1
|
Yang C, Liu Y, Liu T, Zhu W, Ji X, Guo J, Duan X, Ahmad M, Khan MR, Makarov IS, Xiao H, Song J. Enhanced mechanical properties of cellulose fiber networks through synergistic effects of telechelic-structured carbohydrate-binding module-modified amphoteric polyacrylamide. Int J Biol Macromol 2025; 304:140771. [PMID: 39924045 DOI: 10.1016/j.ijbiomac.2025.140771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 02/11/2025]
Abstract
Mechanical integrity is a pivotal characteristic of cellulose fiber networks; however, their wet strength frequently deteriorates under humid conditions due to the hydrophilic nature of cellulose. This study presents a novel conjugate additive, synthesized by grafting carbohydrate-binding modules onto amphoteric polyacrylamide (CBM3-AmPAM), aimed at enhancing the mechanical properties of cellulose fiber networks at the wet-end of papermaking. The incorporation of CBM3-AmPAM significantly improved performance compared to AmPAM alone, with stress-strain properties enhanced by 1130.34 % and 202.25 % under humid conditions at a 1 % dosage. Notably, the foldability of the cellulose fiber networks increased by 33 %. Employing quartz crystal microbalance with dissipation monitoring (QCM-D), the adsorption behaviors of CBM3, AmPAM, their conjugate (CBM3-AmPAM) and mixture (CBM3+AmPAM) onto fibers were assessed. Results indicated that CBM3-AmPAM exhibited notably robust and more irreversible adsorption compared to other tested formulations. This research highlights the potential of CBM3-AmPAM as an effective wet-end additive in papermaking and provides valuable insights into its interaction with cellulose fibers.
Collapse
Affiliation(s)
- Chao Yang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yena Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Tian Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Wenyuan Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Xingxiang Ji
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Jinan 250353, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Xuguo Duan
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mehraj Ahmad
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Igor S Makarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospect, Moscow 119991, Russia
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Junlong Song
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Baskar G, Parameswaran AN, Sathyanathan R. Optimizing papermaking wastewater treatment by predicting effluent quality with node-level capsule graph neural networks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:176. [PMID: 39825037 DOI: 10.1007/s10661-024-13581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/14/2024] [Indexed: 01/20/2025]
Abstract
Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment. In this manuscript, an optimized papermaking wastewater treatment method is proposed that predicts effluent quality using node-level capsule graph neural networks (PWWT-PEQ-NLCGNN). To improve the accuracy of predicting important effluent COD quality indices, the NLCGNN weight parameters are optimized using the hermit crab optimization (HCO) algorithm. The performance of the proposed PWWT-PEQ-NLCGNN technique demonstrated improvements over existing techniques. Specifically, the proposed strategy achieved 30.53%, 23.34%, and 32.64% higher accuracy; 20.53%, 25.34%, and 29.64% higher precision; and 20.53%, 25.34%, and 29.64% higher sensitivity compared to the water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system (WQP-GPR-DL-CLPWWTS), the prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine (POEQ-PWWTP-DKBELM), and the quality-related monitoring of papermaking wastewater treatment processes using dynamic multi-block partial least squares (QRM-PWWTP-DMPLS). These results highlight the potential of the PWWT-PEQ-NLCGNN method for enabling timely and accurate monitoring of wastewater treatment processes.
Collapse
Affiliation(s)
- G Baskar
- Head of the Department, Civil Engineering, Adhiyamaan College of Engineering, Hosur, 635130, India.
