1
|
Yuan J, Chen J, Zhao Q, Xu J, Li X, Zhang Y, Li H, Chen X, Zhao L, Zhang X, Li H, Chen K. Advancements in the application and research of baculovirus vector vaccines for respiratory diseases in human. Front Microbiol 2025; 16:1558482. [PMID: 40182293 PMCID: PMC11965921 DOI: 10.3389/fmicb.2025.1558482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
The rapid spread of respiratory diseases, such as influenza, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Respiratory Syncytial Virus (RSV), poses significant challenges to global public health systems. Vaccination remains the most effective strategy to mitigate these threats. Baculovirus Expression Vector Systems (BEVS) have emerged as a promising platform for vaccine development, addressing key limitations of traditional methods, including complex production processes, lengthy timelines, and high costs. BEVS offers distinct advantages, such as enhanced efficacy, safety, cost-effectiveness, and scalability for large-scale manufacturing. This review highlights the application of BEVS in combating respiratory diseases by analyzing preclinical studies, clinical trials, and approved vaccines targeting these pathogens. It also examines recent advancements in BEVS technology, emphasizing its capacity to accelerate vaccine development and respond to emerging respiratory threats. By focusing on the synergy between BEVS and respiratory disease prevention, this review provides valuable insights to guide global vaccine innovation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hongyu Li
- Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| | - Keda Chen
- Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Li J, Ding J, Guo C, Xu X, Shan C, Qian J, Ding Z. Development of a Novel Chimeric ND-GP cVLPs Vaccine for the Prevention of Goose-Derived Newcastle Disease and Gosling Plague. Microorganisms 2024; 12:2266. [PMID: 39597655 PMCID: PMC11596917 DOI: 10.3390/microorganisms12112266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Goose-derived Newcastle disease (ND) and gosling plague (GP) are serious threats to the goose industry. Conventional vaccines have made significant contributions to preventing GP and ND. Nevertheless, the renewal of conventional vaccines and the application of novel vaccines are urgently needed to align with eco-friendly and efficient breeding concepts and achieve the final goal of epidemic purification. Therefore, based on the Newcastle disease virus-like particles (ND VLPs) vector platform, we developed novel chimeric ND-GP bivalent cVLPs (ND-GP cVLPs) displaying the NDV HN protein and the GPV VP3 protein. In vivo, immunization experiments revealed that geese immunized with 30 µg, 50 µg, or 70 µg of the ND-GP cVLPs and commercial vaccines produced highly effective hemagglutination inhibitory antibodies against NDV and neutralizing antibodies against GPV, respectively. Furthermore, 70 µg of the ND-GP cVLPs effectively protected against virulent NDV and GPV, reducing tissue damage from viral infection and virus shedding in the oropharynx and cloaca. In conclusion, we provide eco-friendly and efficient novel ND-GP cVLPs for preventing goose-derived ND and GP. Our findings provide the basis for using ND VLPs as foreign protein carriers for the developing of multi-conjugate vaccines.
Collapse
Affiliation(s)
- Jindou Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.L.); (J.D.); (C.G.); (X.X.); (C.S.)
| | - Jiaxin Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.L.); (J.D.); (C.G.); (X.X.); (C.S.)
| | - Chunhong Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.L.); (J.D.); (C.G.); (X.X.); (C.S.)
| | - Xiaohong Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.L.); (J.D.); (C.G.); (X.X.); (C.S.)
| | - Chunhui Shan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.L.); (J.D.); (C.G.); (X.X.); (C.S.)
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhuang Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (J.L.); (J.D.); (C.G.); (X.X.); (C.S.)
