfactants have been applied to solve or contribute to solving some environmental problems, with this being their main field of application. The most referenced studies are based on the bioremediation of contaminated soils with recalcitrant pollutants, such as hydrocarbons or heavy metals. In the case of heavy metals, biosurfactants function as chelating agents owing to their binding capacity. However, the mechanism by which biosurfactants typically act in an environmental field is focused on their ability to reduce the surface tension, thus facilitating the emulsification and solubilization of certain pollutants (in-situ biostimulation and/or bioaugmentation). Moreover, despite the low toxicity of biosurfactants, they can also act as biocidal agents at certain doses, mainly at higher concentrations than their critical micellar concentration. More recently, biosurfactant production using alternative substrates, such as several types of organic waste and solid-state fermentation, has increased its applicability and research interest in a circular economy context. In this review, the most recent research publications on the use of biosurfactants in environmental applications as an alternative to conventional chemical surfactants are summarized and analyzed. Novel strategies using biosurfactants as agricultural and biocidal agents are also presented in this paper.
Collapse
Affiliation(s)
- Estefanía Eras-Muñoz
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Abel Farré
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Antoni Sánchez
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Xavier Font
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Teresa Gea
- Composting Research Group (GICOM), Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|