1
|
Devkar HU, Juyal K, Thakur NL, Kaur P, Parmar K, Pullapanthula R, Narayanan S. Antimicrobial Potential of Marine Sponge-Associated Bacillus velezensis and Stutzerimonas stutzeri from the Indian Coast: A Genome Mining and Metabolite Profiling Approach. Curr Microbiol 2025; 82:280. [PMID: 40327113 DOI: 10.1007/s00284-025-04262-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Antimicrobial resistance (AMR) is one of the leading health crises worldwide that demands new antimicrobials to enter the clinical pipeline. Marine sponges are a rich source of promising bioactive compounds. Due to their sessile nature and filter-feeding lifestyle, sponges are prone to attack by competitors, predators, and pathogens. To combat these threats, they produce a diverse array of bioactive compounds. Notably, the microbial communities residing within the sponges make many of these beneficial compounds. Twenty-one bacterial isolates from various marine sponges from the Indian coast were selected for this study. The bacterial isolates were fermented to obtain crude extracts, which were then screened against critical bacterial pathogens. Based on the MIC (minimum inhibitory concentration) results, two isolates, Bacillus velezensis NIO_002 and Stutzerimonas stutzeri NIO_003 showing good activity, were characterized by morphological, biochemical, and molecular methods. Genome mining predicted multiple antibiotic biosynthetic gene clusters, most of which showed a high degree of similarity to known gene clusters, and some with low or no similarity which may be indicative of novel gene clusters. LC-MS (liquid chromatography-mass spectrometry) data revealed the putative presence of certain antibacterial compounds previously reported in the literature. To our knowledge, this is the first study to report the antimicrobial activity of marine sponge-associated Bacillus velezensis and Stutzerimonas stutzeri strains characterized by whole genome sequencing, thereby indicating the novelty of our strains. This study emphasizes the potential of our bacterial isolates for further development as a source of promising antibiotics to address the escalating challenge of drug-resistant pathogens.
Collapse
Affiliation(s)
- Heena U Devkar
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kartik Juyal
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Narsinh L Thakur
- CSIR- National Institute of Oceanography, Dona Paula, 403004, Goa, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Parvinder Kaur
- Foundation for Neglected Disease Research, Bangalore, 561203, Karnataka, India
| | - Keyur Parmar
- National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | | | - Shridhar Narayanan
- Foundation for Neglected Disease Research, Bangalore, 561203, Karnataka, India
| |
Collapse
|
2
|
Calcagnile M, Quarta E, Sicuro A, Pecoraro L, Schiavone R, Tredici SM, Talà A, Corallo A, Verri T, Stabili L, Alifano P. Effect of Bacillus velezensis MT9 on Nile Tilapia (Oreochromis Niloticus) Intestinal Microbiota. MICROBIAL ECOLOGY 2025; 88:37. [PMID: 40310547 PMCID: PMC12045831 DOI: 10.1007/s00248-025-02531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025]
Abstract
In recent years, there has been a growing interest in the use of probiotics in aquaculture, due to their effectiveness on production, safety, and environmental friendliness. Probiotics, used as feed additives and as an alternative to antibiotics for disease prevention, have been shown to be active as growth promoters, improving survival and health of farmed fish. In this study, we have investigated the ability of the strain Bacillus velezensis MT9, as potential probiotic, to modulate the intestinal microbiota of the Nile tilapia (Oreochromis niloticus) fed with the Bacillus velezensis-supplemented feed in an experimental aquaculture plant. The analysis of the microbial community of the Nile tilapia by culture-based and 16S rRNA gene metabarcoding approaches demonstrated that B. velezensis MT9 reshapes the fish intestinal microbiota by reducing the amounts of opportunistic Gram-negative bacterial pathogens belonging to the phylum of Proteobacterium (Pseudomonadota) and increasing the amounts of beneficial bacteria belonging to the phyla Firmicutes (Bacillota) and Actinobacteria (Actinomycetota). Specifically, dietary supplementation of Nile tilapia with B. velezensis MT9 resulted in an increase in the relative abundance of bacteria of the genus Romboutsia, which has a well-documented probiotic activity, and a decrease in the relative abundance of Gammaproteobacteria of the genera Aeromonas and Vibrio, which include opportunistic pathogens for fish, and Escherichia/Shigella, which may pose a risk to consumers. The whole genome sequence of B. velezensis MT9 was then determined. Genome analysis revealed several peculiarities of B. velezensis MT9 compared to other B. velezensis reference strains including specific metabolic traits, differences in two-component and quorum sensing systems as well as the potential ability to produce a distinct array of secondary metabolites, which could explain the strong ability of this strain to modulate the intestinal microbiota of the Nile tilapia.
Collapse
Affiliation(s)
- Matteo Calcagnile
- Department of Experimental Medicine (DiMeS), University of Salento, Via Monteroni, 73100, Lecce, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Elisa Quarta
- Institute of Water Research (IRSA), Istituto Talassografico "A. Cerruti", National Research Council (CNR), Via Roma 3, 74123, Taranto, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Alessandro Sicuro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Laura Pecoraro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Roberta Schiavone
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | | | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Angelo Corallo
- Department of Experimental Medicine (DiMeS), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Loredana Stabili
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100, Lecce, Italy.
- Institute of Water Research (IRSA), Istituto Talassografico "A. Cerruti", National Research Council (CNR), Via Roma 3, 74123, Taranto, Italy.
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy.
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
3
|
Gangmei K, Ashokkumar M, Gupta B, Vijayakumar A, Mandodan S, Kunnikuruvan A, Sivaprakasam M, Padmanaban H, Bora B, Lukose J, Irudayaraj G, Subbiah P. Whole genome sequencing and evolutionary significance of a novel mosquitocidal bacterium, Bacillus thuringiensis serovar israelensis VCRC-B650 reported from Union Territory of Puducherry, India highly useful for mosquito control. Mol Genet Genomics 2025; 300:37. [PMID: 40133584 DOI: 10.1007/s00438-025-02247-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Mosquito-borne diseases pose a significant global health challenge, highlighting the need for innovative biocontrol agents. In this study, a novel mosquitocidal bacterium was isolated from clay soil and subjected to Whole Genome Sequencing (WGS) and bioinformatics analysis to understand its genetic composition and potential applications. WGS revealed that the bacterium a circular genome of size 6,622,317 bp comprising 6930 genes, 115 tRNA and 17 rRNA. The (G + C)s content was found to be 34.83% at the contig level and 34.83% at the scaffold level. Bioinformatics tools, including KmerFinder, Bacterial and Viral Bioinformatics Resource Center and JSpecies, identified the strain as Bacillus thuringiensis serovar israelensis (Bti VCRC-B650). Additionally, eight plasmids were identified in its genome. Notably, the genome analysis confirmed the presence of Cry4Ba, Cry10Aa, Cry15Aa, Cry4Aa, Cry11Aa, Cyt1Aa, Cyt2Ba, Cry2Aa, and Cyt2Ba1 toxins which were considered to be the principal factor of evolutionary significance for mosquitocidal activity. Further analysis identified four different types of Clustered Regularly Interspaced Short Palindromic Repeats sequences, 16 Biosynthetic Gene Clusters, and 312 antibiotic resistance genes. Comparative genomic analysis revealed a total of 556 core genes in Bti VCRC-B650 strain. This study highlights the potential of WGS in characterizing microbial strains with biocontrol properties. The findings suggest that the newly identified Bti VCRC-B650 strain could serve as a promising biological control agent against mosquito larvae and may also have applications in antibiotic and antifungal compound development.
Collapse
Affiliation(s)
- Kakhuangailiu Gangmei
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Mathivanan Ashokkumar
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Bhavna Gupta
- ICMR- Vector Control Research Centre, Field Station, 4, Sarojini Street, Chinna Chokkikulam, Madurai, 625002, India
| | - Abhisubesh Vijayakumar
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Sahadiya Mandodan
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Aneha Kunnikuruvan
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Manikandan Sivaprakasam
- Unit of Molecular Biology, Mahatma Gandhi Medical Advanced Research Institute, Puducherry, 607402, India
| | - Hemaladkshmi Padmanaban
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Bhagyashree Bora
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Jibi Lukose
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Geetha Irudayaraj
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India
| | - Poopathi Subbiah
- Unit of Microbiology and Immunology, ICMR- Vector Control Research Centre, Medical Complex, Indira Nagar, Puducherry, 605006, India.
| |
Collapse
|
4
|
Zhang J, Wu J, Chen Y, Li X, Jia Y, Zhang X, Chang X, Feng J, Meng X. Complete genome analysis of Bacillus velezensis HF-14,109 with potential for broad-spectrum antimicrobial activity and high enzyme-producing ability from common carp (Cyprinus carpio L.). Mol Genet Genomics 2025; 300:26. [PMID: 40011251 DOI: 10.1007/s00438-025-02229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Bacillus velezensis (B. velezensis) HF-14,109 is an aerobic Gram-positive bacterium isolated from the gut of healthy carp (Cyprinus carpio L.). Here, we sequenced and annotated the genome of HF-14,109, identified and classified its enzyme-producing genes and secondary metabolite biosynthesis gene clusters (BGCs), and verified the inhibitory effects on pathogenic bacteria in vitro. Results suggested that HF-14,109 had a circular 4,214,172 bp genome that contains 4,392 predicted genes with an average length and GC content of 851.56 bp and 46.94%, respectively. A total of 210 non-coding RNAs, 8 CRISPR sequences, and 152 tandem repeats were predicted. Based on a CAZy database analysis, HF-14,109 contains 93 genes encoding enzymes for carbohydrate-related processes, 38 of which were glycoside hydrolase genes and divided into 20 families. Based on enzyme predictions, HF-14,109 had the capability to hydrolyze high molecular carbohydrates such as starch, disaccharides such as lactose and sucrose, and non-starch polysaccharides such as β-glucan, mannan, fructan and xylan. Twelve BGCs for producting secondary metabolites were identified by antiSMASH analysis, 5 of which were predicted to encode polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs), indicating that HF-14,109 could produce multiple secondary metabolites. The genome of HF-14,109 contained numerous genes encoding glycoside hydrolases and BGCs for producting secondary metabolites. Besides, the HF-14,109 could inhibit pathogenic bacteria such as E. tarda, A. hydrophila, S. aurenus, and E. coli in vitro. In conclusion, our results demonstrate that HF-14,109 has the effects of hydrolyzing non-starch polysaccharides and inhibiting pathogenic bacteria, which lays a solid foundation for elucidating its antibacterial and enzyme-producing mechanisms, and is expected to be developed as a probiotic for aquaculture feed in the future.