| |
Collapse
|
3
|
Bauzá MDR, López AE, Simonin JA, Cimbaro FS, Scharn A, Castro A, Silvestro CV, Cuniberti LA, Crottogini AJ, Belaich MN, Locatelli P, Olea FD. Effect of Intramyocardial Administration of Baculovirus Encoding the Transcription Factor Tbx20 in Sheep With Experimental Acute Myocardial Infarction. J Am Heart Assoc 2024; 13:e031515. [PMID: 39028008 PMCID: PMC11964036 DOI: 10.1161/jaha.123.031515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/13/2023] [Indexed: 07/20/2024]
Abstract
BACKGROUND Gene therapy has been proposed as a strategy to induce cardiac regeneration following acute myocardial infarction (AMI). Given that Tbx20, a transcription factor of the T-box subfamily, stimulates cell proliferation and angiogenesis, we designed a baculovirus overexpressing Tbx20 (Bv-Tbx20) and evaluated its effects in cultured cardiomyocytes and in an ovine model of AMI. METHODS AND RESULTS Cell proliferation and angiogenesis were measured in cardiomyocytes transduced with Bv-Tbx20 or Bv-Null (control). Subsequently, in sheep with AMI, Bv-Tbx20 or Bv-Null was injected in the infarct border. Cardiomyocyte cell cycle activity, angioarteriogenesis, left ventricular function, and infarct size were assessed. Cardiomyocytes transduced with BvTbx20 increased cell proliferation, cell cycle regulatory and angiogenic gene expression, and tubulogenesis. At 7 days posttreatment, sheep treated with Bv-Tbx20 showed increased Tbx20, promitotic and angiogenic gene expression, decreased levels of P21, increased Ki67- (17.09±5.73 versus 7.77±7.24 cardiomyocytes/mm2, P<0.05) and PHH3 (phospho-histone H3)-labeled cardiomyocytes (10.10±3.51 versus 5.23±2.87 cardiomyocytes/mm2, P<0.05), and increased capillary (2302.68±353.58 versus 1694.52±211.36 capillaries/mm2, P<0.001) and arteriolar (146.95±53.14 versus 84.06±16.84 arterioles/mm2, P<0.05) densities. At 30 days, Bv-Tbx20 decreased infarct size (9.89±1.92% versus 12.62±1.33%, P<0.05) and slightly improved left ventricular function. Baculoviral gene transfer-mediated Tbx20 overexpression exerted angiogenic and cardiomyogenic effects in vitro. CONCLUSIONS In sheep with AMI, Bv-Tbx20 induced angioarteriogenesis, cardiomyocyte cell cycle activity, infarct size limitation, and a slight recovery of left ventricular function, suggesting that Bv-Tbx20 gene therapy may contribute to cardiac regeneration following AMI.
Collapse
Affiliation(s)
- María del Rosario Bauzá
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Ayelén Emilce López
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Departamento de Ciencia y TecnologíaInstituto de Microbiología Básica y Aplicada, Universidad Nacional de QuilmesBernalProvincia de Buenos AiresArgentina
| | - Francisco Stefano Cimbaro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Agustina Scharn
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Araceli Castro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Cintia Virginia Silvestro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Luis Alberto Cuniberti
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Alberto José Crottogini
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Departamento de Ciencia y TecnologíaInstituto de Microbiología Básica y Aplicada, Universidad Nacional de QuilmesBernalProvincia de Buenos AiresArgentina
| | - Paola Locatelli
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| | - Fernanda Daniela Olea
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMETTYB)‐Universidad Favaloro‐ CONICETBuenos AiresArgentina
| |
Collapse
|
4
|
Li J, Ding J, Chen K, Xu X, Shao Y, Zhang D, Yu X, Guo C, Qian J, Ding Z. Protective effects of a novel chimeric virus-like particle vaccine against virulent NDV and IBDV challenge. Vaccine 2024; 42:332-338. [PMID: 38065771 DOI: 10.1016/j.vaccine.2023.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Newcastle disease (ND) and infectious bursal disease (IBD) pose significant threats to the chicken industry, causing substantial economic losses. Currently, immunization through vaccination is the most effective strategy to prevent ND and IBD but currently used traditional vaccines, including inactivated or attenuated vaccines, face challenges in achieving a balance between immunogenicity and safety. To develop a green and efficient novel vaccine for ND and IBD, we developed a bivalent chimeric virus-like particle vaccine (ND-IBD cVLPs) displaying the ND virus (NDV) HN protein and the IBD virus (IBDV) VP2 protein based on the ND VLPs carrier platform and insect baculovirus expression system. This study aimed to evaluate the immunogenicity and protective efficacy of ND-IBD cVLPs in specific pathogen-free chickens. Chickens were immunized with 50 µg of purified ND-IBD cVLPs at 7 days old, boosted at 21 days old, and challenged at 42 days old. The results demonstrated that ND-IBD cVLPs stimulated highly effective hemagglutination inhibition antibody levels against NDV HN protein and enzyme-linked immunosorbent assay antibody levels against the IBDV VP2 protein. Furthermore, ND-IBD cVLPs provided complete protection against virulent NDV and IBDV challenges and mitigated pathological damage to the lung caused by NDV infection and the bursa of Fabricius caused by IBDV infection. These findings suggest that ND-IBD cVLPs hold promise as a safe and efficient novel vaccine candidate for the effective prevention of ND and IBD, extending the development of a foreign protein delivery platform of ND VLPs.