| | - A N Parameswaran
- Civil Engineering & Director, Industry Institute Collaboration, NMAM Institute of Technology, Udupi, 574110, India
| | - R Sathyanathan
- Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| |
Collapse
|
3
|
Zheng J, Desrosiers M, Benjannet R, Bayen S. Simultaneous targeted and non-targeted analysis of contaminants in fertilizers in Quebec, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177970. [PMID: 39675280 DOI: 10.1016/j.scitotenv.2024.177970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/21/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
In this study, an LC-MS based analytical method was developed and validated for the simultaneous targeted analysis (14 bisphenols and 14 plasticizers) and suspect screening of other plastic-related contaminants in various types of fertilizers. The ultrasound-assisted extraction method showed overall satisfactory performances, achieving a median absolute recovery of 85 % for the target compounds in different types of fertilizers. The method was applied to sixteen different types of fertilizers, including fertilizing residual materials (n = 8 types), one cattle manure, and seven mineral fertilizers collected in Quebec, Canada in 2022 and 2023. Relatively higher levels of the targeted bisphenols and plasticizers were detected in some fertilizing residual materials, such as municipal biosolids and deinking residues. 4-Hydroxyphenyl 4-isoprooxyphenylsulfone (D-8) and bis(2-ethylhexyl) phthalate (DEHP) were dominant contaminants in these matrixes, with concentrations up to 35.6 and 64.7 μg g-1 dw, respectively. A non-targeted workflow was successfully applied to municipal biosolids and deinking residues, and >30 contaminants were identified across multiple chemical families at level 1 identification confidence, with most of them previously unreported in various types of fertilizers. For example, new color developers, N-(2-((Phenylcarbamoyl)amino)phenyl)benzenesulfonamide (NKK-1304) and 2,4-bis(phenylsulfonyl)phenol (DBSP), were reported in deinking residues. This work illustrates the complexity of the contaminant mixtures in fertilizers such as municipal biosolids and deinking residues.
Collapse
Affiliation(s)
- Jingyun Zheng
- Department of Food Science and Agricultural Chemistry, McGill University, Canada
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Canada
| | - Rim Benjannet
- Département des sols et de génie agroalimentaire, Université Laval, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Canada.
| |
Collapse
|
4
|
Zhao Y, Ni S, Gao Y, Zhang X, Ji X, Zhang F. Study on the enhancement of paper tensile strength and hydrophobicity by adding PEI-KH560 in pulp suspension. Int J Biol Macromol 2024; 280:135933. [PMID: 39317280 DOI: 10.1016/j.ijbiomac.2024.135933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Novel eco-friendly strength agent has inspired much attention of researchers. Herein, the PEI-KH560 prepared by PEI (polyethyleneimine) and KH560 (γ-glycidyl ether propyl trimethoxysilane) was added in the pulp suspension to enhance the paper performance. The results showed that the m(PEI):m(KH560) ratio and PEI's molecular weight were closely related with the paper strength and hydrophobicity. The SEM morphology of paper surface showed that the fiber-fiber crosslinking reached the tightest, at the optimal m(PEI):m(KH560) ratio and PEI's molecular weight. The results showed that when the Mw (molecular weight) of PEI was 10,000 and the m(PEI):m(KH560) ratio was 1:2, the PEI-KH560 presented the best strengthening performance on the paper strength and hydrophobicity. Dry tensile index and wet tensile index could reach 29.9 N·m/g and 1.37 N·m/g after adding the PEI10000-KH560 in pulp suspension before the paper formation. Further, the effect of process conditions (temperature, time, the addition amount, and pulp concentration) on the strength and hydrophobicity of paper network structure was investigated, after adding PEI-KH560 into the pulp suspension. It was of great significance for studying the mechanism between the chemical structures of PEI-KH560 and paper performance, which provided valuable theoretical practice on the preparation of novel strength agent.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuzhen Ni
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ying Gao
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Xin Zhang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Xingxiang Ji
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. LTD, China.