Collapse
Affiliation(s)
- Jianxin Zhang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China.
| | - Jingyu Wu
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China
| | - Yongyan Chen
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China
| | - Xiuxiu Li
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China
| | - Yiran Jia
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China
| | - Xiaotong Zhang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China
| | - Xulu Chang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China
| | - Junchang Feng
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China
| | - Xiaolin Meng
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal cultivation, Henan Normal University, No. 46, Jianshe Road, Xinxiang, 453007, China
| |
Collapse
|
5
|
Isleem RS, Eid AM, Hassan SED, Aboshanab KM, El-Housseiny GS. Deciphering the nature and statistical optimization of antimicrobial metabolites of two endophytic bacilli. AMB Express 2025; 15:10. [PMID: 39806214 PMCID: PMC11730024 DOI: 10.1186/s13568-024-01811-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, Allium sativum, garlic, was selected to isolate endophytic bacteria and to evaluate the antimicrobial, antiviral, antioxidant, and cytotoxic activities of their produced metabolites followed by identification of the biosynthetic gene cluster of the antimicrobial metabolites using Oxford Nanopore Technology (ONT). Two bacterial isolates, C6 and C11, were found to have a broad-spectrum antagonistic effect against four standard microbial strains and were molecularly identified using 16 S ribosomal RNA sequence analysis and deposited in a local culture collection as B. velezensis CCASU-C6, and B. subtilis CCASU-C11, respectively. Optimization for the maximum production of antimicrobial metabolites revealed that a four-day incubation period was optimal, with sucrose and tryptone serving as the best carbon and nitrogen sources for the fermentation media. Response surface methodology model using the central composite design was created resulting in a 1.2-fold and 1.8-fold improvement in antimicrobial metabolite(s) production of C6 and C11 isolates, respectively. The optimal production conditions were found to be a temperature of 33 °C, pH of 7, and an agitation rate of 200 rpm for C6 metabolite, and a temperature of 37 °C, pH of 7, and an agitation rate of 250 rpm for C11 metabolite. Both bacterial isolates displayed antioxidant and antiviral activity and mild cytotoxic action. Genomic sequence and antiSMASH analysis showed that the biosynthetic gene clusters of bacillomycin, mycosubtilin, fengycin, and macrolactin H in B. velezensis CCASU-C6 and bacillibactin and Macrolactin H in B. subtilis CCASU-C11 showed 100% conservation.
Collapse
Affiliation(s)
- Raghda S Isleem
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Zheng Y, Liu T, Wang Z, Wang X, Wang H, Li Y, Zheng W, Wei S, Leng Y, Li J, Yang Y, Liu Y, Li Z, Wang Q, Tian Y. Whole-genome sequencing and secondary metabolite exploration of the novel Bacillus velezensis BN with broad-spectrum antagonistic activity against fungal plant pathogens. Front Microbiol 2025; 15:1498653. [PMID: 39831126 PMCID: PMC11738913 DOI: 10.3389/fmicb.2024.1498653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/08/2024] [Indexed: 01/22/2025] Open
Abstract
The utilization of chemical pesticides recovers 30%-40% of food losses. However, their application has also triggered a series of problems, including food safety, environmental pollution, pesticide resistance, and incidents of poisoning. Consequently, green pesticides are increasingly seen as viable alternatives to their chemical counterparts. Among these, Plant Growth-Promoting Rhizobacteria (PGPR), which are found within plant rhizosphere, stand out for their capacity to stimulate plant growth. Recently, we isolated a strain, BN, with broad-spectrum antimicrobial activity from the rhizosphere of Lilium brownii. Identification revealed that this strain belongs to the species Bacillus velezensis and exhibits significant inhibitory effects against various fungal plant pathogens. The complete genome sequence of B. velezensis BN consists of a circular chromosome with a length of 3,929,791 bp, includes 3,747 protein-coding genes, 81 small RNAs, 27 rRNAs, and 86 tRNAs. Genomic analysis revealed that 29% of the genes are directly involved in plant growth, while 70% of the genes are indirectly involved. In addition, 12 putative biosynthetic gene clusters were identified, responsible for the synthesis of secondary metabolites, such as non-ribosomal peptides, lanthipeptides, polyketides, siderophores, and terpenes. These findings provide a scientific basis for the development of efficient antimicrobial agents and the construction of biopesticide production platforms in chassis cells.
Collapse
Affiliation(s)
- Yanli Zheng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Tongshu Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Ziyu Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Xu Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Haiyan Wang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Ying Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Wangshan Zheng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Shiyu Wei
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yan Leng
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Jiajia Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yan Yang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Yang Liu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Zhaoyu Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yongqiang Tian
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Suji HA, Manikandan K, Sudha A, Muthukumar A, Jeyalakshmi C, Charumathi M, Rajesh M, Raj TS. Whole genome sequence of seaweed endophyte Bacillus halotolerans strain AUPP for antagonistic activity against Fusarium incarnatum causing chilli fruit rot. Sci Rep 2024; 14:31881. [PMID: 39738420 PMCID: PMC11685536 DOI: 10.1038/s41598-024-83317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025] Open
Abstract
Endophytes isolated from seaweeds emerge as promising biocontrol agents against broad spectrum of plant diseases. The endophytic bacteria were isolated from the seaweed (Sargassum wightii) to manage the chilli fruit rot pathogen Fusarium incarnatum. The antifungal activity of the isolated bacteria was tested by dual culture assay and plant growth-promoting activity was also tested by the standard paper towel method. The biocontrol strain AUPP displayed strong antifungal against Fusarium incarnatum (80.23%) and plant growth-promoting activity including seed germination (97.60%) and vigour index (1287.34) under in-vitro conditions. The identity of the endophytic bacteria was established through whole genome sequence analysis which showed promising biocontrol and plant growth-promoting activity. Whole genome sequence analysis of the biocontrol Bacillus halotolerans strain AUPP revealed the genomic information including 4,166,288 bp genome size, 18 contigs and 43.6% GC content. Genome analysis revealed the 15 secondary metabolite regions associated with the production of secondary metabolites and genes responsible for the antifungal activity. Furthermore, we identified multiple antibiotics, multidrug-resistant genes and a CRISPR sequence. This study presents the first whole genome sequence of B. halotolerans isolated from seaweed in India. These findings highlight its potential for broad-spectrum plant disease control.
Collapse
Affiliation(s)
- Hudson Ann Suji
- Centre for Advance Studies in Marine Biology, Annamalai University, Chidambaram, India
| | - Karuppiah Manikandan
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India.
| | - Appusami Sudha
- Department of Plant Pathology, Centre for Plant Protection Studies, TNAU, Coimbatore, India
| | - Arjunan Muthukumar
- Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India
| | | | - Muniyandi Charumathi
- School of Agriculture and Animal Sciences, The Gandhigram Rural Institute, Gandhigram, Tamil Nadu, India
| | - Manickam Rajesh
- ICAR- Krishi Vigyan Kendra, Needamangalam, Thiruvarur, India
| | - Thankaraj Suthin Raj
- Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Chidambaram, India.
- TNAU-Agricultural Research Station, Kovilpatti, India.