Collapse
Affiliation(s)
- Jindou Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiaxin Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Kainan Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaohong Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yanan Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Di Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xibing Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Chunhong Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Zhuang Ding
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Motta LF, Cerrudo CS, Belaich MN. A Comprehensive Study of MicroRNA in Baculoviruses. Int J Mol Sci 2024; 25:603. [PMID: 38203774 PMCID: PMC10778818 DOI: 10.3390/ijms25010603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Baculoviruses are viral pathogens that infect different species of Lepidoptera, Diptera, and Hymenoptera, with a global distribution. Due to their biological characteristics and the biotechnological applications derived from these entities, the Baculoviridae family is an important subject of study and manipulation in the natural sciences. With the advent of RNA interference mechanisms, the presence of baculoviral genes that do not code for proteins but instead generate transcripts similar to microRNAs (miRNAs) has been described. These miRNAs are functionally associated with the regulation of gene expression, both in viral and host sequences. This article provides a comprehensive review of miRNA biogenesis, function, and characterization in general, with a specific focus on those identified in baculoviruses. Furthermore, it delves into the specific roles of baculoviral miRNAs in regulating viral and host genes and presents structural and thermodynamic stability studies that are useful for detecting shared characteristics with predictive utility. This review aims to expand our understanding of the baculoviral miRNAome, contributing to improvements in the production of baculovirus-based biopesticides, management of resistance phenomena in pests, enhancement of recombinant protein production systems, and development of diverse and improved BacMam vectors to meet biomedical demands.
Collapse
Affiliation(s)
| | - Carolina Susana Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina;
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular—Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina;
| |
Collapse
|
6
|
Rangarajan S, von Berg G, Allen H, Mitchell C. Protein Production at the 100L Scale. Methods Mol Biol 2024; 2829:195-202. [PMID: 38951335 DOI: 10.1007/978-1-0716-3961-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The Baculovirus Expression Vector System (BEVS) has revolutionized the field of recombinant protein expression by enabling efficient and high yield production. The platform offers many advantages including manufacturing speed, flexible design, and scalability. In this chapter, we describe the methods including strategies and considerations to successfully optimize and scale-up using BEVS as a tool for production (Fig. 1). As an illustrative case study, we present an example focused on the production of a viral glycoprotein.
Collapse
|
7
|
Kilgore R, Minzoni A, Shastry S, Smith W, Barbieri E, Wu Y, LeBarre JP, Chu W, O'Brien J, Menegatti S. The downstream bioprocess toolbox for therapeutic viral vectors. J Chromatogr A 2023; 1709:464337. [PMID: 37722177 DOI: 10.1016/j.chroma.2023.464337] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/20/2023]
Abstract
Viral vectors are poised to acquire a prominent position in modern medicine and biotechnology owing to their role as delivery agents for gene therapies, oncolytic agents, vaccine platforms, and a gateway to engineer cell therapies as well as plants and animals for sustainable agriculture. The success of viral vectors will critically depend on the availability of flexible and affordable biomanufacturing strategies that can meet the growing demand by clinics and biotech companies worldwide. In this context, a key role will be played by downstream process technology: while initially adapted from protein purification media, the purification toolbox for viral vectors is currently undergoing a rapid expansion to fit the unique biomolecular characteristics of these products. Innovation efforts are articulated on two fronts, namely (i) the discovery of affinity ligands that target adeno-associated virus, lentivirus, adenovirus, etc.; (ii) the development of adsorbents with innovative morphologies, such as membranes and 3D printed monoliths, that fit the size of viral vectors. Complementing these efforts are the design of novel process layouts that capitalize on novel ligands and adsorbents to ensure high yield and purity of the product while safeguarding its therapeutic efficacy and safety; and a growing panel of analytical methods that monitor the complex array of critical quality attributes of viral vectors and correlate them to the purification strategies. To help explore this complex and evolving environment, this study presents a comprehensive overview of the downstream bioprocess toolbox for viral vectors established in the last decade, and discusses present efforts and future directions contributing to the success of this promising class of biological medicines.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| | - Arianna Minzoni