| |
Collapse
|
5
|
Glenn GM, Tonoli GHD, Silva LE, Klamczynski AP, Wood D, Chiou BS, Lee C, Hart-Cooper W, McCaffrey Z, Orts W. Effect of Starch and Paperboard Reinforcing Structures on Insulative Fiber Foam Composites. Polymers (Basel) 2024; 16:911. [PMID: 38611169 PMCID: PMC11013104 DOI: 10.3390/polym16070911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Single-use plastic foams are used extensively as interior packaging to insulate and protect items during shipment but have come under increasing scrutiny due to the volume sent to landfills and their negative impact on the environment. Insulative compression molded cellulose fiber foams could be a viable alternative, but they do not have the mechanical strength of plastic foams. To address this issue, a novel approach was used that combined the insulative properties of cellulose fiber foams, a binder (starch), and three different reinforcing paperboard elements (angular, cylindrical, and grid) to make low-density foam composites with excellent mechanical strength. Compression molded foams and composites had a consistent thickness and a smooth, flat finish. Respirometry tests showed the fiber foams mineralized in the range of 37 to 49% over a 46 d testing period. All of the samples had relatively low density (Dd) and thermal conductivity (TC). The Dd of samples ranged from 33.1 to 64.9 kg/m3, and TC ranged from 0.039 to 0.049 W/mk. The addition of starch to the fiber foam (FF+S) and composites not only increased Dd, drying time (Td), and TC by an average of 18%, 55%, and 5.5%, respectively, but also dramatically increased the mechanical strength. The FF+S foam and paperboard composites had 240% and 350% higher average flexural strength (σfM) and modulus (Ef), respectively, than the FF-S composites. The FF-S grid composite and all the FF+S foam and composite samples had equal or higher σfM than EPS foam. Additionally, FF+S foam and paperboard composites had 187% and 354% higher average compression strength (CS) and modulus (Ec), respectively, than the FF-S foam and composites. All the paperboard composites for both FF+S and FF-S samples had comparable or higher CS, but only the FF+S cylinder and grid samples had greater toughness (Ωc) than EPS foam. Fiber foams and foam composites are compatible with existing paper recycling streams and show promise as a biodegradable, insulative alternative to EPS foam internal packaging.
Collapse
Affiliation(s)
- Gregory M. Glenn
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; (A.P.K.); (D.W.); (B.-S.C.); (C.L.); (W.H.-C.); (Z.M.); (W.O.)
| | - Gustavo H. D. Tonoli
- Forest Science Department, Federal University of Lavras, Lavras 37203-202, MG, Brazil; (G.H.D.T.); (L.E.S.)
| | - Luiz E. Silva
- Forest Science Department, Federal University of Lavras, Lavras 37203-202, MG, Brazil; (G.H.D.T.); (L.E.S.)
| | - Artur P. Klamczynski
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; (A.P.K.); (D.W.); (B.-S.C.); (C.L.); (W.H.-C.); (Z.M.); (W.O.)
| | - Delilah Wood
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; (A.P.K.); (D.W.); (B.-S.C.); (C.L.); (W.H.-C.); (Z.M.); (W.O.)
| | - Bor-Sen Chiou
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; (A.P.K.); (D.W.); (B.-S.C.); (C.L.); (W.H.-C.); (Z.M.); (W.O.)
| | - Charles Lee
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; (A.P.K.); (D.W.); (B.-S.C.); (C.L.); (W.H.-C.); (Z.M.); (W.O.)
| | - William Hart-Cooper
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; (A.P.K.); (D.W.); (B.-S.C.); (C.L.); (W.H.-C.); (Z.M.); (W.O.)
| | - Zach McCaffrey
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; (A.P.K.); (D.W.); (B.-S.C.); (C.L.); (W.H.-C.); (Z.M.); (W.O.)
| | - William Orts
- United States Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; (A.P.K.); (D.W.); (B.-S.C.); (C.L.); (W.H.-C.); (Z.M.); (W.O.)
| |
Collapse
|
6
|
Xia W, Cao X, Xu Y, Bian J. Quantitative Study of Gas–Liquid Interface Adsorption Based on Theoretical Modeling and Molecular Dynamics Simulation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Wenzhu Xia
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xuewen Cao
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongqi Xu
- College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiang Bian
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
7
|
Microscopic mechanisms of MgCl2 affecting anionic surfactant adsorption kinetics on the air water interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|