| |
Collapse
|
8
|
Liu Y, Yin C, Zhu M, Zhan Y, Lin M, Yan Y. Comparative Genomic Analysis of Bacillus velezensis BRI3 Reveals Genes Potentially Associated with Efficient Antagonism of Sclerotinia sclerotiorum (Lib.) de Bary. Genes (Basel) 2024; 15:1588. [PMID: 39766855 PMCID: PMC11675273 DOI: 10.3390/genes15121588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bacillus velezensis has recently received increased attention as a potential biological agent because of its broad-spectrum antagonistic capacity against harmful bacteria and fungi. This study aims to thoroughly analyze the genomic characteristics of B. velezensis BRI3, thereby providing theoretical groundwork for the agronomic utilization of this strain. METHODS In this work, we evaluated the beneficial traits of the newly isolated strain B. velezensis BRI3 via in vitro experiments, whole-genome sequencing, functional annotation, and comparative genomic analysis. RESULTS B. velezensis BRI3 exhibits broad-spectrum antifungal activity against various soilborne pathogens, displays inhibitory effects comparable to those of the type strain FZB42, and exhibits particularly effective antagonism against Sclerotinia sclerotiorum (Lib.) de Bary. Whole-genome sequencing and assembly revealed that the genome of BRI3 contains one chromosome and two plasmids, which carry a large amount of genetic information. Moreover, 13 biosynthetic gene clusters (BGCs) involved in the biosynthesis of secondary metabolites were predicted within the BRI3 genome. Among these, two unique BGCs (cluster 11 and cluster 13), which were not previously reported in the genomes of other strains and could potentially encode novel metabolic products, were identified. The results of the comparative genomic analysis demonstrated the genomic structural conservation and genetic homogeneity of BRI3. CONCLUSIONS The unique characteristics and genomic data provide insights into the potential application of BRI3 as a biocontrol and probiotic agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
9
|
Yu F, Shen Y, Chen S, Fan H, Pang Y, Liu M, Peng J, Pei X, Liu X. Analysis of the Genomic Sequences and Metabolites of Bacillus velezensis YA215. Biochem Genet 2024; 62:5073-5091. [PMID: 38386213 DOI: 10.1007/s10528-024-10710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Discovering more novel antimicrobial compounds has become a keen research problem. In this study, YA215 genome was sequenced by the Illumina HiSeq + PacBio sequencing platform. Genome assembly was performed by Unicycler software and the gene clusters responsible for secondary metabolite biosynthesis were predicted by antiSMASH. The genome comprised 3976514 bp and had a 46.56% G + C content. 3809 coding DNA sequences, 27 rRNAs, 86 tRNAs genes, and 79 sRNA were predicted. Strain YA215 was re-identified as Bacillus velezensis based on ANI and OrthoANI analysis. In the COG database, 23 functional groups from 3090 annotations were predicted. In the GO database, 2654 annotations were predicted. 2486 KEGG annotations linked 41 metabolic pathways. Glycosyl transferases, polysaccharide lyases, auxiliary activities, glycoside hydrolases, carbohydrate esterases, and carbohydrate-binding modules were predicted among the 127 annotations in the CAZy database. AntiSMASH analysis predicted that B. velezensis YA215 boasted 13 gene clusters involved in synthesis of antimicrobial secondary metabolites including surfactin, fengycin, macrolactin H, bacillaene, difficidin, bacillibactin, bacilysin, and plantazolicin. Three of the gene clusters (gene cluster 5, gene cluster 9, and gene cluster 10) have the potential to synthesize unknown compounds. The research underscore the considerable potential of secondary metabolites, identified in the genomic composition of B. velezensis YA215, as versatile antibacterial agents with a broad spectrum of activity against pathogenic bacteria.
Collapse
Affiliation(s)
- FuTian Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YuanYuan Shen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - ShangLi Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - HeLiang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - YiYang Pang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - MingYuan Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - JingJing Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoDong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - XiaoLing Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
10
|
Liu Y, Dai C, Zuo Y, Qiao J, Shen J, Yin X, Liu Y. Characterization of Siderophores Produced by Bacillus velezensis YL2021 and Its Application in Controlling Rice Sheath Blight and Rice Blast. PHYTOPATHOLOGY 2024; 114:2491-2501. [PMID: 39190815 DOI: 10.1094/phyto-04-24-0148-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Bacillus velezensis YL2021 has extensive antimicrobial activities against phytopathogens, and its genome harbors a catechol-type siderophore biosynthesis gene cluster. Here, we describe the characterization of siderophores produced by strain YL2021 and its antimicrobial activity in vitro and in vivo. A few types of siderophores were detected by chrome azurol S plates coupled with Arnow's test, purified, and identified by reversed-phase high-performance liquid chromatography. We found that strain YL2021 can produce different antimicrobial compounds under low-iron M9 medium or iron-sufficient Luria-Bertani medium, although antimicrobial activities can be easily observed on the two media as described above in vitro. Strain YL2021 can produce at least three catechol-type siderophores in low-iron M9 medium, whereas no siderophores were produced in Luria-Bertani medium. Among them, the main antimicrobial siderophore produced by strain YL2021 was bacillibactin, with m/z 882, based on the liquid chromatography-tandem mass spectrometry analysis, which has broad-spectrum antimicrobial activities against gram-positive and gram-negative bacteria, the oomycete Phytophthora capsici, and phytopathogenic fungi. Moreover, the antifungal activity of siderophores, including bacillibactin, observed in vitro was correlated with control efficacies against rice sheath blight disease caused by Rhizoctonia solani and rice blast disease caused by Magnaporthe oryzae in vivo. Collectively, the results demonstrate that siderophores, including bacillibactin, produced by B. velezensis YL2021 are promising biocontrol agents for application in rice disease control.
Collapse
Affiliation(s)
- Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Chen Dai
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zuo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junqing Qiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jiahui Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
11
|
Priyanto JA, Prastya ME, Hening ENW, Suryanti E, Kristiana R. Two Strains of Endophytic Bacillus velezensis Carrying Antibiotic-Biosynthetic Genes Show Antibacterial and Antibiofilm Activities Against Methicillin-Resistant Staphylococcus aureus (MRSA). Indian J Microbiol 2024; 64:1884-1893. [PMID: 39678944 PMCID: PMC11645368 DOI: 10.1007/s12088-024-01262-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/13/2024] [Indexed: 12/17/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is considered a priority pathogen causing high mortality that requires effective control measures. This study aimed to detect the presence of antibiotic-biosynthetic genes and to evaluate the anti-MRSA activity of two strains of endophytic Bacillus velezensis isolated from Archidendron pauciflorum. PCR-based screening showed that B. velezensis strains, such as DJ4 and DJ9 possessed six antibiotic-biosynthetic genes, namely MlnA , DhbE , BacD , DfnD, SrfA, and BaeR. According to the preliminary test conducted using disc-diffusion assay, metabolite extracts from these strains have anti-MRSA activity with clear zone diameters of 13.00 ± 0.82 mm, and 17.33 ± 0.47 mm, respectively. Extract from DJ9 strain was more active to MRSA, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 62.50 µg/mL and 250 µg/mL, respectively. Furthermore, a bactericidal effect was observed, as evidenced by MBC/MIC ratio of four. Both DJ9 and DJ4 extracts showed a dose-dependent inhibitory effect on MRSA biofilm formation. Furthermore, a maximum inhibition percentage of 60.12 ± 2.5% was shown by DJ9 extract in two-fold MIC. The corresponding extract disrupted MRSA mature biofilms most effectively at 55.74 ± 1.4%. In conclusion, crude extract, particularly the DJ9 strain had significant potential in inhibiting MRSA cell growth, MRSA biofilm formation, and disrupting MRSA mature biofilm in vitro. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01262-1.
Collapse
Affiliation(s)
- Jepri Agung Priyanto
- Division of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Agatis Street, IPB Dramaga Campus, Bogor, West Java 16680 Indonesia
| | - Muhammad Eka Prastya
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan Sains Dan Teknologi (KST) B.J Habibie (PUSPIPTEK), Serpong, South Tangerang, Banten Indonesia
| | - Egiyanti Nur Widhia Hening
- Division of Microbiology, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Agatis Street, IPB Dramaga Campus, Bogor, West Java 16680 Indonesia
| | - Erma Suryanti
- Department of Biology, Faculty of Sciences, Sumatera Institute of Technology, Lampung Selatan, Lampung, Indonesia
| | - Rhesi Kristiana
- Indonesian Marine Education and Research Organisation (MERO) Foundation, Br. Dinas Muntig, Bali, Indonesia
| |
Collapse
|
12
|
Romanenko MN, Shikov AE, Savina IA, Shmatov FM, Nizhnikov AA, Antonets KS. Genomic Insights into the Bactericidal and Fungicidal Potential of Bacillus mycoides b12.3 Isolated in the Soil of Olkhon Island in Lake Baikal, Russia. Microorganisms 2024; 12:2450. [PMID: 39770653 PMCID: PMC11676374 DOI: 10.3390/microorganisms12122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The dispersal of plant pathogens is a threat to the global economy and food industry which necessitates the need to discover efficient biocontrol agents such as bacteria, fungi, etc., inhibiting them. Here, we describe the Bacillus mycoides strain b12.3 isolated from the soil of Olkhon Island in Lake Baikal, Russia. By applying the co-cultivation technique, we found that the strain inhibits the growth of plant pathogens, such as the bacteria Xanthomonas campestris, Clavibacter michiganensis, and Pectobacterium atrospecticum, as well as the fungus Alternaria solani. To elucidate the genomic fundament explaining these activities, we leveraged next-generation whole-genome sequencing and obtained a high-quality assembly based on short reads. The isolate bore seven known BGCs (biosynthetic gene clusters), including those responsible for producing bacillibactin, fengycin, and petrobactin. Moreover, the genome contained insecticidal genes encoding for App4Aa1, Tpp78Ba1, and Spp1Aa1 toxins, thus implicating possible pesticidal potential. We compared the genome with the 50 closest assemblies and found that b12.3 is enriched with BGCs. The genomic analysis also revealed that genomic architecture corresponds to the experimentally observed activity spectrum implying that the combination of produced secondary metabolites delineates the range of inhibited phytopathogens Therefore, this study deepens our knowledge of the biology and ecology of B. mycoides residing in the Lake Baikal region.
Collapse
Affiliation(s)
- Maria N. Romanenko
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anton E. Shikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Iuliia A. Savina
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Fedor M. Shmatov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
| | - Anton A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (M.N.R.); (A.E.S.)