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Shriarjun Shastry
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Will Smith
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Eduardo Barbieri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Yuxuan Wu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Jacob P LeBarre
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Juliana O'Brien
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States; North Carolina Viral Vector Initiative in Research and Learning, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
8
|
Amorós Morales LC, Marchesini A, Gómez Bergna SM, García Fallit M, Tongiani SE, Vásquez L, Ferrelli ML, Videla-Richardson GA, Candolfi M, Romanowski V, Pidre ML. PluriBAC: A Versatile Baculovirus-Based Modular System to Express Heterologous Genes in Different Biotechnological Platforms. Viruses 2023; 15:1984. [PMID: 37896762 PMCID: PMC10610652 DOI: 10.3390/v15101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Baculoviruses are insect-specific pathogens widely used in biotechnology. In particular, the Autographa californica nucleopolyhedrovirus (AcMNPV) has been exploited as a platform for bio-inputs production. This is why the improvement of the technologies used for the production of recombinant baculoviruses takes on particular relevance. To achieve this goal, we developed a highly versatile baculoviral transfer vector generation system called PluriBAC. The PluriBAC system consists of three insert entry levels using Golden Gate assembly technology. The wide availability of vectors and sticky ends allows enough versatility to combine more than four different promoters, genes of interest, and terminator sequences. Here, we report not only the rational design of the PluriBAC system but also its use for the generation of baculoviral reporter vectors applied to different fields of biotechnology. We demonstrated that recombinant AcMNPV baculoviruses generated with the PluriBAC system were capable of infecting Spodoptera frugiperda larvae. On the other hand, we found that the recombinant budded virions (BV) generated using our system were capable of transducing different types of tumor and normal cells both in vitro and in vivo. Our findings suggest that the PluriBAC system could constitute a versatile tool for the generation of insecticide and gene therapy vectors.
Collapse
Affiliation(s)
- Leslie C. Amorós Morales
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Abril Marchesini
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Santiago M. Gómez Bergna
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías García Fallit
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Silvana E. Tongiani
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Larisa Vásquez
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - María Leticia Ferrelli
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Guillermo A. Videla-Richardson
- Fundación Para la Lucha Contra las Enfermedades Neurológicas de la Infancia (FLENI), Ciudad Autónoma de Buenos Aires C1121A6B, Argentina;
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1121A6B, Argentina; (M.G.F.); (M.C.)
| | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| | - Matías L. Pidre
- Instituto de Biotecnología y Biología Molecular (IBBM, UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata B1900, Argentina; (L.C.A.M.); (A.M.); (S.M.G.B.); (S.E.T.); (L.V.); (M.L.F.); (V.R.)
| |
Collapse
|
9
|
Yu Y, Zhang T, Lu D, Wang J, Xu Z, Zhang Y, Liu Q. Genome-wide nonessential gene identification of Autographa californica multiple nucleopolyhedrovirus. Gene 2023; 863:147239. [PMID: 36736504 DOI: 10.1016/j.gene.2023.147239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/07/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
The Baculovirus Expression Vector System (BEVS) is an insect cell-based heterologous protein expression system that possesses powerful potential in the development of protein drugs and vaccines. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most widely-used vector in BEVS with 151 open reading frames (ORFs) containing essential and nonessential genes. Deletion of nonessential genes has many advantages including increased foreign gene insertion. In this study, the λ red recombination system was used to knock out genes in a modified AcMNPV that carried an enhanced yellow fluorescent protein (eYFP) at the Ac126-Ac127 locus. Eighty genes were almost completely deleted respectively and 69 gene knockout AcMNPVs (KOVs) were obtained to evaluate their infection efficiency. After infecting Spodoptera frugiperda 9 (Sf9) cells, 51 KOVs including 62 genes showed similar infectivity as wide type (WT) and hence were defined as nonessential genes. However, 18 KOVs produced fewer infectious virions, indicating that these genes were influential in the production of progeny viruses. Combining our research with previous studies, a desired minimal AcMNPV genome containing 86 ORFs and all of the homologous regions (hrs) was brought up, facilitating genetic modification of baculovirus vectors and improvement of recombinant protein expression in the future.