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| |
Collapse
|
13
|
Dhanalakshmi V, Rajendhran J. Whole-Genome Sequencing And Characterization Of Two Bacillus velezensis Strains from Termitarium and A Comprehensive Comparative Genomic Analysis of Biosynthetic Gene Clusters. Curr Microbiol 2024; 81:449. [PMID: 39508843 DOI: 10.1007/s00284-024-03965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/19/2024] [Indexed: 11/15/2024]
Abstract
The species Bacillus velezensis is known for its biosynthetic potential and metabolic versatility in producing several secondary metabolites and promoting plant growth. In this study, we isolated two B. velezensis strains, WGTg-8 and WGTm-299, from the termite gut and termitarium, which exhibited antimicrobial activity against multiple clinical and phytopathogens. The whole genomes of these strains were sequenced using the Illumina platform and annotated. The genome mining of the draft genome sequences revealed 48 biological gene clusters (BGCs) responsible for synthesizing various secondary metabolites. The construction of the similarity network of the BGCs and the comparative analysis with the genetically related organisms are aided in the identification of metabolites produced by these strains. We identified biosynthetic gene clusters (BGCs) coding for macrolactin H, bacilysin, bacillibactin, amylocyclin, comX4, and LCI, found in both strains with 100% similarity. The difficidin, bacillaene, thusin_alpha, and cericidin BGCs are exclusively found in strain WGTg-8, while the colicin BGC is exclusively present in the WGTm-299 strain. The fengycin and surfactin gene clusters are present in both strains with 80% similarity. Furthermore, 28 putative NRPS BGCs, NRPS-T1PKS hybrid clusters, a T1PKS, and a bacteriocin BGC were identified with very low similarity (≤ 25%) or no similarity with known antibiotics. In addition, we found several genes coding for plant growth-promoting properties, including nitrogen metabolism, hormone synthesis, sulfur metabolism, phosphate metabolism, and a few other properties.
Collapse
Affiliation(s)
- Venkatesan Dhanalakshmi
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
14
|
Essghaier B, Naccache C, Ben-Miled H, Mottola F, Ben-Mahrez K, Mezghani Khemakhem M, Rocco L. Discovery and characterization of novel lipopeptides produced by Virgibacillus massiliensis with biosurfactant and antimicrobial activities. 3 Biotech 2024; 14:258. [PMID: 39372494 PMCID: PMC11452367 DOI: 10.1007/s13205-024-04100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The study aimed to evaluate the biosurfactants (BSs) production by SM-23 strain of Virgibacillus identified by phenotypical and WGS analysis as Virgibacillus massiliensis. We first demonstrated the lipopeptides production by Virgibacillus massiliensis specie and studied their biochemical and molecular analysis as well as their biological potential. The GC-MS analysis indicated that methyl.2-hyroxydodecanoate was the major fatty acid compound with 33.22%. The maximum BSs production was obtained in LB medium supplemented by 1% olive oil (v/v) at 30 °C and 5% NaCl with 1.92 g/l. The obtained results revealed the significant biosurfactants/bioemulsifier potential compared to triton X100 with E24 of 100%, and an emulsification stability SE of 83%. The lipopeptides types were identified by FTIR analysis. A strong antimicrobial action was observed by the produced lipopeptides by the agar diffusion method against E.coli, K. pneumoniae, S. aureus, Fusarium sp, Alternaria sp, and Phytophtora sp. The complete genome sequencing showed genes involved in the synthesis of multiple compounds identified as amphipathic cyclic lipopeptides such as locillomycin/locillomycin B/locillomycin C and bacillibactin. Our results highlighted significant lipopeptides properties displayed by V. massiliensis that can be exploited to develop a novel strategy in the formulation of natural biocidal and fungicidal agents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04100-9.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Chahnez Naccache
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Houda Ben-Miled
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Filomena Mottola
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| | - Kamel Ben-Mahrez
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Maha Mezghani Khemakhem
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Lucia Rocco
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
15
|
Soto-Marfileño KA, Molina Garza ZJ, Flores RG, Molina-Garza VM, Ibarra-Gámez JC, Gil BG, Galaviz-Silva L. Genomic Characterization of Bacillus pumilus Sonora, a Strain with Inhibitory Activity against Vibrio parahaemolyticus-AHPND and Probiotic Candidate for Shrimp Aquaculture. Microorganisms 2024; 12:1623. [PMID: 39203465 PMCID: PMC11356620 DOI: 10.3390/microorganisms12081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Acute hepatopancreatic necrosis disease, caused by Vibrio parahaemolyticus strains carrying the pirA and pirB toxin genes (VpAHPND), has been causing great economic losses in Asia and America in the shrimp farming industry. Numerous strains are resistant to antibiotics. However, supplementation with probiotic antagonists has become a more desirable treatment alternative. Fourteen strains of microorganisms were assessed for their potential to inhibit VpAHPND in vitro activity. The bacteria with the highest activity were challenged with VpAHPND-infected Pacific white shrimp Litopenaeus vannamei. Furthermore, the genomic characteristics of probiotic bacteria were explored by whole-genome sequencing. We identified the Sonora strain as Bacillus pumilus, which possesses positive proteolytic and cellulolytic activities that may improve shrimp nutrient uptake and digestion. Challenge trials showed a low cumulative mortality (11.1%). B. pumilus Son has a genome of 3,512,470 bp and 3734 coding sequences contained in 327 subsystems. Some of these genes are related to the biosynthesis of antimicrobial peptides (surfactins, fengycin, schizokinen, bacilibactin, and bacilysin), nitrogen and phosphorus metabolism, and stress response. Our in vitro and in vivo findings suggest that B. pumilus Sonora has potential as a functional probiotic.
Collapse
Affiliation(s)
- Karla A. Soto-Marfileño
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; (K.A.S.-M.); (R.G.F.); (V.M.M.-G.)
| | - Zinnia Judith Molina Garza
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; (K.A.S.-M.); (R.G.F.); (V.M.M.-G.)
| | - Ricardo Gomez Flores
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; (K.A.S.-M.); (R.G.F.); (V.M.M.-G.)
| | - Vida Mariel Molina-Garza
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; (K.A.S.-M.); (R.G.F.); (V.M.M.-G.)
| | - José C. Ibarra-Gámez
- Instituto Tecnológico de Sonora, Departamento de Ciencias Agronómicas y Veterinarias, Ciudad Obregón 85000, Sonora, Mexico;
| | - Bruno Gómez Gil
- Mazatlán Unit, Research Center for Food and Development (CIAD), Ave Sábalo Cerritos S/N, Mazatlán 82112, Sinaloa, Mexico;
| | - Lucio Galaviz-Silva
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad S/N, Cd. Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico; (K.A.S.-M.); (R.G.F.); (V.M.M.-G.)
| |
Collapse
|
16
|
Keshmirshekan A, de Souza Mesquita LM, Ventura SPM. Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends Biotechnol 2024; 42:986-1001. [PMID: 38448350 DOI: 10.1016/j.tibtech.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
Many microorganisms have been reported as bioagents for producing ecofriendly, cost-effective, and safe products. Some Bacillus species of bacteria can be used in agricultural applications. Bacillus velezensis in particular has shown promising results for controlling destructive phytopathogens and in biofungicide manufacturing. Some B. velezensis strains can promote plant growth and display antibiotic activities against plant pathogen agents. In this review, we focus on the often-overlooked potential properties of B. velezensis as a bioagent for applications that will extend beyond the traditional agricultural uses. We delve into its versatility and future prospects, the challenges such uses may encounter, and some drawbacks associated with B. velezensis-based products.
Collapse
Affiliation(s)
- Abolfazl Keshmirshekan
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Leonardo M de Souza Mesquita
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, Rua Pedro Zaccaria 1300, Limeira, Sao Paulo, Brazil.
| | - Sónia P M Ventura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
17
|
Ananev AA, Ogneva ZV, Nityagovsky NN, Suprun AR, Kiselev KV, Aleynova OA. Whole Genome Sequencing of Bacillus velezensis AMR25, an Effective Antagonist Strain against Plant Pathogens. Microorganisms 2024; 12:1533. [PMID: 39203375 PMCID: PMC11356610 DOI: 10.3390/microorganisms12081533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The most serious problems for cultivated grapes are pathogenic microorganisms, which reduce the yield and quality of fruit. One of the most widespread disease of grapes is "gray mold", caused by the fungus Botrytis cinerea. Some strains of Bacillus, such as Bacillus halotolerans, Bacillus amyloliquefaciens, and Bacillus velezensis, are known to be active against major post-harvest plant rots. In this study, we showed that the endophytic bacteria B. velezensis strain AMR25 isolated from the leaves of wild grapes Vitis amurensis Rupr. exhibited antimicrobial activity against grape pathogens, including B. cinerea. The genome of B. velezensis AMR25 has one circular chromosome with a length of 3,909,646 bp. with 3689 open reading frames. Genomic analysis identified ten gene clusters involved in the nonribosomal synthesis of polyketides (macrolactin, bacillene, and difficidin), lipopeptides (surfactin, fengycin, and bacillizin), and bacteriocins (difficidin). Also, the genome under study contains a number of genes involved in root colonization, biofilm formation, and biosynthesis of phytohormones. Thus, the endophytic bacteria B. velezensis strain AMR25 shows great promise in developing innovative biological products for enhancing plant resistance against various pathogens.
Collapse
Affiliation(s)
| | - Zlata V. Ogneva
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia; (A.A.A.); (N.N.N.); (A.R.S.); (K.V.K.); (O.A.A.)
| | | | | | | | | |
Collapse
|
18
|
Eltokhy MA, Saad BT, Eltayeb WN, Alshahrani MY, Radwan SMR, Aboshanab KM, Ashour MSE. Metagenomic nanopore sequencing for exploring the nature of antimicrobial metabolites of Bacillus haynesii. AMB Express 2024; 14:52. [PMID: 38704474 PMCID: PMC11069495 DOI: 10.1186/s13568-024-01701-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Multidrug-resistant (MDR) pathogens are a rising global health worry that imposes an urgent need for the discovery of novel antibiotics particularly those of natural origin. In this context, we aimed to use the metagenomic nanopore sequence analysis of soil microbiota coupled with the conventional phenotypic screening and genomic analysis for identifying the antimicrobial metabolites produced by promising soil isolate(s). In this study, whole metagenome analysis of the soil sample(s) was performed using MinION™ (Oxford Nanopore Technologies). Aligning and analysis of sequences for probable secondary metabolite gene clusters were extracted and analyzed using the antiSMASH version 2 and DeepBGC. Results of the metagenomic analysis showed the most abundant taxa were Bifidobacterium, Burkholderia, and Nocardiaceae (99.21%, followed by Sphingomonadaceae (82.03%) and B. haynesii (34%). Phenotypic screening of the respective soil samples has resulted in a promising Bacillus isolate that exhibited broad-spectrum antibacterial activities against various MDR pathogens. It was identified using microscopical, cultural, and molecular methods as Bacillus (B.) haynesii isolate MZ922052. The secondary metabolite gene analysis revealed the conservation of seven biosynthetic gene clusters of antibacterial metabolites namely, siderophore lichenicidin VK21-A1/A2 (95% identity), lichenysin (100%), fengycin (53%), terpenes (100%), bacteriocin (100%), Lasso peptide (95%) and bacillibactin (53%). In conclusion, metagenomic nanopore sequence analysis of soil samples coupled with conventional screening helped identify B. haynesii isolate MZ922052 harboring seven biosynthetic gene clusters of promising antimicrobial metabolites. This is the first report for identifying the bacteriocin, lichenysin, and fengycin biosynthetic gene clusters in B. haynesii MZ922052.
Collapse
Affiliation(s)
- Mohamed A Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Wafaa N Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo, 19648, Egypt
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha, 9088, Saudi Arabia
| | - Sahar M R Radwan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Organization of African Unity St., Cairo, 11651, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St, Ain Shams University, Organization of African Unity St., Cairo, 11566, Egypt.
| | - Mohamed S E Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Boys), Cairo, 11651, Egypt
| |
Collapse
|
19
|
Luna-Bulbarela A, Romero-Gutiérrez MT, Tinoco-Valencia R, Ortiz E, Martínez-Romero ME, Galindo E, Serrano-Carreón L. Response of Bacillus velezensis 83 to interaction with Colletotrichum gloeosporioides resembles a Greek phalanx-style formation: A stress resistant phenotype with antibiosis capacity. Microbiol Res 2024; 280:127592. [PMID: 38199003 DOI: 10.1016/j.micres.2023.127592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Plant growth-promoting rhizobacteria, such as Bacillus spp., establish beneficial associations with plants and may inhibit the growth of phytopathogenic fungi. However, these bacteria are subject to multiple biotic stimuli from their competitors, causing stress and modifying their development. This work is a study of an in vitro interaction between two model microorganisms of socioeconomic relevance, using population dynamics and transcriptomic approaches. Co-cultures of Bacillus velezensis 83 with the phytopathogenic fungus Colletotrichum gloeosporioides 09 were performed to evaluate the metabolic response of the bacteria under conditions of non-nutritional limitation. The bacterial response was associated with the induction of a stress-resistant phenotype, characterized by a lower specific growth rate, but with antimicrobial production capacity. About 12% of co-cultured B. velezensis 83 coding sequences were differentially expressed, including the up-regulation of the general stress response (sigB regulon), and the down-regulation of alternative carbon sources catabolism (glucose preference). Defense strategies in B. velezensis are a determining factor in order to preserve the long-term viability of its population. Mostly, the presence of the fungus does not affect the expression of antibiosis genes, except for those corresponding to surfactin/bacillomycin D production. Indeed, the up-regulation of antibiosis genes expression is associated with bacterial growth, regardless of the presence of the fungus. This behavior in B. velezensis 83 resembles the strategy used by the classical Greek phalanx formation: by sacrificing growth rate and metabolic versatility, resources can be redistributed to defense (stress resistant phenotype) while maintaining the attack (antibiosis capacity). The presented results are the first characterization of the molecular phenotype at the transcriptome level of a biological control agent under biotic stress caused by a phytopathogen without nutrient limitation.
Collapse
Affiliation(s)
- Agustín Luna-Bulbarela
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - María Teresa Romero-Gutiérrez
- Technological Innovation Department, Tlajomulco University Center, University of Guadalajara, 45641 Tlajomulco de Zúñiga, Jalisco, Mexico; Translational Bioengineering Department, Exact Sciences and Engineering University Center, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, 44430 Guadalajara, Jalisco, Mexico
| | - Raunel Tinoco-Valencia
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - María Esperanza Martínez-Romero
- Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico
| | - Enrique Galindo
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico
| | - Leobardo Serrano-Carreón
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad #2001, Col. Chamilpa, CP 62210 Cuernavaca, Morelos, Mexico; Agro&Biotecnia S. de R.L. de C.V., Limones 8, Amate Redondo, 62334 Cuernavaca, Morelos, Mexico.
| |
Collapse
|
20
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
21
|
Lyng M, Jørgensen JPB, Schostag MD, Jarmusch SA, Aguilar DKC, Lozano-Andrade CN, Kovács ÁT. Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. THE ISME JOURNAL 2024; 18:wrad001. [PMID: 38365234 PMCID: PMC10811728 DOI: 10.1093/ismejo/wrad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024]
Abstract
Siderophores have long been implicated in sociomicrobiology as determinants of bacterial interrelations. For plant-associated genera, like Bacillus and Pseudomonas, siderophores are well known for their biocontrol functions. Here, we explored the functional role of the Bacillus subtilis siderophore bacillibactin (BB) in an antagonistic interaction with Pseudomonas marginalis. The presence of BB strongly influenced the outcome of the interaction in an iron-dependent manner. The BB producer B. subtilis restricts colony spreading of P. marginalis by repressing the transcription of histidine kinase-encoding gene gacS, thereby abolishing production of secondary metabolites such as pyoverdine and viscosin. By contrast, lack of BB restricted B. subtilis colony growth. To explore the specificity of the antagonism, we cocultured B. subtilis with a collection of fluorescent Pseudomonas spp. and found that the Bacillus-Pseudomonas interaction is conserved, expanding our understanding of the interplay between two of the most well-studied genera of soil bacteria.
Collapse
Affiliation(s)
- Mark Lyng
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Johan P B Jørgensen
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Morten D Schostag
- Bacterial Ecophysiology & Biotechnology, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Scott A Jarmusch
- Natural Product Discovery, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Diana K C Aguilar
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Carlos N Lozano-Andrade
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kgs Lyngby 2800, Denmark
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| |
Collapse
|
22
|
Casillo A, D’Angelo C, Imbimbo P, Monti DM, Parrilli E, Lanzetta R, Gomez d’Ayala G, Mallardo S, Corsaro MM, Duraccio D. Aqueous Extracts from Hemp Seeds as a New Weapon against Staphylococcus epidermidis Biofilms. Int J Mol Sci 2023; 24:16026. [PMID: 38003214 PMCID: PMC10671263 DOI: 10.3390/ijms242216026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the antibiofilm activity of water-soluble extracts obtained under different pH conditions from Cannabis sativa seeds and from previously defatted seeds. The chemical composition of the extracts, determined through GC-MS and NMR, revealed complex mixtures of fatty acids, monosaccharides, amino acids and glycerol in ratios depending on extraction pH. In particular, the extract obtained at pH 7 from defatted seeds (Ex7d) contained a larger variety of sugars compared to the others. Saturated and unsaturated fatty acids were found in all of the analysed extracts, but linoleic acid (C18:2) was detected only in the extracts obtained at pH 7 and pH 10. The extracts did not show cytotoxicity to HaCaT cells and significantly inhibited the formation of Staphylococcus epidermidis biofilms. The exception was the extract obtained at pH 10, which appeared to be less active. Ex7d showed the highest antibiofilm activity, i.e., around 90%. Ex7d was further fractionated by HPLC, and the antibiofilm activity of all fractions was evaluated. The 2D-NMR analysis highlighted that the most active fraction was largely composed of glycerolipids. This evidence suggested that these molecules are probably responsible for the observed antibiofilm effect but does not exclude a possible synergistic contribution by the other components.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Giovanna Gomez d’Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Salvatore Mallardo
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS)-CNR, Strada Delle Cacce 73, 10135 Torino, Italy;
| |
Collapse
|
23
|
Lee H, Chaudhary DK, Lim OB, Lee KE, Cha IT, Chi WJ, Kim DU. Paenibacillus caseinilyticus sp. nov., isolated forest soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 37982814 DOI: 10.1099/ijsem.0.006171] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
A milky-white-coloured, aerobic, Gram-stain-positive, rod-shaped and motile bacterial strain (GW78T) was isolated from forest soil. GW78T was catalase-positive and oxidase-negative. The strain was able to grow optimally at 37 °C and at pH 7.0 in Reasoner's 2A media. The phylogenetic and 16S rRNA gene sequence analysis of GW78T showed its affiliation with the genus Paenibacillus. The 16S rRNA gene sequence of GW78T revealed 98.3 % similarity to its nearest neighbour Paenibacillus mucilaginosus VKPM B-7519T. Its chemotaxonomic properties included MK-7 as the sole menaquinone, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylmonomethylethanolamine and phosphatidylethanolamine as major polar lipids, and anteiso-C15 : 0, C16 : 1 ω11c and anteiso-C17 : 0 as predominant fatty acids. Digital DNA-DNA hybridization and average nucleotide identity results with its closest relatives were <74.0 % and <14.0 %, respectively. Overall, 16S rRNA gene sequence comparisons, phylogenetic and genomic evidence, and phenotypic and chemotaxonomic data allow the differentiation of GW78T from other members of the genus Paenibacillus. Thus, we propose that strain GW78T represents a novel species of the genus Paenibacillus, with the name Paenibacillus caseinilyticus sp. nov. The type strain is GW78T (=KCTC 43430T=NBRC 116023T).