Collapse
Affiliation(s)
- Yue Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Dongbo Lu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenhe Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
10
|
Cerrudo CS, Motta LF, Cuccovia Warlet FU, Lassalle FM, Simonin JA, Belaich MN. Protein-Gene Orthology in Baculoviridae: An Exhaustive Analysis to Redefine the Ancestrally Common Coding Sequences. Viruses 2023; 15:v15051091. [PMID: 37243176 DOI: 10.3390/v15051091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Baculoviruses are entomopathogens that carry large, double-stranded circular DNA genomes and infect insect larvae of Lepidoptera, Hymenoptera and Diptera, with applications in the biological control of agricultural pests, in the production of recombinant proteins and as viral vectors for various purposes in mammals. These viruses have a variable genetic composition that differs between species, with some sequences shared by all known members, and others that are lineage-specific or unique to isolates. Based on the analysis of nearly 300 sequenced genomes, a thorough bioinformatic investigation was conducted on all the baculoviral protein coding sequences, characterizing their orthology and phylogeny. This analysis confirmed the 38 protein coding sequences currently considered as core genes, while also identifying novel coding sequences as candidates to join this set. Accordingly, homology was found among all the major occlusion body proteins, thus proposing that the polyhedrin, granulin and CUN085 genes be considered as the 39th core gene of Baculoviridae.
Collapse
Affiliation(s)
- Carolina Susana Cerrudo
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Lucas Federico Motta
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Franco Uriel Cuccovia Warlet
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Fernando Maku Lassalle
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área Virosis de Insectos (LIGBCM-AVI), Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| |
Collapse
|
11
|
Montiel-Martínez AG, Vargas-Jerónimo RY, Flores-Romero T, Moreno-Muñoz J, Bravo-Reyna CC, Luqueño-Martínez V, Contreras-Escamilla M, Zamudio-López J, Martínez-Rodríguez S, Barrán-Sánchez F, Villegas-García JC, Barrios-Payán J, Pastor AR, Palomares LA, Esquivel-Guadarrama F, Garrido E, Torres-Vega MA. Baculovirus-mediated expression of a Helicobacter pylori protein-based multiepitope hybrid gene induces a potent B cell response in mice. Immunobiology 2023; 228:152334. [PMID: 36641984 DOI: 10.1016/j.imbio.2023.152334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Helicobacter pylori is a gram-negative bacterium that is present in over half of the world's population. The colonization of the stomach́s gastric mucosa by H. pylori is related to the onset of chronic gastritis, peptic ulcer, and cancer. The estimated deaths from gastric cancer caused by this bacterial infection are in the 15,000-150,000 range. Current treatment for controlling the colonization of H. pylori includes the administration of two to four antibiotics and a gastric ATPase proton pump inhibitor. Nevertheless, the bacterium has shown increased resistance to antibiotics. Despite an extensive list of attempts to develop a vaccine, no approved vaccine against H. pylori is available. Recombinant viruses are a novel alternative for the control of primary pathogenic agents. In this work, we employed a baculovirus that carries a Thp1 transgene coding for nine H. pylori epitopes, some from the literature, and others were selected in silico from the sequence of H. pylori proteins (carbonic anhydrase, urease B subunit, gamma-glutamyl transpeptidase, Lpp20, Cag7, and CagL). We verified the expression of this hybrid multiepitopic protein in HeLa cells. Mice were inoculated with the recombinant baculovirus Bac-Thp1 using various administration routes: intranasal, intragastric, intramuscular, and a combination of intranasal and intragastric. We identified a strong adjuvant-independent IgG-antibody response in the serum of recombinant baculovirus-Thp1 inoculated mice, which was specific for a strain of H. pylori isolated from a human patient. The bacterium-specific IgG-antibodies were present in sera 125 days after the first vaccine administration. Also, H. pylori-specific IgA-antibodies were found in feces at 82 days after the first inoculation. A baculovirus-based vaccine for H. pylori is promising for controlling this pathogen in humans.