Collapse
Affiliation(s)
- Hyosun Lee
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea
| | - Oung Bin Lim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Ki Eun Lee
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - In Tae Cha
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Won Jae Chi
- Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| |
Collapse
|
24
|
Hafeez AB, Pełka K, Buzun K, Worobo R, Szweda P. Whole-genome sequencing and antimicrobial potential of bacteria isolated from Polish honey. Appl Microbiol Biotechnol 2023; 107:6389-6406. [PMID: 37665371 PMCID: PMC10560198 DOI: 10.1007/s00253-023-12732-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/18/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
The aim of this study was the whole-genome analysis and assessment of the antimicrobial potential of bacterial isolates from honey harvested in one geographical location-the north of Poland. In total, 132 strains were derived from three honey samples, and the antimicrobial activity of CFAM (cell-free after-culture medium) was used as a criterion for strain selection and detailed genomic investigation. Two of the tested isolates (SZA14 and SZA16) were classified as Bacillus paralicheniformis, and one isolate (SZB3) as Bacillus subtilis based on their ANI and phylogenetic analysis relatedness. The isolates SZA14 and SZA16 were harvested from the same honey sample with a nucleotide identity of 98.96%. All three isolates have been found to be potential producers of different antimicrobial compounds. The secondary metabolite genome mining pipeline (antiSMASH) identified 14 gene cluster coding for non-ribosomal peptide synthetases (NRPs), polyketide synthases (PKSs), and ribosomally synthesized and post-translationally modified peptides (RiPPs) that are potential sources of novel antibacterials. The BAGEL4 analysis revealed the presence of nine putative gene clusters of interest in the isolates SZA14 and SZA16 (including the presence of six similar clusters present in both isolates, coding for the production of enterocin Nkr-5-3B, haloduracin-alpha, sonorensin, bottromycin, comX2, and lasso peptide), and four in B. subtilis isolate SZB3 (competence factor, sporulation-killing factor, subtilosin A, and sactipeptides). The outcomes of this study confirm that honey-derived Bacillus spp. strains can be considered potential producers of a broad spectrum of antimicrobial agents. KEY POINTS: • Bacteria of the genus Bacillus are an important component of honey microbiota. • Honey-derived Bacillus spp. strains are potential producers of new antimicrobials.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Karolina Pełka
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Kamila Buzun
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Randy Worobo
- Department of Food Science, Cornell University, Ithaca, NY 14853 USA
| | - Piotr Szweda
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
25
|
Wu D, Fu L, Cao Y, Dong N, Li D. Genomic insights into antimicrobial potential and optimization of fermentation conditions of pig-derived Bacillus subtilis BS21. Front Microbiol 2023; 14:1239837. [PMID: 37840708 PMCID: PMC10570807 DOI: 10.3389/fmicb.2023.1239837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Bacillus spp. have been widely used as probiotic supplements in animal feed as alternatives to antibiotics. In the present study, we screened a Bacillus subtilis strain named BS21 from pig feces. Antimicrobial activities, whole genome mining and UHPLC-MS/MS analysis were used to explore its antimicrobial mechanism. Strain BS21 showed Significant growth inhibition against a variety of animal pathogens, including Escherichia coli, Salmonella enterica Pullorum, Salmonella enterica Typhimurium, Citrobacter rodentium, Shigella flexneri and Staphylococcus aureus. Seven gene clusters involved in antimicrobial biosynthesis of secondary metabolites were encoded by strain BS21 genome, including four non-ribosomal peptides (bacillibactin, fengycin, surfactin and zwittermicin A), one ribosomal peptide (subtilosin A), one dipeptide (bacilysin) and one polyketide (bacillaene). Among them, production of surfactin, fengycin, bacillibactin, bacilysin and bacillaene was detected in the supernatant of B. subtilis strain BS21. To develop the potential application of BS21 in animal production, medium components and fermentation parameters optimization was carried out using response surface methodology (RSM). Production of antimicrobial secondary metabolites of strain BS21 was increased by 43.4%, and the best medium formula after optimization was corn flour 2%, soybean meal 1.7% and NaCl 0.5% with optimum culture parameters of initial pH 7.0, temperature 30°C, rotating speed at 220 rpm for 26 h. Our results suggested that strain BS21 has the potential for large-scale production and application as a potential source of probiotics and alternative to antibiotics for animal production.
Collapse
Affiliation(s)
| | | | | | - Na Dong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Bagewadi ZK, Yunus Khan T, Gangadharappa B, Kamalapurkar A, Mohamed Shamsudeen S, Yaraguppi DA. Molecular dynamics and simulation analysis against superoxide dismutase (SOD) target of Micrococcus luteus with secondary metabolites from Bacillus licheniformis recognized by genome mining approach. Saudi J Biol Sci 2023; 30:103753. [PMID: 37583871 PMCID: PMC10424208 DOI: 10.1016/j.sjbs.2023.103753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
Micrococcus luteus, also known as M. luteus, is a bacterium that inhabits mucous membranes, human skin, and various environmental sources. It is commonly linked to infections, especially among individuals who have compromised immune systems. M. luteus is capable of synthesizing the enzyme superoxide dismutase (SOD) as a component of its protective response to reactive oxygen species (ROS). This enzyme serves as a promising target for drug development in various diseases. The current study utilized a subtractive genomics approach to identify potential therapeutic targets from M. luteus. Additionally, genome mining was employed to identify and characterize the biosynthetic gene clusters (BGCs) responsible for the production of secondary metabolites in Bacillus licheniformis (B. licheniformis), a bacterium known for its production of therapeutically relevant secondary metabolites. Subtractive genomics resulted in identification of important extracellular protein SOD as a drug target that plays a crucial role in shielding cells from damage caused by ROS. Genome mining resulted in identification of five potential ligands (secondary metabolites) from B. licheniformis such as, Bacillibactin (BAC), Paenibactin (PAE), Fengycin (FEN), Surfactin (SUR) and Lichenysin (LIC). Molecular docking was used to predict and analyze the binding interactions between these five ligands and target protein SOD. The resulting protein-ligand complexes were further analyzed for their motions and interactions of atoms and molecules over 250 ns using molecular dynamics (MD) simulation analysis. The analysis of MD simulations suggests, Bacillibactin as the probable candidate to arrest the activities of SOD. All the five compounds reported in this study were found to act by directly/indirectly interacting with ROS molecules, such as superoxide radicals (O2-) and hydrogen peroxide (H2O2), and transforming them into less reactive species. This antioxidant activity contributes to its protective effects against oxidative stress-induced damage in cells making them likely candidate for various applications, including in the development of antioxidant-based therapies, nutraceuticals, and functional foods.
Collapse
Affiliation(s)
- Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Bhavya Gangadharappa
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bangalore, Karnataka 560054, India
| | - Ankita Kamalapurkar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic dental science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| | - Deepak A. Yaraguppi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| |
Collapse
|
27
|
Ma Y, Fu W, Hong B, Wang X, Jiang S, Wang J. Antibacterial MccM as the Major Microcin in Escherichia coli Nissle 1917 against Pathogenic Enterobacteria. Int J Mol Sci 2023; 24:11688. [PMID: 37511446 PMCID: PMC10380612 DOI: 10.3390/ijms241411688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Probiotic Escherichia coli Nissle 1917 (EcN) possesses excellent antibacterial effects on pathogenic enterobacteria. The microcins MccM and MccH47 produced in EcN played critical roles, but they are understudied and poorly characterized, and the individual antibacterial mechanisms are still unclear. In this study, three EcN mutants (ΔmcmA, ΔmchB, and ΔmcmAΔmchB) were constructed and compared with wild-type EcN (EcN wt) to test for inhibitory effects on the growth of Escherichia coli O157: H7, Salmonella enterica (SE), and Salmonella typhimurium (ST). The antibacterial effects on O157: H7 were not affected by the knockout of mcmA (MccM) and mchB (MccH47) in EcN. However, the antibacterial effect on Salmonella declined sharply in EcN mutants ΔmcmA. The overexpressed mcmA gene in EcN::mcmA showed more efficient antibacterial activity on Salmonella than that of EcN wt. Furthermore, the EcN::mcmA strain significantly reduced the abilities of adhesion and invasion of Salmonella to intestinal epithelial cells, decreasing the invasion ability of ST by 56.31% (62.57 times more than that of EcN wt) while reducing the adhesion ability of ST by 50.14% (2.41 times more than that of EcN wt). In addition, the supernatant of EcN::mcmA culture significantly decreased the mRNA expression and secretion of IL-1β, TNF-α, and IL-6 on macrophages induced by LPS. The EcN::mcmA strain generated twice as much orange halo as EcN wt by CAS agar diffusion assay by producing more siderophores. MccM was more closely related to the activity of EcN against Salmonella, and MccM-overproducing EcN inhibited Salmonella growth by producing more siderophores-MccM to compete for iron, which was critical to pathogen growth. Based on the above, EcN::mcmA can be developed as engineered probiotics to fight against pathogenic enterobacteria colonization in the gut.
Collapse
Affiliation(s)
- Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bin Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xinfeng Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shoujin Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
28
|
Tsai SH, Hsiao YC, Chang PE, Kuo CE, Lai MC, Chuang HW. Exploring the Biologically Active Metabolites Produced by Bacillus cereus for Plant Growth Promotion, Heat Stress Tolerance, and Resistance to Bacterial Soft Rot in Arabidopsis. Metabolites 2023; 13:metabo13050676. [PMID: 37233717 DOI: 10.3390/metabo13050676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Eight gene clusters responsible for synthesizing bioactive metabolites associated with plant growth promotion were identified in the Bacillus cereus strain D1 (BcD1) genome using the de novo whole-genome assembly method. The two largest gene clusters were responsible for synthesizing volatile organic compounds (VOCs) and encoding extracellular serine proteases. The treatment with BcD1 resulted in an increase in leaf chlorophyll content, plant size, and fresh weight in Arabidopsis seedlings. The BcD1-treated seedlings also accumulated higher levels of lignin and secondary metabolites including glucosinolates, triterpenoids, flavonoids, and phenolic compounds. Antioxidant enzyme activity and DPPH radical scavenging activity were also found to be higher in the treated seedlings as compared with the control. Seedlings pretreated with BcD1 exhibited increased tolerance to heat stress and reduced disease incidence of bacterial soft rot. RNA-seq analysis showed that BcD1 treatment activated Arabidopsis genes for diverse metabolite synthesis, including lignin and glucosinolates, and pathogenesis-related proteins such as serine protease inhibitors and defensin/PDF family proteins. The genes responsible for synthesizing indole acetic acid (IAA), abscisic acid (ABA), and jasmonic acid (JA) were expressed at higher levels, along with WRKY transcription factors involved in stress regulation and MYB54 for secondary cell wall synthesis. This study found that BcD1, a rhizobacterium producing VOCs and serine proteases, is capable of triggering the synthesis of diverse secondary metabolites and antioxidant enzymes in plants as a defense strategy against heat stress and pathogen attack.
Collapse
Affiliation(s)
- Sih-Huei Tsai
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Yi-Chun Hsiao
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Peter E Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Chen-En Kuo
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Mei-Chun Lai
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Huey-Wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| |
Collapse
|
29
|
Sam-On MFS, Mustafa S, Hashim AM, Yusof MT, Zulkifly S, Malek AZA, Roslan MAH, Asrore MSM. Mining the genome of Bacillus velezensis FS26 for probiotic markers and secondary metabolites with antimicrobial properties against aquaculture pathogens. Microb Pathog 2023:106161. [PMID: 37207784 DOI: 10.1016/j.micpath.2023.106161] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Bacillus velezensis FS26 is a bacterium from the genus Bacillus that has been proven as a potential probiotic in aquaculture with a good antagonistic effect on Aeromonas spp. and Vibrio spp. Whole-genome sequencing (WGS) allows a comprehensive and in-depth analysis at the molecular level, and it is becoming an increasingly significant technique in aquaculture research. Although numerous probiotic genomes have been sequenced and investigated recently, there are minimal data on in silico analysis of B. velezensis as a probiotic bacterium isolated from aquaculture sources. Thus, this study aims to analyse the general genome characteristics and probiotic markers from the B. velezensis FS26 genome with secondary metabolites predicted against aquaculture pathogens. The B. velezensis FS26 genome (GenBank Accession: JAOPEO000000000) assembly proved to be of high quality, with eight contigs containing 3,926,371 bp and an average G + C content of 46.5%. According to antiSMASH analysis, five clusters of secondary metabolites from the B. velezensis FS26 genome showed 100% similarity. These clusters include Cluster 2 (bacilysin), Cluster 6 (bacillibactin), Cluster 7 (fengycin), Cluster 8 (bacillaene), and Cluster 9 (macrolactin H), which signify promising antibacterial, antifungal, and anticyanobacterial agents against pathogens in aquaculture. The probiotic markers of B. velezensis FS26 genome for adhesion capability in the hosts' intestine, as well as the acid and bile salt-tolerant genes, were also detected through the Prokaryotic Genome Annotation System (Prokka) annotation pipeline. These results are in agreement with our previous in vitro data, suggesting that the in silico investigation facilitates establishing B. velezensis FS26 as a beneficial probiotic for use in aquaculture.
Collapse
Affiliation(s)
- Muhamad Firdaus Syahmi Sam-On
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Shahrizim Zulkifly
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Ahmad Zuhairi Abdul Malek
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| | - Muhamad Akhmal Hakim Roslan
- Halways Sdn Bhd, Jalan Satelit, Putra Science Park, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shaufi Mohd Asrore
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
30
|
Xiang H, He Y, Wang X, Wang J, Li T, Zhu S, Zhang Z, Xu X, Wu Z. Identification and characterization of siderophilic biocontrol strain SL-44 combined with whole genome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62104-62120. [PMID: 36940032 DOI: 10.1007/s11356-023-26272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/28/2023] [Indexed: 05/10/2023]
Abstract
Using rhizobacteria as biological fertilizer is gradually expanding in agriculture as excellent substitutes for chemical fertilizers. Bacillus subtilis SL-44 is a plant growth-promoting rhizobacteria screened from the severely salinized cotton rhizosphere soil in Xinjiang. Study showed that indole-3-acetic acid, organic acid production, nitrogen fixation, and other beneficial secondary metabolite secretion can be synthesized by stain SL-44. At the same time, fencyclin, lipopeptide, chitinase, and other antifungal substances were also detected from the secretion of Bacillus subtilis SL-44, which can effectively control plant diseases. Siderophore separated from SL-44 was verified by HPLC, and results showed it was likely bacillibactin. This study also verified that SL-44 has high antifungal activity against Rhizoctonia solani through in vitro antifungal experiments. The B. subtilis SL-44 whole genome was sequenced and annotated to further explore the biotechnological potential of SL-44. And a large number of genes involved in the synthesis of anti-oxidative stress, antibiotic, and toxins were found. Genome-wide analysis provides clear evidence to support the great potential of B. subtilis SL-44 strain to produce multiple bioantagonistic natural products and growth-promoting metabolites, which may facilitate further research into effective therapies for harmful diseases.
Collapse
Affiliation(s)
- Huichun Xiang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xiaobo Wang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Jianwen Wang
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Tao Li
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Shuangxi Zhu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Ziyan Zhang
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Xiaolin Xu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, People's Republic of China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| |
Collapse
|
31
|
Guillén-Navarro K, López-Gutiérrez T, García-Fajardo V, Gómez-Cornelio S, Zarza E, De la Rosa-García S, Chan-Bacab M. Broad-Spectrum Antifungal, Biosurfactants and Bioemulsifier Activity of Bacillus subtilis subsp. spizizenii-A Potential Biocontrol and Bioremediation Agent in Agriculture. PLANTS (BASEL, SWITZERLAND) 2023; 12:1374. [PMID: 36987062 PMCID: PMC10056679 DOI: 10.3390/plants12061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In this study, the antifungal, biosurfactant and bioemulsifying activity of the lipopeptides produced by the marine bacterium Bacillus subtilis subsp. spizizenii MC6B-22 is presented. The kinetics showed that at 84 h, the highest yield of lipopeptides (556 mg/mL) with antifungal, biosurfactant, bioemulsifying and hemolytic activity was detected, finding a relationship with the sporulation of the bacteria. Based on the hemolytic activity, bio-guided purification methods were used to obtain the lipopeptide. By TLC, HPLC and MALDI-TOF, the mycosubtilin was identified as the main lipopeptide, and it was further confirmed by NRPS gene clusters prediction based on the strain's genome sequence, in addition to other genes related to antimicrobial activity. The lipopeptide showed a broad-spectrum activity against ten phytopathogens of tropical crops at a minimum inhibitory concentration of 400 to 25 μg/mL and with a fungicidal mode of action. In addition, it exhibited that biosurfactant and bioemulsifying activities remain stable over a wide range of salinity and pH and it can emulsify different hydrophobic substrates. These results demonstrate the potential of the MC6B-22 strain as a biocontrol agent for agriculture and its application in bioremediation and other biotechnological fields.
Collapse
Affiliation(s)
- Karina Guillén-Navarro
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Tomás López-Gutiérrez
- Facultad de Ciencias Biologicas, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| | - Verónica García-Fajardo
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
| | - Sergio Gómez-Cornelio
- Ingeniería en Biotecnología, Universidad Politécnica del Centro, Carretera Federal Villahermosa-Teapa km 22.5, Villahermosa 86290, Tabasco, Mexico;
- Laboratorio de Nanotecnología-CICTAT, División Académica de Ingeniería y Arquitectura, Universidad Juárez Autónoma de Tabasco, Carr. Cunduacán-Jalpa de Méndez km 1, Cunduacán 86690, Tabasco, Mexico
| | - Eugenia Zarza
- Grupo Académico de Biotecnología Ambiental, Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur Unidad Tapachula, Carretera Antiguo Aeropuerto km 2.5, Tapachula 30700, Chiapas, Mexico; (K.G.-N.); (E.Z.)