Collapse
Affiliation(s)
- Ana G Montiel-Martínez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico; Posgrado de Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Roxana Y Vargas-Jerónimo
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico; Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Tania Flores-Romero
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Jaime Moreno-Muñoz
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Carlos C Bravo-Reyna
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Verónica Luqueño-Martínez
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan 14080 Ciudad de México, Mexico
| | - Mariela Contreras-Escamilla
- Departamento de Investigación Experimental y Bioterio, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Jovani Zamudio-López
- Departamento de Investigación Experimental y Bioterio, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Susana Martínez-Rodríguez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Fernanda Barrán-Sánchez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - Juan C Villegas-García
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Jorge Barrios-Payán
- Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Vasco de Quiroga no. 15, col. Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico
| | - A Ruth Pastor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Avenida Universidad 2001, Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | | | - Efraín Garrido
- Departamento de Genética y Biología Molecular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Delegación Gustavo A. Madero, 07360 Ciudad de México, Mexico
| | - Miguel A Torres-Vega
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga no. 15, col, Belisario Domínguez Sección XVI, Delegación Tlalpan, 14080 Ciudad de México, Mexico.
| |
Collapse
|
12
|
Baculovirus Display of Peptides and Proteins for Medical Applications. Viruses 2023; 15:v15020411. [PMID: 36851625 PMCID: PMC9962271 DOI: 10.3390/v15020411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Baculoviridae is a large family of arthropod-infective viruses. Recombinant baculoviruses have many applications, the best known is as a system for large scale protein production in combination with insect cell cultures. More recently recombinant baculoviruses have been utilized for the display of proteins of interest with applications in medicine. In the present review we analyze the different strategies for the display of proteins and peptides on the surface of recombinant baculoviruses and provide some examples of the different proteins displayed. We analyze briefly the commercially available systems for recombinant baculovirus production and display and discuss the future of this emerging and powerful technology.
Collapse
|
13
|
Zhang X, He A, Zong Y, Tian H, Zhang Z, Zhao K, Xu X, Chen H. Improvement of protein production in baculovirus expression vector system by removing a total of 10 kb of nonessential fragments from Autographa californica multiple nucleopolyhedrovirus genome. Front Microbiol 2023; 14:1171500. [PMID: 37125202 PMCID: PMC10133524 DOI: 10.3389/fmicb.2023.1171500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Baculovirus expression vector system (BEVS) is a powerful and versatile platform for recombinant protein production in insect cells. As the most frequently used baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes 155 open reading frames (ORFs), including a considerable number of non-essential genes for the virus replication in cell culture. Studies have shown that protein production in BEVS can be improved by removing some viral dispensable genes, and these AcMNPV vectors also offer the possibility of accommodating larger exogenous gene fragments. In this study, we, respectively, deleted 14 DNA fragments from AcMNPV genome, each of them containing at least two contiguous genes that were known nonessential for viral replication in cell culture or functionally unknown. The effects of these fragment-deletions on virus replication and exogenous protein production were examined. The results showed that 11 of the 14 fragments, containing 43 genes, were dispensable for the virus replication in cultured cells. By detecting the expression of intracellularly expressed and secreted reporter proteins, we demonstrated that nine of the fragment-deletions benefited protein production in Sf9 cells and/or in High Five cells. After combining the deletion of some dispensable fragments, we obtained two AcMNPV vectors shortened by more than 10 kb but displayed an improved capacity for recombinant protein production. The deletion strategies used in this study has the potential to further improve the BEVS.
Collapse
|
14
|
Pidre ML, Arrías PN, Amorós Morales LC, Romanowski V. The Magic Staff: A Comprehensive Overview of Baculovirus-Based Technologies Applied to Human and Animal Health. Viruses 2022; 15:80. [PMID: 36680120 PMCID: PMC9863858 DOI: 10.3390/v15010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Baculoviruses are enveloped, insect-specific viruses with large double-stranded DNA genomes. Among all the baculovirus species, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most studied. Due to its characteristics regarding biosafety, narrow host range and the availability of different platforms for modifying its genome, AcMNPV has become a powerful biotechnological tool. In this review, we will address the most widespread technological applications of baculoviruses. We will begin by summarizing their natural cycle both in larvae and in cell culture and how it can be exploited. Secondly, we will explore the different baculovirus-based protein expression systems (BEVS) and their multiple applications in the pharmaceutical and biotechnological industry. We will focus particularly on the production of vaccines, many of which are either currently commercialized or in advanced stages of development (e.g., Novavax, COVID-19 vaccine). In addition, recombinant baculoviruses can be used as efficient gene transduction and protein expression vectors in vertebrate cells (e.g., BacMam). Finally, we will extensively describe various gene therapy strategies based on baculoviruses applied to the treatment of different diseases. The main objective of this work is to provide an extensive up-to-date summary of the different biotechnological applications of baculoviruses, emphasizing the genetic modification strategies used in each field.
Collapse
Affiliation(s)
| | | | | | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| |
Collapse
|
15
|
Improved Expression of SARS-CoV-2 Spike RBD Using the Insect Cell-Baculovirus System. Viruses 2022; 14:v14122794. [PMID: 36560798 PMCID: PMC9785345 DOI: 10.3390/v14122794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Insect cell-baculovirus expression vector system is one of the most established platforms to produce biological products, and it plays a fundamental role in the context of COVID-19 emergency, providing recombinant proteins for treatment, diagnosis, and prevention. SARS-CoV-2 infection is mediated by the interaction of the spike glycoprotein trimer via its receptor-binding domain (RBD) with the host's cellular receptor. As RBD is required for many applications, in the context of pandemic it is important to meet the challenge of producing a high amount of recombinant RBD (rRBD). For this reason, in the present study, we developed a process based on Sf9 insect cells to improve rRBD yield. rRBD was recovered from the supernatant of infected cells and easily purified by metal ion affinity chromatography, with a yield of 82% and purity higher than 95%. Expressed under a novel chimeric promoter (polh-pSeL), the yield of rRBD after purification was 21.1 ± 3.7 mg/L, which is the highest performance described in Sf9 cell lines. Finally, rRBD was successfully used in an assay to detect specific antibodies in COVID-19 serum samples. The efficient strategy herein described has the potential to produce high-quality rRBD in Sf9 cell line for diagnostic purpose.
Collapse
|
16
|
Yamamoto Y, Kajiura H, Nishibu T, Fujiyama K. Mamestra brassicae NIAS-Mb-32 cell strain 2g2 enables high-yield recombinant protein production in baculovirus-free and baculovirus-based insect cell expression. J Biosci Bioeng 2022; 134:432-440. [PMID: 36163133 DOI: 10.1016/j.jbiosc.2022.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/04/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022]
Abstract
The production of recombinant proteins using insect cells has been widely used for over 30 years, which contributing to life science research and biotechnology. Insect cells exhibiting enhanced N-glycosylation and recombinant protein productivity enhance the productivity of the baculovirus-insect cell system (BICS). A new highly proliferative insect cell strain, 2g2, was established from the Mamestra brassicae pupa ovary cell strain NIAS-MB-32 (RCB0413) to address the problem of Sf-rhabdovirus and to explore the newly available possibilities in BICS as well as Sf9, such as increased protein production and recombinant baculovirus amplification. The high-growth cell strain 2g2 was examined for its recombinant protein production ability and baculovirus productivity; moreover, the activity of the produced recombinant proteins was examined using Sf9 as a benchmark. Recombinant protein productivity and virus production by BICS in 2g2 was confirmed as equivalent to that of Sf9. Furthermore, we produced the severe acute respiratory syndrome coronavirus 2 spike protein in a baculovirus-free system and compared its productivity, binding activity with human angiotensin-converting enzyme 2, and N-glycosylation. The productivity and bioactivity were found to be equal to or better than that of Sf9. Moreover, N-glycosylation analysis revealed that the glycans derived from the 2g2-produced glycoproteins were mostly of the high mannose type as Sf9. Therefore, 2g2 may have the same N-glycosylation ability as Sf9. Finally, the Sf-rhabdovirus was confirmed to be negative in 2g2. Our results demonstrated that the novel insect cell strain 2g2 can serve as a protein production tool in scientific research and industrial biotechnology.