- Investigadora CONACyT—El Colegio de la Frontera Sur. Av. Insurgentes Sur 1582, Col. Crédito Constructor, Benito Juárez, Mexico City 03940, Mexico City, Mexico
| | - Susana De la Rosa-García
- Laboratorio de Microbiología Aplicada, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carretera Villahermosa-Cárdenas km 0.5, Villahermosa 86000, Tabasco, Mexico
| | - Manuel Chan-Bacab
- Departamento de Microbiología Ambiental y Biotecnología, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista, Campeche 24030, Campeche, Mexico
| |
Collapse
|
32
|
Li B, Zhang J, Li X. A comprehensive description of the TolC effect on the antimicrobial susceptibility profile in Enterobacter bugandensis. Front Cell Infect Microbiol 2022; 12:1036933. [PMID: 36569193 PMCID: PMC9780596 DOI: 10.3389/fcimb.2022.1036933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Enterobacter bugandensis is an emerging human pathogen in which multidrug resistant strains have been continuously isolated from various environments. Thus, this organism possesses the potential to pose challenges in human healthcare. However, the mechanisms, especially the efflux pumps, responsible for the multidrug resistance in E. bugandensis remain to be well elucidated. Methods The Enterobacter strain CMCC(B) 45301 was specifically identified using whole genome sequencing. The specific CMCC(B) 45301 homologues of the TolC dependent efflux-pump genes characterized in Escherichia coli were identified. The tolC deletion mutant in CMCC(B) 45301 was constructed and subjected to susceptibility tests using 26 different antimicrobial agents, along with the wild type strain. The synergistic effects combining the Bacillus crude extract (BCE) and several other TolC-affected compounds against CMCC(B) 45301 were assayed. Results We reclassified the Enterobacter CMCC(B) 45301 strain from species cloacae to bugandensis, on the basis of its whole genome sequence. We found that the CMCC(B) 45301 TolC, AcrAB, AcrD, AcrEF, MdtABC, EmrAB, and MacAB exhibit high similarity with their respective homologues in E. coli and Enterobacter cloacae. Our results for the susceptibility tests revealed that lacking tolC causes 4- to 256-fold decrease in the minimal inhibitory concentrations of piperacillin, gentamicin, kanamycin, tetracycline, norfloxacin, ciprofloxacin, chloramphenicol, and erythromycin against CMCC(B) 45301. In addition, the inhibition zones formed by cefuroxime, cefoperazone, amikacin, streptomycin, minocycline, doxycycline, levofloxacin, florfenicol, trimethoprim-sulfamethoxazole, azithromycin, lincomycin, and clindamycin for the tolC mutant were larger or more obvious than that for the parent. Our data suggested the important role played by TolC in CMCC(B) 45301 susceptibility to common antibiotic families covering ß-lactam, aminoglycoside, tetracycline, fluoroquinolone, phenicol, folate pathway antagonist, macrolide, and lincosamide. Deletion for tolC also increased the susceptibility of CMCC(B) 45301 to berberine hydrochloride and BCE, two natural product-based agents. Finally, we found that erythromycin, norfloxacin, and ciprofloxacin can potentiate the antibacterial activity of BCE against CMCC(B) 45301. Discussion The present study elaborated the comprehensive TolC effect on the antimicrobial susceptibility profile in E. bugandensis, which might contribute to the development of more therapeutic options against this nosocomial pathogen.
Collapse
Affiliation(s)
- Bingyu Li
- Health Science Center, Shenzhen University, Shenzhen, Guangdong, China,*Correspondence: Bingyu Li, ; Xiaodong Li,
| | - Ji Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China
| | - Xiaodong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, China,Research and Development Center, Panjin Guanghe Crab Industry Co., Ltd., Panjin, China,*Correspondence: Bingyu Li, ; Xiaodong Li,
| |
Collapse
|
33
|
Seaweed-associated heterotrophic Bacillus altitudinis MTCC13046: a promising marine bacterium for use against human hepatocellular adenocarcinoma. Arch Microbiol 2022; 205:10. [PMID: 36459289 DOI: 10.1007/s00203-022-03346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
Abstract
Since the report of the antibiotic with anticancer properties, scientists have been focusing to isolate and characterize novel anti-microbial natural products possessing anticancer activities. The current study describes the production of seaweed-associated heterotrophic Bacillus altitudinis MTCC13046 with potential anticancer properties. The bacterium was screened for its capacity to diminish the cell proliferation of the human hepatocellular adenocarcinoma (HepG2) cell line, without upsetting the normal cells. The bacterial extract showed anticancer properties in a dose-reactive form against HepG2 (IC50, half maximal inhibitory concentration ~ 29.5 µg/ml) on tetrazolium bromide analysis with less significant cytotoxicity on common fibroblast (HDF) cells (IC50 ~ 77 µg/ml). The potential antioxidant ability of the organic extract of B. altitudinis MTCC13046 (IC90 133 µg/ml) could corroborate its capacity to attenuate the pathophysiology leading to carcinogenesis. The results of the apoptosis assay showed that the crude extracts of B. altitudinis maintained 68% viability in normal cells compared to 11% in the cancer cells (IC50 76.9 µg/ml). According to the findings, B. altitudinis MTCC13046 could be used to develop prospective anticancer agents.
Collapse
|
34
|
Kizhakkekalam VK, Chakraborty K, Krishnan S. Antibacterial and wound healing potential of topical formulation of marine symbiotic Bacillus. Arch Microbiol 2022; 204:648. [PMID: 36166149 DOI: 10.1007/s00203-022-03246-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/10/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
The inevitability to develop novel antimicrobial agents has considerably increased because of mounting alarms concerning multidrug-resistant microbial strains. The present study evaluated an antibacterial and wound healing topical formulation prepared with the ethyl acetate extract of marine symbiotic Bacillus amyloliquefaciens MTCC 12716 as the basic ingredient and the grafted macroalgal polysaccharide as the gel base with an appropriate proportion of natural stabilizing agents. The formulation exhibited potent antibacterial activities against clinical isolates of Staphylococcus aureus (18 mm inhibition zone) and Pseudomonas aeruginosa (19 mm) causing infection when compared with commercially available antimicrobial cream clindamycin. The in-vitro results indicated that the organic extract of B. amyloliquefaciens MTCC 12716 at its MIC and the formulation sealed the wound by 78 and 94%, respectively, at 48 h in the scratch-induced L929 cells, compared to 84% exhibited by clindamycin. The topical formulation of marine symbiotic Bacillus induced greater than 80% viability of the normal fibroblasts compared to 78% exhibited by clindamycin, when administered at a dose of 25 μg mL-1. The studied antibacterial formulation could accelerate the wound healing by prompting the migration of fibroblasts towards the artificially created wound resulting in rapid wound closure, and at an even higher concentration of formulation, it displayed no cytotoxicity on L929 cells. The stability studies showed that the formulation maintained its physicochemical characteristics and minimal growth (<10 cfu g-1) of bacteria on the plates throughout the time period of 18 months at 30 °C and 65% relative humidity. This study has established the antibacterial and wound healing potential of a topical formulation of marine symbiotic B. amyloliquefaciens.
Collapse
Affiliation(s)
- Vinaya Kizhakkepatt Kizhakkekalam
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, India.,Faculty of Marine Sciences, Lakeside Campus, Cochin University of Science and Technology, Cochin, Kerala, India
| | - Kajal Chakraborty
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, India.
| | - Soumya Krishnan
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin, 682018, India
| |
Collapse
|
35
|
Wang Y, Zhang G, Huang Y, Guo M, Song J, Zhang T, Long Y, Wang B, Liu H. A Potential Biofertilizer—Siderophilic Bacteria Isolated From the Rhizosphere of Paris polyphylla var. yunnanensis. Front Microbiol 2022; 13:870413. [PMID: 35615507 PMCID: PMC9125218 DOI: 10.3389/fmicb.2022.870413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The increasing demands for crop production have become a great challenge while people also realizing the significance of reductions in synthetic chemical fertilizer use. Plant growth-promoting rhizobacteria (PGPR) are proven biofertilizers for increasing crop yields by promoting plant growth via various direct or indirect mechanisms. Siderophilic bacteria, as an important type of PGPR, can secrete siderophores to chelate unusable Fe3+ in the soil for plant growth. Siderophilic bacteria have been shown to play vital roles in preventing diseases and enhancing the growth of plants. Paris polyphylla var. yunnanensis (PPVY) is an important traditional Chinese herb. However, reports about its siderophilic bacteria are still rare. This study firstly isolated siderophilic bacteria from the rhizosphere soil of PPVY, identified by morphological and physio-biochemical characteristics as well as 16S rRNA sequence analysis. The dominant genus in the rhizobacteria of PPVY was Bacillus. Among 22 isolates, 21 isolates produced siderophores. The relative amount of siderophores ranged from 4 to 41%. Most of the isolates produced hydroxamate siderophores and some produced catechol. Four isolates belonging to Enterobacter produced the catechol type, and none of them produced carboxylate siderophores. Intriguingly, 16 strains could produce substances that have inhibitory activity against Candida albicans only in an iron-limited medium (SA medium). The effects of different concentrations of Fe3+ and three types of synthetic chemical fertilizers on AS19 growth, siderophore production, and swimming motility were first evaluated from multiple aspects. The study also found that the cell-free supernatant (CFS) with high siderophore units (SUs) of AS19 strain could significantly promote the germination of pepper and maize seeds and the development of the shoots and leaves of Gynura divaricata (Linn.). The bacterial solution of AS19 strain could significantly promote the elongation of the roots of G. divaricata (Linn.). Due to its combined traits promoting plant growth and seed germination, the AS19 has the potential to become a bioinoculant. This study will broaden the application prospects of the siderophilic bacteria-AS19 as biofertilizers for future sustainable agriculture.
Collapse
Affiliation(s)
- Yihan Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Gongyou Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Ya Huang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Min Guo
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Juhui Song
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Bing Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- *Correspondence: Bing Wang,
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- Key Laboratory of Biology and Medical Engineering, Immune Cells and Antibody Engineering Research Center of Guizhou Province, School of Biology and Engineering, Guizhou Medical University, Guiyang, China
- School of Basic Medicine Science, Guizhou Medical University, Guiyang, China
- Hongmei Liu,
| |
Collapse
|