Collapse
Affiliation(s)
- Yotaro Yamamoto
- Production Process Development Department, FUJIFILM Wako Pure Chemical Corporation, 6-1 Takata-cho, Amagasaki-shi, Hyogo 661-0963, Japan; International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Hiroyuki Kajiura
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan
| | - Takahiro Nishibu
- Production Process Development Department, FUJIFILM Wako Pure Chemical Corporation, 6-1 Takata-cho, Amagasaki-shi, Hyogo 661-0963, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871, Japan.
| |
Collapse
|
17
|
Sullivan E, Sung PY, Wu W, Berry N, Kempster S, Ferguson D, Almond N, Jones IM, Roy P. SARS-CoV-2 Virus-like Particles Produced by a Single Recombinant Baculovirus Generate Anti-S Antibody and Protect against Variant Challenge. Viruses 2022; 14:914. [PMID: 35632656 PMCID: PMC9143203 DOI: 10.3390/v14050914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19), caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has highlighted the need for the rapid generation of efficient vaccines for emerging disease. Virus-like particles, VLPs, are an established vaccine technology that produces virus-like mimics, based on expression of the structural proteins of a target virus. SARS-CoV-2 is a coronavirus where the basis of VLP formation has been shown to be the co-expression of the spike, membrane and envelope structural proteins. Here we describe the generation of SARS-CoV-2 VLPs by the co-expression of the salient structural proteins in insect cells using the established baculovirus expression system. VLPs were heterologous ~100 nm diameter enveloped particles with a distinct fringe that reacted strongly with SARS-CoV-2 convalescent sera. In a Syrian hamster challenge model, non-adjuvanted VLPs induced neutralizing antibodies to the VLP-associated Wuhan S protein and reduced virus shedding and protected against disease associated weight loss following a virulent challenge with SARS-CoV-2 (B.1.1.7 variant). Immunized animals showed reduced lung pathology and lower challenge virus replication than the non-immunized controls. Our data suggest SARS-CoV-2 VLPs offer an efficient vaccine that mitigates against virus load and prevents severe disease.
Collapse
Affiliation(s)
- Edward Sullivan
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Po-Yu Sung
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Weining Wu
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| | - Neil Berry
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Sarah Kempster
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Deborah Ferguson
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Neil Almond
- Division of Infectious Disease Diagnostics, National Institute for Biological Standards and Control, Potters Bar EN6 3QG, UK; (N.B.); (S.K.); (D.F.); (N.A.)
| | - Ian M. Jones
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK;
| | - Polly Roy
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK; (E.S.); (P.-Y.S.); (W.W.)
| |
Collapse
|
18
|
Transduction of HEK293 Cells with BacMam Baculovirus Is an Efficient System for the Production of HIV-1 Virus-like Particles. Viruses 2022; 14:v14030636. [PMID: 35337043 PMCID: PMC8954388 DOI: 10.3390/v14030636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Gag virus-like particles (VLPs) are promising vaccine candidates against infectious diseases. VLPs are generally produced using the insect cell/baculovirus expression vector system (BEVS), or in mammalian cells by plasmid DNA transient gene expression (TGE). However, VLPs produced with the insect cell/BEVS are difficult to purify and might not display the appropriate post-translational modifications, whereas plasmid DNA TGE approaches are expensive and have a limited scale-up capability. In this study, the production of Gag VLPs with the BacMam expression system in a suspension culture of HEK293 cells is addressed. The optimal conditions of multiplicity of infection (MOI), viable cell density (VCD) at infection, and butyric acid (BA) concentration that maximize cell transduction and VLP production are determined. In these conditions, a maximum cell transduction efficiency of 91.5 ± 1.1%, and a VLP titer of 2.8 ± 0.1 × 109 VLPs/mL are achieved. Successful VLP generation in transduced HEK293 cells is validated using super-resolution fluorescence microscopy, with VLPs produced resembling immature HIV-1 virions and with an average size comprised in the 100–200 nm range. Additionally, evidence that BacMam transduction occurs via different pathways including dynamin-mediated endocytosis and macropinocytosis is provided. This work puts the basis for future studies aiming at scaling up the BacMam baculovirus system as an alternative strategy for VLP production.
Collapse
|